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Abstract: The cellular antiviral innate immune response is triggered upon recognition of specific viral
components by a set of the host’s cytoplasmic or membrane-bound receptors. This interaction induces
specific signaling cascades that culminate with the production of interferons and the expression of
interferon-stimulated genes and pro-inflammatory cytokines that act as antiviral factors, suppressing
viral replication and restricting infection. Here, we review and discuss the different mechanisms by
which each of these receptors is able to recognize and signal infection by the human cytomegalovirus
(HCMV), an important human pathogen mainly associated with severe brain defects in newborns
and disabilities in immunocompromised individuals. We further present and discuss the many
sophisticated strategies developed by HCMV to evade these different signaling mechanisms and
counteract the cellular antiviral response, in order to support cell viability and sustain its slow
replication cycle.

Keywords: human cytomegalovirus (HCMV); antiviral innate immunity; immune evasion;
pattern-recognition receptors (PRRs); pathogen-associated molecular patterns (PAMPs)

1. Introduction

The human cytomegalovirus (HCMV), a species-specific β-herpesvirus, is a highly widespread
opportunistic pathogen that infects people of all ages, with higher seroprevalence in the elderly [1].
In a healthy immunocompetent host, primary HCMV infection is almost always benign with minimal
or no clinical manifestations, although it can result in horizontal or vertical transmission, and can
occasionally cause a self-limited mononucleosis syndrome, sore throat, glandular fever, or mild
hepatitis [2]. However, in immature or compromised immune subsets of the population (including
patients who are undergoing hemodialysis or receiving immunosuppressive drugs, and patients with
cancer or, infected with human immunodeficiency virus (HIV), or organ transplant recipients), it may
lead to serious illness, culminating in organ damage and life-threatening diseases [3,4]. HCMV was
also implicated in age-related diseases such as vascular pathologies [5], and was pinpointed as one
of the major causes of congenital disorder, leading to severe and permanent neurological injury in
newborns [6].

HCMV is the largest of the eight known human herpesviruses. Its long non-segmented linear
double-stranded (ds) deoxyribonucleic acid (DNA) genome encodes for many proteins and micro
ribonucleic acids (miRNAs) [7], and is surrounded by a symmetric icosahedral capsid which is, in turn,
enclosed into a lipid bilayer spiked with glycoprotein complexes [8]. The tegument, an amorphous
matrix, is localized in between these two layers and holds cellular and viral ribonucleic acids (RNAs),
as well as the majority of the virion proteins [9].

HCMV infects and replicates in a remarkably extensive variety of human cells (reviewed
in Reference [10]), going through two distinct phases, a productive lytic phase and a life-long
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non-productive latent phase, where the virus remains silent in the host with periodically productive
reactivation. Overall, this contributes to HCMV’s efficient systemic spread and transmission [11,12].

Attachment and fusion of infectious particles with the host cell membrane requires interaction
of several viral glycoproteins, e.g., gB and gH [13,14], with cell-surface proteoglycans and
receptors [15,16]. After internalization, virion RNAs are translated in the cytoplasm and viral capsids
are transported into the nucleus, where viral transcription, genome replication, and encapsidation
occur [17]. At late times post infection, the viral capsids assemble in nuclear viral factories, and
associate with the tegument at the cytoplasm; finally, enveloped infectious particles are released via
exocytosis to spread the infection [18].

The innate immune system is the first line of defense against pathogens and plays a major role in
restricting infection against viruses. The cellular antiviral immunity is activated with the recognition of
pathogen-associated molecular patterns (PAMPs) by a set of the host’s membrane-bound or cytoplasmic
pattern-recognition receptors (PRRs), inducing the early production of interferons (IFNs), and the
expression of IFN-stimulated genes (ISGs) and pro-inflammatory cytokines. These suppress viral
replication and restrict infection through the activation and nuclear translocation of nuclear factor
kappa B (NF-κB), IFN-regulatory factor 3 (IRF3), and IRF7, culminating in the expression of a variety
of innate immune genes (reviewed in References [19–21]). However, viruses adopt numerous and
specific evasion strategies that help subverting these host immune responses.

