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Abstract
Background: Mineralocorticoid receptor antagonists (MRAs) 
protect cardiorenal function by robust anti-inflammatory 
and antifibrotic functions beyond classical functions of 
maintaining fluid and electrolyte homeostasis. The applica-
tion of traditional steroidal MRAs to chronic kidney disease 
(CKD) has been limited by adverse events, especially when 
combined with renin-angiotensin system inhibitors, guide-
line-recommend drugs for CKD patients. Recently, the devel-
opment of nonsteroidal MRAs gives patients with CKD a 
promising option. Summary: The discovery of nonsteroidal 
MRAs is based on the molecular structure of the mineralo-
corticoid receptor (MR) and differs in structure from spirono-
lactone, a progesterone derivative. The structure of nonste-
roidal MRAs determines their more effective and selective 
inhibition of MR providing patients more benefits with fewer 
adverse effects than MRAs. Recently, two types of nonsteroi-
dal MRAs, finerenone and esaxerenone, have been autho-
rized for clinical use. We elaborate on the physiological and 
pathophysiological mechanisms of MR, review the history of 

MRAs, compare two generations of MRAs, and introduce the 
forward clinical trials of finerenone and esaxerenone. Key 
Messages: Finerenone reduces the cardiovascular and kid-
ney composite outcomes in diabetic patients with CKD elic-
iting a cardiorenal protection effect. Esaxerenone can effec-
tively reduce blood pressure in hypertensive patients and 
albuminuria in diabetic patients with CKD. The risk of hyper-
kalemia is controllable and acceptable through the serum 
potassium-based dose titrate. Combination therapy with so-
dium-glucose cotransport-2 inhibition or a new potassium 
binder may be a safer and more efficient approach.

© 2022 The Author(s).
Published by S. Karger AG, Basel

Introduction

Chronic kidney disease (CKD) is defined by persistent 
urine abnormalities, structural abnormalities, or im-
paired excretory renal function [1]. It has been shown 
that the heart and kidney are tightly connected and should 
be considered as a unit in both physiological and patho-
logical conditions, suggesting that the chronic or acute 
dysfunction of one organ may lead to the dysfunction of 
the other [2, 3]. The majority of patients with CKD also 
suffer from cardiovascular disease and death, classified as 
type 4 cardiorenal syndrome [1, 2]. As such, there is an 
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urgent need to develop drugs and optimize guidance to 
protect cardiorenal function and so reduce the risk of 
end-stage events. At present, renin-angiotensin system 
(RAS) inhibitors and sodium-glucose cotransport-2 
(SGLT2) inhibition have proven to have protective effects 
on both the heart and kidney [4–8]. Similarly, steroidal 
mineralocorticoid receptor antagonists (MRAs), a type of 
conventional drug, also have protective effects on the 
heart and kidneys [9–12]. The administration of steroidal 
MRAs, however, is strictly regulated due to significant 
side effects including male breast development, hyperka-
lemia, and other adverse reactions.

A new generation of MRAs, nonsteroidal MRAs, ef-
fectively and selectively block mineralocorticoid receptor 
(MR) and show a broad prospect in cardiorenal protec-
tion while exhibiting much fewer side effects and weaker 
adverse reactions compared with steroidal MRAs [13]. 
The phase III clinical trial data published recently showed 
that nonsteroidal MRAs elicit cardiorenal protection in 
patients with CKD and type 2 diabetes mellitus (T2DM), 
resulting in lower risks of CKD progression and cardio-
vascular events, and offering a potential new option for 
patients with CKD [14–17].

The purpose of this review is to introduce the advan-
tages of nonsteroidal MRAs over steroidal MRAs and to 
analyze the efficacy and safety of nonsteroidal MRAs 
from the existing clinical trial data. Based on the existing 
clinical research, we put forward a potential hypothesis 
on the application of nonsteroidal MRAs.