Following HCMV infection, a strong NF-κB-dependent production of type I IFNs, ISGs, and
pro-inflammatory cytokines is rapidly induced, establishing an antiviral response within the cell,
as well as in the neighboring cells [22,23]. Having a slow replication cycle, HCMV depends on
sustained cell viability, and, to prevent the premature death of infected cells, the virus is able to
block apoptotic signaling pathways and developed highly sophisticated immune evasion strategies
that allow efficiently manipulation of the immune system. In this review, we discuss the different
mechanisms of PRR-mediated HCMV immune-sensing by the infected cells, and furthermore, we
extend our discussion to the most recent findings on the strategies developed by this virus to counteract
and efficiently suppress the cellular innate immune response upon virion recognition.

2. Toll-Like Receptors in HCMV Infection

Toll-like receptors (TLRs) play a crucial role in non-specific immunity and are considered the
primary pathogen sensors [24]. Each TLR can specifically recognize different pathogen structures:
TLR2 and TLR4 seem to be generally involved in the recognition of viral proteins [25,26], while TLR3,
TLR7/8, and TLR9 are respectively linked to the recognition of double stranded RNA (dsRNA),
single-stranded RNA (ssRNA), and unmethylated cytosine–phosphate–guanine (CpG) motifs in viral
DNA in different cellular subsets [25,27,28].

Activation of TLRs stimulates the upregulation of inflammatory cytokines and type I IFNs.
As detailed in Figure 1, upon HCMV infection, TLR stimulation results in the activation of several
transcription factors, including NF-κB and activator protein 1 (AP-1), which govern the expression of
inflammatory cytokines, IRF3 and IRF7, regulating the activation of IFN-mediated responses [29].

As there is no animal model that can efficiently be infected by HCMV, most studies are performed
in human cell cultures, sometimes complemented by ex vivo tissue models that likely more accurately
represent in vivo infections. Studies performed on human cell lines showed that TLR2 directly interacts
with HCMV gB and gH glycoproteins, leading to an NF-κB-mediated upregulation of inflammatory
cytokines, such as interleukins 6 and 8 (IL-6 and IL-8), but not IFNs [26]. These results, together with
others [30,31], reinforce TLR2 function in the initiation of an inflammatory cytokine response against
HCMV infection. However, Juckem et al. [32] suggested that the IFN response to HCMV is not an
endosomal TLR2-dependent process, but instead, relies on cholesterol-rich microdomains.
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Figure 1. Schematic representation of Toll-like receptor (TLR) signaling and corresponding evasion 
mechanisms developed by the human cytomegalovirus (HCMV). TLR2 and TLR4 are present on the 
cell surface, and are directly stimulated or internalized upon activation, whereas TLR3 and TLR7/8 
are localized in intracellular endosomes. HCMV microRNAs (miR-UL112-3p and miRUS5-1), as well 
as HCMV (UL26, US9, and pp65) proteins, are known to inhibit specific or broad antiviral 
mechanisms downstream of TLR recognition, in particular nuclear factor kappa B (NF-κB) and 
interferon (IFN) regulatory factor 3 (IRF3)-mediated type I IFN production. IκBα: NF-κB inhibitor; 
IKK: IκB kinase; IRAK: interleukin-1 receptor-associated kinase; MyD88: myeloid differentiation 
primary response 88; NEMO: NF-κB essential modulator; TRAF: tumor necrosis factor (TNF) 
receptor-associated factor 1; TBK1: TRAF family member-associated NF-κB activator (TANK)-
binding kinase protein 1; TRAM: translocating chain-associated membrane protein; TRIF: 
Toll/interleukin receptor (TIR)-domain-containing adapter-inducing IFN-β. T-bars represent 
inhibitory actions. 

Figure 1. Schematic representation of Toll-like receptor (TLR) signaling and corresponding evasion
mechanisms developed by the human cytomegalovirus (HCMV). TLR2 and TLR4 are present on the
cell surface, and are directly stimulated or internalized upon activation, whereas TLR3 and TLR7/8
are localized in intracellular endosomes. HCMV microRNAs (miR-UL112-3p and miRUS5-1), as
well as HCMV (UL26, US9, and pp65) proteins, are known to inhibit specific or broad antiviral
mechanisms downstream of TLR recognition, in particular nuclear factor kappa B (NF-κB) and
interferon (IFN) regulatory factor 3 (IRF3)-mediated type I IFN production. IκBα: NF-κB inhibitor;
IKK: IκB kinase; IRAK: interleukin-1 receptor-associated kinase; MyD88: myeloid differentiation
primary response 88; NEMO: NF-κB essential modulator; TRAF: tumor necrosis factor (TNF)
receptor-associated factor 1; TBK1: TRAF family member-associated NF-κB activator (TANK)-binding
kinase protein 1; TRAM: translocating chain-associated membrane protein; TRIF: Toll/interleukin
receptor (TIR)-domain-containing adapter-inducing IFN-β. T-bars represent inhibitory actions.

TLR2, TRL3, and TLR9 were determined as inducing the expressions of IFN-β and tumor necrosis
factor alpha (TNF-α) at early times during HCMV infection in human THP-1 cells, as well as in human
foreskin fibroblasts (HFF) [30]. However, other studies demonstrated that, in human monocyte-derived
dendritic cells (moDCs), the early HCMV-triggered immune response appears to be independent of
TLR3 signaling [33].

Additionally, Harwani et al. [34] showed that distinct TLR ligands inhibit HCMV infection by
inducing IFN-β production in HFF and ectocervical explants. Both TLR3 and TLR4 were correlated
with the inhibition of HCMV infection in HFF and cervical tissue, while TRL2 and TLR9 also induced
HCMV inhibition in ectocervical explants. These differences are likely simply due to the absence of
TLR2 and TLR9 from HFF cell cultures, emphasizing the importance of ex vivo studies to complement
HMCV infection experiments in isolated cell cultures. However, further studies in clinically relevant
cell culture models would surely be equally valuable.

Work done by Yew et al. (2012) and Arcangeletti et al. (2013) further demonstrates that
the TLR4/lymphocyte antigen 96 (MD2)/cluster of differentiation 14 (CD14) complex contributes
to HCMV-induced signaling and cytokine production in monocytes [35] and in THP-1 cells [36].
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Iversen et al. [37] showed that TLR9 is upregulated in HCMV-infected fibroblasts, suggesting that
TLR9-dependent signaling may be important for antiviral defense.

Recent studies demonstrate that HCMV developed specific strategies to counteract some
TLR-dependent signaling mechanisms (depicted in Figure 1 and summarized in Table 1).

HCMV microRNAs miR-US5-1 and miR-UL112-3p were shown to dampen NF-κB signaling by
specifically targeting NF-κB inhibitor (IκBα) kinase alpha and beta (IKKα and IKKβ) signaling factors
to limit cytokine production [38]. Previously, HCMV miR-UL112-3p was found to target TLR2 innate
immunity. At late times during infection, in fibroblasts and monocytic THP-1 cells, the accumulation
of viral miR-UL112-3p was correlated with a decrease in TLR2 protein level. This activity was shown
to be modulated by the inhibition of both interleukin-1 receptor-associated kinase (IRAK1) and NF-κB,
and a reduction in cytokine expression [39].

3. Cytosolic DNA Sensors in HCMV Infection

In general, cytosolic viral genome recognition promotes the expression and secretion of IFNs
which, in turn, drive the expression of ISGs, that antagonize viral replication and protect uninfected
cells from subsequent infections. There are multiple types of cytosolic DNA-sensing PRRs: cyclic
guanosine monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS), DNA-dependent
RNA polymerase III (Pol III), absent in melanoma 2 (AIM2), IFN-γ-inducible protein 16 (IFI16), and the
DNA-dependent activator of IFN-regulatory factors (DAI) (Figure 2) (reviewed in References [40,41]).

cGAS is considered as the main intracellular DNA sensor involved in the activation of innate
immune responses against DNA viruses. Upon recognition and binding to viral nucleic acids, cGAS
catalyzes the synthesis of cGAMP which, in turn, binds to and activates the endoplasmic-reticulum (ER)
protein stimulator of interferon genes (STING) to induce IRF3-mediated type I IFN production [42,43].
Interestingly, in virus-producing cells, cGAS-synthesized cGAMP can be packaged in viral particles
and extracellular vesicles that efficiently deliver it to uninfected target cells, to propagate and activate
antiviral immune responses in those cells [44]. Once active, STING dimerizes and acts as a scaffold
protein to promote the phosphorylation of IRF3 by TNF receptor-associated factor (TRAF) family
member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1), leading to its activation and
downstream production of type I IFNs [45–47]. Furthermore, the STING/TBK1 complex interacts with
the NF-κB inhibitor (IκB) kinase (IKK) complex to activate and induce the translocation of NF-κB into
the nucleus, promoting the expression of pro-inflammatory cytokines [48].