Physiological and Pathophysiological Mechanism of 
MR
MR, a ligand-induced transcription factor, is nuclear 

receptor that acts as nuclear transcription factor to regu-
late the transcription of target genes after binding to li-
gands in cells (shown in Fig. 1) [18]. When aldosterone 
binds to MR, it promotes a receptor conformational 
change that allows dissociation of receptor from chaper-
one heterocomplexes and critical hyperphosphorylation 
that is associated with rapid nuclear translocation of al-
dosterone-MR complex. Once in the nucleus, MRs form 
a heterodimers by binding with hormone response ele-
ments and recruit transcriptional coregulators, allowing 
the transcription or repression of target genes [19]. MR 
distributes not only in classical epithelial tissues such as 
kidney, colon, and salivary glands, mediating electrolyte 
transportation, but also in nonclassical epithelial tissues 
such as blood vessels, cardiomyocytes, central nervous 
system, adipocytes, fibroblasts, and monocytes, suggest-
ing that MR has a role other than regulating electrolyte 

transport [20–28]. MR directly promotes the expression 
of the subunits of ion channels and transporters, includ-
ing the epithelial Na+ channel (ENaC), high conductance 
calcium- and voltage-dependent potassium channel 
(BK), Na+/H+ exchanger (NHE), and the Na+/K+-ATPase 
(NKA). In addition, MR is able to regulate ion channels 
and transporters indirectly by controlling the expression 
of its regulators, including serum and glucocorticoid-in-
duced kinase (Sgk-1), PIM3 or the kidney-specific iso-
form of with-no-lysine kinase 1 (KS-WNK1), the ubiqui-
tin-specific protease 2–45 (Usp2-45), and other factors 
such as glucocorticoid-induced leucine zipper (also 
known as TSC22D3), the period circadian regulator 1 
(PER1), and the scaffold protein connector enhancer of 
kinase suppressor of ras 3 (CNKSR3) [19]. For example, 
Sgk-1 cooperates with other factors and triggers a series 
of reactions eventually activating ENaC and leading to 
sodium excretion [29, 30]; the activation of Sgk-1 in-
creased glomerular filtration rate and proteinuria and ag-
gravates glomerular hypertrophy and fibrosis in salt-in-
duced hypertensive mice [31, 32].

MR activation increases the expression of NADPH ox-
idase (Nox), reduces the expression of glucose-6-phos-
phate dehydrogenase in blood vessels, prevents the re-
duction of NADP+ to NADPH, and promotes the forma-
tion of reactive oxygen species (ROS) [33, 34]. MR also 
produces ROS in mitochondria through mitochondrial 
respiratory chain complex I (MRCC I) [35]. Excess ROS 
stimulate ERK1/2-STAT3 signal pathway and p66Shc 
phosphorylation, an effector of mitochondrial dysfunc-
tion, resulting in epithelial-mesenchymal transition and 
mitochondria suppression [35–38]. In aldosterone-in-
fused rats, podocytes are injured at an early stage by in-
ducing oxidative stress and Sgk-1, resulting in the occur-
rence of proteinuria [39]. Through oxidative stress caused 
by increased ROS, MR, directly or indirectly, triggers pro-
inflammatory transcription factors such as AP-1 and NF-
κB [40]. In addition to triggering an inflammatory re-
sponse, MR also activates both innate and acquired im-
mune systems, stimulating leukocyte infiltration, and 
promoting the differentiation of macrophage into M1 
type [40, 41]. This can be seen as when MR is inhibited by 
drugs or gene knockout, the expression of M2 anti-in-
flammatory markers increased and M1 pro-inflammato-
ry markers decreased in macrophages [42–44]. MR acti-
vation stimulates the expression of profibrotic molecules, 
such as transforming growth factor-β1 (TGF-β1), plas-
minogen activator inhibitor 1 (PAI-1), endothelin 1 (ET-
1), placental growth factor (PGF), connective tissue 
growth factor, osteopontin, and galectin-3 [45]. Inflam-
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mation and fibrosis are important causes of CKD and car-
diorenal syndrome [1, 46]. Previous clinical studies have 
shown that MRAs protect against acute kidney injury in-
duced by ischemia and reperfusion, keep acute kidney in-
jury from progressing to CKD, prevent renal fibrosis, and 
delay the progression of diabetic nephropathy and CKD 
[47].