HCMV infection rapidly induces the activation of IRF3 leading to the expression of IFNs and
ISGs [22,49,50]. The cGAS/STING/IRF3 signaling axis was demonstrated by Lio et al. [51] to be
essential to mediate the initial TLR-independent antiviral responses against CMV, with the production
of a robust amount of type I IFNs that further limits early CMV replication, either in primary human
endothelial cells or mice.

Paijo et al. [52] suggested that HCMV-infected monocyte-derived cells synthesize abundant
cGAMP levels that precede type I IFN production, establishing cGAS as a key sensor of
HCMV-mediated type I IFN induction in primary human moDCs and macrophages. However,
the same authors found that, despite constitutively expressing cGAS, plasmacytoid DCs (pDCs) induce
type I IFN responses in a TLR9-dependent manner.

AIM2-mediated inflammasome [53], IFI16 [54,55], and DAI (or Z-DNA-binding protein
1-ZBP-1) [56] were shown to detect HCMV and to be involved in the host defense against infection,
binding viral DNA and triggering expression of antiviral cytokines. AIM2 and IFI16 receptors
induce the inflammasome after recognizing intracellular dsDNA [57], and IFI16 further activates
a STING-dependent signaling pathway [58]. It was reported that interactions between the HCMV
tegument pUL83 (pp65) protein and AIM2 disrupted the activation of AIM2 and reduced the AIM2
inflammasome-associated proteins [59]. The same viral protein was also shown to interact with the
IFI16 sensor [55,60].
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DAI has, likewise, an integral role in the DNA-mediated induction of type I IFNs and other genes
involved in innate immunity via its association with IRF3 and TBK1 [61]. In HCMV-infected human
fibroblasts, DAI was shown to be essential for the induction of the expression of IFN-β, mediated by
the DAI-dependent activation of STING and IRF3 [56].

Many strategies were already unraveled by which HCMV is able to evade the DNA
sensor-dependent antiviral signaling (depicted in Figure 2 and summarized in Table 1).
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protein was downregulating the virion-induced IFN responses by directly impacting NF-κB. 
However, a different study by Abate et al. demonstrated that pp65 may constitute a viral evasion 
factor to counteract the antiviral response, as it modulates the rapid induction of an IFN-like response 
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Figure 2. Schematic representation of cytosolic pattern-recognition receptor (PRR) signaling and
corresponding evasion mechanisms by HCMV. Several cytosolic sensors are involved in the
recognition of viral DNA and RNA and downstream activation of IFNs and pro-inflammatory
cytokines production with antiviral functions. HCMV proteins were shown to modulate the host’s
innate immune system by dampening cytosolic PRR-mediated signaling. Along with broader
modulation of antiviral IFNs and cytokine production, HCMV seems to act effectively on retinoic
acid-inducible gene I (RIG-I)/mitochondrial antiviral-signaling protein (MAVS) and cyclic guanosine
monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS)/endoplasmic-reticulum (ER)
protein stimulator of interferon genes (STING) pathways. DAI: DNA-dependent activator of
IFN-regulatory factors, also known as Z-DNA-binding protein 1 (ZBP1); dsDNA: double-stranded
deoxyribonucleic acid; IFI16: IFN-γ inducible protein 16; IRF: IFN regulatory factor; MDA5: melanoma
differentiation-associated protein 5; Pol III: RNA polymerase III. T-bars represent inhibitor actions.

Browne et al. [62] demonstrated that fibroblast infection with a mutant virus lacking the major
viral structural protein pUL83 (pp65) caused a stronger induction of many IFN responses and
pro-inflammatory chemokine RNAs than infection with the wild-type virus. The authors argued
that this protein was downregulating the virion-induced IFN responses by directly impacting NF-κB.
However, a different study by Abate et al. demonstrated that pp65 may constitute a viral evasion
factor to counteract the antiviral response, as it modulates the rapid induction of an IFN-like response
through the inhibition of IRF3 activation rather than NF-κB [63]. Additionally, using a mutant HCMV
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unable to express UL83-encoded pp65, Biolatti et al. [64] showed that this protein might be involved in
dampening IFN-β production in HFF cells, as it selectively binds to cGAS early during infection and
prevents its interaction with STING, thus inactivating the cGAS/STING/IRF3 signaling axis.

The HCMV UL31 protein was, likewise, identified as an inhibitor of cGAS. This protein can
directly interact with cGAS and inhibit its enzymatic activity, thereby reducing cGAMP production
and downstream antiviral gene expression. UL31 overexpression was shown to markedly contribute
to HCMV replication in HFF cells, suggesting that this protein is involved in the evasion of the innate
response to HCMV [65].

Other studies suggest that, during infection, HCMV appears to inhibit STING-mediated signaling
to evade the immune response. For instance, Fu et al. [66] identified the tegument protein UL82
as a negative regulator of STING-dependent antiviral response, as it impairs the assembly of
the STING/TBK1/IRF3 complex, preventing the trafficking of STING from the ER to perinuclear
microsomes. Also, the UL122-encoded immediate–early 86 kDa (IE86) protein strongly abolishes
cGAMP-mediated type I IFN promoter activation, as it post-translationally regulates STING, to
enable its proteasome-dependent degradation, and inhibits cGAMP-mediated induction of IFNs and
chemokine C–X–C motif ligand 1 (CXCL1), an antiviral cytokine [67]. Taylor et al. [68,69] previously
suggested that, during HCMV infection, IE86 blocks the expression of cytokines, namely IFN-β and
pro-inflammatory chemokines, by acting as an NF-κB antagonist.

Choi et al. [70] recently showed that the HCMV-encoded US9 glycoprotein inhibits IFN-β
production and antiviral responses by targeting STING-mediated signaling in late stages of HCMV
infection, to evade host innate antiviral responses. US9 expression abrogated STING-mediated IRF3
nuclear translocation, by altering STING oligomerization and STING/TBK1 disruption at the ER.
Overall, US9 leads to IRF3 cytosolic sequestration, thus inhibiting IRF3 nuclear translocation and
IFN-β production.

Other proteins were also correlated with HCMV innate immune evasion. In particular, Mathers et
al. [71] found that HCMV UL26 protein antagonizes (TNF-α-induced) NF-κB activation by attenuating
the phosphorylation of IKK. However, and as other herpesviruses, HCMV appears to target NF-κB
signaling differentially throughout the course of infection, as its prolonged activation seems to be
crucial for an efficient replication [72]. For instance, the HCMV UL144 protein was also shown to
be a potent activator of NF-κB-induced transcription, through a mechanism dependent on TRAF6
and tripartite motif 23 (TRIM23) proteins, involved in TLR-mediated signaling, in HCMV-permissive
human cells [73,74].