In addition to regulating gene expression, aldosterone 
exerts rapid nongenomic effects that are not blocked by 
inhibitors of transcription; for example, aldosterone 
evokes rapid sodium intake through a nongenomic mech-
anism involving G-protein-coupled estrogen receptors in 
the nucleus tractus solitarius (shown in Fig. 1) [48]. In 

mice lacking MR DNA-binding in macrophages, inflam-
matory markers were equivalent to wild type mice, indi-
cating that MR regulates a macrophage pro-inflammato-
ry phenotype and inflammation partially via pathways 
that do not require DNA binding [49]. An interaction 
between aldosterone and angiotensin II induces early 
phosphorylation of ERK1/2 [27, 50]. This rapid effect 
cannot be blocked by spironolactone but can be blocked 
by epidermal growth factor receptor (eGFR) antagonist 
or AT1 receptor antagonist, while the late phosphoryla-
tion of ERK1/2 induced by aldosterone and angiotensin 
II can be blocked by spironolactone [27]. Aldosterone is 
able to activate ERK1/2 in an AT1 receptor-dependent 

Fig. 1. Key physiological and pathophysiological action of MR. 
Aldo, aldosterone; GPERs, G-protein-coupled estrogen receptors; 
FKBP, FK506-binding protein; HSP, heat-shock protein; ENaC, 
epithelial Na+ channel; BK, high conductance calcium- and volt-
age-dependent potassium channel; NHE, Na+/H+ exchanger; 
NKA, Na+/K+-ATPase; Sgk-1, serum and glucocorticoid-induced 
kinase; PIM3, proviral integration site of Moloney murine leuke-
mia virus 3 kinase; KS-WNK1, kidney-specific isoform of with-no-

lysine kinase 1; Usp2-45, ubiquitin-specific protease 2–45; GILZ, 
glucocorticoid-induced leucine zipper; PER1, period circadian 
regulator 1; CNKSR3, connector enhancer of kinase suppressor of 
ras 3; Nox, NADPH oxidase; ROS, reactive oxygen species; MRCC 
I, mitochondrial respiratory chain complex I; TGF-β1, transform-
ing growth factor-β1; PAI-1, plasminogen activator inhibitor 1; 
ET-1, endothelin 1; PGF, placental growth factor; CTGF, connec-
tive tissue growth factor.
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and MR-independent manner, but it needs AT1 and MR 
to activate c-Jun N-terminal kinase (JNK) [51]. It was also 
reported that MR is involved in the nongenomic effects 
of aldosterone, and the nongenomic effects may promote 
the genomic effects mediated by classical MR [52].

Development History of MRAs
The discovery of steroidal MRAs began with success-

fully confirming progesterone as a MRA in 1955 [53]. Be-
fore that, scientists had found that deoxycorticosterone 
acetate, an MR agonist, caused sodium chloride retention 
and potassium diuresis and was associated with inflam-
mation and fibrosis in multiple organs [54, 55]. After the 
systematic separation of steroids by chromatography, al-
dosterone was distinguished with the initial name of elec-
trocortin which reflected its function of promoting potas-
sium excretion and sodium retention [56]. When the al-
dosterone structure revealed that aldosterone contained 
a unique aldehyde group at C18 instead of the usual 
methyl group, the name was soon changed [57]. In 1957, 
the two steroidal drugs SC-5233 and SC-8108, both mod-
ified from progesterone, showed that aldosterone antago-
nism caused potassium retention and sodium secretion 
[58, 59]. However, subcutaneous administration limited 
its clinical application and so spironolactone made up for 
this limitation through oral administration, promoting 
its implementation in clinics [60, 61]. From 1957 to 1987, 
scientists discovered 17 spironolactone derivatives and 
confirmed their role in inhibiting aldosterone as potas-
sium preserving diuretics [62]. Although a large number 
of studies on spironolactone have been carried out, re-
search on MR did not begin to be published until 1972 
[63, 64].