4. Is HCMV Antiviral Signaling Triggered by RNA Sensors?

RNA sensors, such as the family of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs),
which include RIG-I and melanoma differentiation-associated protein 5 (MDA5) (reviewed in
References [40,41]), recognize viral RNA in the cytoplasm of infected cells and induce the production
of inflammatory cytokines and type I IFNs (Figure 2). Structurally, RLRs contain an intermediate
RNA helicase domain, which is involved in recognition and binding to pathogen nucleic acids, a
C-terminal repressor domain, and two N-terminal tandem caspase activation and recruitment domains
(CARDs) [75–77]. Upon viral infection, the recognition and binding of exogenous RNA structures leads
to a conformational switch of RIG-I, which releases the auto-repressed CARDs [78,79] and recruits
its downstream adaptor mitochondrial antiviral-signaling protein (MAVS) at mitochondria [80] and
peroxisomes [81]. In contrast to RIG-I, MDA5 has its CARD domains permanently exposed [82].
MAVS activation induces the formation of detergent-resistant prion fiber-like active aggregates,
which are essential for the activation of downstream signaling pathways [83]. Both peroxisomal
and mitochondrial MAVS have different but complementing activities: peroxisomal MAVS was shown
to be involved in early but transient responses, while mitochondrial MAVS seems to act with slower
kinetics, inducing delayed but long-lasting responses [81,84].
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The RLR/MAVS and cGAS/STING pathways mediate antiviral responses against RNA and
DNA virus infections, respectively. However, an interplay between these two pathways, as well as the
possible consequent involvement of both signaling mechanisms in antiviral immunity against RNA and
DNA viruses, was already suggested. In fact, the downstream signaling components of both pathways
are physically and functionally interconnected. For instance, STING was reported to influence IFN
expression during RNA virus infection [85–88], acting as a cofactor in the RIG-I-mediated IFN response
to RNA viruses, as it interacts with both RIG-I and MAVS. Recently, Liu et al. [89] demonstrate, both
in vitro and in vivo, that the activation of the RIG-I pathway, with an RNA agonist, can cease a DNA
virus infection, through NF-κB and signal transducer and activator of transcription 1/2 (STAT1/2)
synergy, mediated by STING-dependent TNF-α and IFN-α production. With these results, the authors
corroborated the crosstalk between the RIG-I/MAVS RNA-sensing and cGAS/STING DNA-sensing
pathways. However, other reports show contradictory results, indicating that STING does not regulate
RNA-induced IFN expression. Upon stimulation with polyinosinic–polycytidylic acid (poly(I:C)) or
infection with the Sendai virus, a dsRNA analog and an RNA virus, respectively, IFN-β induction was
not affected in the absence of cGAS or STING [43]. Recently, a study performed by Franz et al. verified
that STING was not necessary to induce IFN expression in RNA-virus-infected fibroblasts; however, it
was still required to restrict its replication [90].

The stimulation of the RLR/MAVS signaling pathway by DNA viruses was also already
demonstrated. A recent study suggested that dsDNA, either synthetic or pathogen-derived, can
activate RLR-mediated innate immune responses through an IRF3-dependent type I IFN gene
induction [91]. One other report showed that one of the early recognition mechanisms of herpes
simplex virus (HSV) occurs through MDA5 sensing in human primary macrophages, which is linked
to a virus-induced IFN response [92]. Another dsDNA virus, the Epstein–Barr virus (EBV) was also
shown to induce type I IFN responses mediated by RIG-I, NF-κB, and IRF3, since RIG-I can sense
EBV-encoded small RNAs [93].

Interestingly, other groups demonstrated that cytosolic dsDNA can be sensed by Pol III and
converted into an RIG-I-recognizable RNA form to activate RIG-I and induce downstream antiviral
innate immune responses, including IFN and NF-κB activation [94,95].

To the best of our knowledge, there are yet no studies specifically reporting the recognition of
HCMV by RLRs. However, it is known that cellular dsRNA accumulates during HCMV infection and
can trigger antiviral innate immune mechanisms against it. To counteract this response, HCMV encodes
for IRS1 and TRS1, dsRNA-binding proteins that can prevent and evade dsRNA-activated antiviral
pathways, namely the protein kinase R (PKR)-mediated response [96]. It was also demonstrated that
the HCMV-encoded viral mitochondria-localized inhibitor of apoptosis (vMIA) protein [97,98] is able
to induce mitochondrial fragmentation and inhibit the mitochondria-dependent signaling pathway
downstream from MAVS [99]. vMIA was also shown to localize at peroxisomes, where it interacts
with MAVS and specifically inhibits the peroxisomal MAVS-dependent antiviral response [100].
One other report demonstrated the degradation of RIG-I during HCMV infection [101]. Furthermore,
the HCMV-encoded US9 glycoprotein was shown to target MAVS-mediated signaling and inhibit
IFN-β production in later stages of infection [70]. Altogether, these results seem to point to a possible
involvement of the RLR-dependent mechanisms in antiviral signaling against HCMV.