The discovery of nonsteroidal MRAs began with the 
successful cloning of the MR in 1987 [65]. Evans’ research 
team discovered the coding DNA sequence of the MR and 
demonstrated that the MR has a high affinity not only for 
aldosterone but also for glucocorticoids [65]. The expres-
sion of MR provided a molecular basis for the invention 
of nonsteroidal mineralocorticoid antagonists and was a 
milestone in the development history of MRAs [13, 66–
68]. The development of MRAs can be divided into three 
stages: determining steroidal spironolactone as the first 
MRA shortly after aldosterone purification; finding more 
selective steroidal mineralocorticoid antagonists such as 
eplerenone; and selecting more specific and effective 
nonsteroidal mineralocorticoid antagonists with an ul-
tra-high-throughput screening method using a function-
al cell-based assay. This has been gradually researched 
and applied in a clinical setting [66, 68].

Pharmacological Comparison between Steroidal and 
Nonsteroidal MRA
Many metabolites and derivatives of spironolactone 

have been analyzed for drug safety and efficacy, but only 
spironolactone, canrenone, and eplerenone have been 
approved for clinical use [62]. The randomized controlled 
trials RALES for spironolactone, and EPHESUS and EM-
PHASIS-heart failure (HF) for eplerenone provided evi-
dence for the clinical application of MRAs in the treat-
ment of HF, based on which a clinical guideline for the 
dynamic monitoring of blood potassium and renal func-
tion during the application of MRAs was devised [9–11]. 
Although both have accumulated some evidence of car-
diorenal protection, problems due to their structure have 
limited a wide clinical application.

The tissue distribution of these two drugs, analyzed by 
quantitative whole-body autoradiography showed that 
the accumulation of spironolactone in the kidneys is six-
fold higher than that in cardiac tissue, and the accumula-
tion of eplerenone in the kidneys is three times higher 
than in cardiac tissue (shown in Table 1) [69]. Due to this 
drug distribution, hyperkalemia was very common and 
frequently resulted in therapy interruption in real-world 
adults initiating MRA therapy, especially among partici-
pants with CKD [70]. As spironolactone is a progesterone 
derivative, sharing with progesterone a high degree of 
plasma binding but with a reduced affinity for progester-
one receptors, spironolactone inhibits progesterone and 
androgen receptors and causes problems such as male 
breast development, sexual dysfunction, and female ir-
regular menstruation [71]. Eplerenone has high selectiv-
ity, while its relatively low affinity for MR requires a high-
er dose of administration to obtain the MR-blocking ef-
fect similar to spironolactone, with a half-maximal 
inhibitory concentration (IC50) value of 990 nM and 24 
nM, respectively [72].

The new generation of nonsteroidal MRAs, finerenone 
and esaxerenone, has a balanced distribution in kidney and 
cardiac tissue (shown in Table 1), which may reduce the 
likelihood of hyperkalemia and contribute to a potent car-
diorenal protective effect [69, 73]. Finerenone and esaxer-
enone inhibit aldosterone-induced transcriptional activa-
tion of human MR with an IC50 value of 18 nM and 3.7 nM, 
respectively [13, 74]. The mean terminal half-life (t1/2) of a 
5 mg esaxerenone oral tablet in healthy humans is 16.7–18.7 
h [75, 76]. The t1/2 of finerenone in healthy humans, admin-
istered as a 1–40 mg polyethylene glycol solution formula-
tion or as a 10–80 mg immediate-release tablet formulation 
(with higher bioavailability vs. polyethylene glycol solu-
tion) is 1.70–2.83 h and 1.89–4.29 h, respectively [77]. Pop-
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ulation pharmacokinetic and exposure-response analysis of 
finerenone based on ARTS-DN and FIDELIO-DKD trials 
demonstrated a pharmacokinetic half-life of 2–3 h, similar 
to that seen in healthy humans, and a steady state was 
achieved after 2 days [78, 79]. The result is similar to the 
pharmacokinetic assay in individuals with renal impair-
ment, revealing that finerenone can be safely and effectu-
ally applied to CKD patients [72, 80].