5. Concluding Remarks

As many other viruses, HCMV is recognized by a variety of receptors from the host cell, which
signal its presence and induce the production of different compounds, impairing virus particle
production and inhibiting viral spread. HCMV’s PAMPs interact with a variety of members from
the TLR family such as TLR2, TLR3, TLR4, and TLR9, and are also recognized by the cytoplasmic
sensors cGAS, AIM2, IFI16, and DAI. Recent results also suggest that, similar to other DNA viruses,
HCMV may also be signaled via RLR sensors, although further studies are needed to confirm this
hypothesis. With such a variety of cellular antiviral sensors and signaling mechanisms, it is quite
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remarkable that the virus is still able to maintain cell viability and sustain a slow replication cycle.
This is mainly due to its remarkable capacity to prevent multiple cell-death pathways and evade many
of the antiviral responses, including the PRR-dependent signaling pathways. Table 1 summarizes the
distinct mechanisms involving HCMV proteins and microRNAs that are used by the virus to efficiently
subvert the membrane and cytoplasmic sensor signaling pathways that were reviewed and discussed
in this manuscript.

Table 1. Human cytomegalovirus (HCMV) evasion from the antiviral innate immune responses.

Viral Factor Function Cell Type (Strain) Reference

miR-US5-1 Targets IKKα and IKKβ to limit production of
pro-inflammatory cytokines NHDF cells (TB40/E) [38]

miR-UL112-3p

Targets IKKα and IKKβ to limit production of
pro-inflammatory cytokines NHDF cells (TB40/E) [38]

Targets and downregulates TLR2 and inhibits its
dependent activation of IRAK1 and NF-κB signaling

NHDF cells (AD169)
THP-1 (TB40E) [39]

pUL83 (pp65)

Inhibits IFN-α and antiviral gene expression by
blocking IRF1 and NF-κB activity HFF (AD169) [62]

Modulates the rapid induction of an IFN-like response
by inhibiting IRF3 activation HFF (AD169) [63]

Dampens IFN-β production by selectively binding to
cGAS, inactivating the cGAS/STING/IRF3 axis HFF (TB40E) [64]

pUL31 Downregulates antiviral gene expression by directly
interacting with cGAS HEK293T, HFF (AD169) [65]

pUL82 Prevents STING trafficking to the ER and impairs the
formation of TBK1/IRF3/STING complexes

HEK293T, HFF, MLF
(AD169) [66]

pUL122 (IE86)

Mediates proteasome-dependent STING degradation
and inhibits cellular transcription factors for IFN-β

promoter activation
HFF (Towne) [67]

NF-κB antagonist; suppresses NF-κB-dependent
cytokine and chemokine gene expression

MRC5 fibroblasts
(AD169) [68]

US9 Inhibits IFN-β production and antiviral responses by
targeting both MAVS- and STING-mediated signaling HEK293T, HFF (AD169) [70]

pUL26 Antagonizes NF-κB activation by attenuating IKK
phosphorylation MRC5 (AD169) [71]

pUL144 Agonist of NF-κB-induced transcription via TRAF6
and TRIM23

U373, HFF (AD169,
TB40E) [73,74]

vMIA (pUL37 × 1)

Inhibits mitochondrial MAVS-dependent antiviral
signaling HeLa (transfection) [99]

Inhibits the peroxisomal MAVS-dependent antiviral
signaling

HepG2, HFF, Mefs
(transfection) [100]

cGAS: cyclic guanosine monophosphate–adenosine monophosphate synthase; ER: endoplasmic reticulum; IFN:
interferon; IKK: NF-κB inhibitor (IκBα) kinase; IRAK: interleukin-1 receptor-associated kinase; IRF: IFN regulatory
factor; MAVS: mitochondrial antiviral-signaling protein; NF-κB (nuclear factor kappa B); STING: stimulator of
IFN genes; TBK1: TRAF family member-associated NF-κB activator (TANK)-binding kinase protein 1; TLR:
Tool-like receptor; TRAF: tumor necrosis factor (TNF) receptor-associated factor; TRIM: Toll/interleukin receptor
(TIR)-domain-containing adapter-inducing IFN-β.

Unraveling the mechanisms developed by HCMV to interact with the host cell and evade the
innate immune response mechanisms not only enhances our knowledge of the viral pathogenesis,
but also provides insight into the mechanisms of the cellular innate immunity. Further developments
might contribute to the discovery of novel improved treatments against this virus, which still causes
significant morbidity and mortality in neonatal and immunocompromised patients.
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