Binding studies revealed that finerenone has a higher 
antagonistic potency for MR than spironolactone, and 
quantification of MR subcellular localization under hor-
monal treatment showed that finerenone alters nuclear 
translocation of the receptor more efficiently than spi-
ronolactone [81]. Finerenone stably binds to Asn-770 and 
Ser-810 residues of the MR ligand-binding domain, a 
structure unique to MR and absent from other steroidal 
hormone receptors, which enables finerenone to have 
high selectivity [81]. In addition, unlike spironolactone 
and eplerenone, finerenone does not display any agonistic 
activity when acting through the MRS810L and inactivates 
this mutant receptor [81–83]. The co-crystal structure of 
MR ligand-binding domain/esaxerenone revealed that its 
high affinity to MR resulted from its intrusive binding pat-
tern into the large and secluded binding pocket of MR 
formed by the rearrangement of side chains, again a fea-
ture only exhibited in MR. This binding pattern is unique 

to esaxerenone and completely different from that seen in 
steroidal MR antagonists or previously published nonste-
roidal antagonists [84]. As an inverse agonist, finerenone 
inhibits the recruitment of MR, steroidal receptor coacti-
vator-1, and RNA pol II to the promoter of the sodium 
channel nonvoltage-gated 1 α (SCNN1A) gene, a com-
mon MR target gene, and even reduces recruitment in the 
basal state, where aldosterone stimulation does not exist. 
For spironolactone, partial aldosterone-like activity pro-
motes MR and SRC-1 binding to the promoter of the 
SCNN1A gene without promoting that of the RNA Pol II 
[85]. These characteristics of nonsteroidal MRAs show 
their potential for the treatment of cardiovascular and 
kidney diseases with high efficacy and fewer side effects.

Clinical Study of Nonsteroidal MRAs
Phase II and III clinical trials of nonsteroidal MRAs 

have been completed. In January 2019, Japan PMDA ap-
proved the indication of esaxerenone for the treatment 
of hypertension [86]. In July 2021, the US Food and 
Drug Administration (FDA) approved the indication of 
finerenone to reduce the risk of sustained eGFR decline, 
end-stage renal disease, cardiovascular death, nonfatal 
myocardial infarction (MI), and hospitalization for HF 
in adults with CKD associated with T2DM [87]. The 
chemical structure determined the therapeutic differ-

Table 1. Comparison between steroidal and nonsteroidal MRA

Steroidal MRAs Nonsteroidal MRAs

spironolactone eplerenone finerenone esaxerenone

Affinity (IC50 for MR) [13, 72, 74] 24 nM 990 nM 18 nM 3.7 nM (66 nM and 970 
nM for spironolactone 
and eplerenone)

Selectivity (IC50 for GR, AR, PR) 
[13, 74]

GR = 2,600, AR = 640, PR = 180 GR = 36,000, AR = 42,000, 
PR = 7,400

GR, AR, PR >5,000 GR, AR, PR >10,000

t1/2 [75–77] 16.5 h 4–6 h 1.70–4.29 h 16.7–18.7 h

Active metabolites [72] 7a-Thiomethylspironolactone, canrenone None None None

Effect on mutated MRS810L [81] Agonists Antagonist N/A

Tissue distribution [69, 73] Kidney > Cardiac 6-fold Kidney > Cardiac 3-fold Kidney = Cardiac

Mechanism of antagonism [81] passive Bulky passive

Adverse events Hyperkalemia, decreased libido, male 
breast development, sexual dysfunction, 
abnormal menstruation

Hyponatremia, vaginal 
bleeding, hyperlipidemia, 
hyperkalemia, CYP3A 
enzyme inhibitor

Hyperkalemia, no 
other major adverse 
reactions

IC50, half-maximal inhibitory concentration; t1/2, mean terminal half-life; GR, glucocorticoid receptor; AR, androgen receptors; PR, progesterone receptors.
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ences between these two MRAs. Esaxerenone can be 
classified as pyrroles and sulfones [86]. Finerenone can 
be classified as amides, naphthyridines, and nitriles [87]. 
In preclinical studies, esaxerenone and finerenone both 
alleviated oxidative stress, fibrosis, and inflammation, 
and exhibited cardiorenal protective effects in hyperten-
sive rats and rodent kidney injuring models, respective-
ly [43, 88–90]. Esaxerenone increased the urinary sodi-
um/potassium concentration ratio in healthy humans in 
a dose-dependent manner, and had an antihypertension 
effect in hypertensive rats [88, 91]. The longer elimina-
tion half-life of esaxerenone may coordinate with sodi-
um excretion to decrease blood pressure (BP). In addi-
tion, esaxerenone and finerenone may modulate tran-
scription differently which could lead to their different 
effects on BP.

Therapeutic Effects of Esaxerenone
Clinical trials of esaxerenone are mainly being carried 

out in Japan. Currently, the published phase III trials fo-
cus primarily on essential hypertension and T2DM with 
nephropathy (shown in Table 2). ESAX-HTN reported 
that the sitting BP and 24-h BP-lowering effect of the es-
axerenone 5.0 mg/day group was significantly better than 
that of the eplerenone and esaxerenone 2.5 mg/day group, 
while the esaxerenone 2.5 mg/day group showed a re-
duced nighttime BP and 24-h systolic BP (SBP) to a great-
er extent than eplerenone [14, 88]. As such, esaxerenone 
may be an effective treatment option for nocturnal hyper-
tension, especially in older patients and those with a non-
dipper pattern of nocturnal BP [88]. The more evident 
antihypertension effects of esaxerenone throughout a 24 
h period are derived from its strong MR-blocking effects 
with a long t1/2, partly owing to its nonsteroidal structure. 
A phase III trial exploring the antihypertension effects of 
esaxerenone as mono or in combination with calcium 
channel blockers (CCB) or RAS inhibitors found that 
changes in sitting and 24-h BP was similar among all 
groups and that the proportion of patients who had 
achieved targeted sitting BP (SBP/DBP <140/90 mm Hg) 
at the end of treatment was 67.6%, 62.5%, and 57.1%, re-
spectively [89]. The treatment period of these two studies 
was the same (52 weeks), but the proportion of patients 
reaching targeted BP in ESAX-HTN (5 mg/day) is less 
than that in the esaxerenone 2.5–5 mg/day mono group. 
This may have been due to the different baseline of pa-
tients, as well as the addition of one other drug (CCB, RAS 
inhibitor, or thiazide diuretic) which was allowed to pa-
tients whose BP was not sufficiently controlled after week 
12 by esaxerenone alone. For patients with HF and mod-

erate kidney dysfunction, esaxerenone is also effective 
and well-tolerated [90, 91]. In general, the clinical trials 
showed that dose escalation of esaxerenone from 2.5 to 5 
mg/day was possible and that the majority of patients did 
not require additional antihypertensive therapy to achieve 
target BP, but that a combination therapy benefited pa-
tients with uncontrolled BP.

In the ESAX-DN study, the addition of esaxerenone to 
existing RAS inhibitor therapy significantly reduced uri-
nary albumin-to-creatinine ratio (UACR) and, in some 
patients, led to UACR remission and reduced the risk of 
albuminuria progression in patients with T2DM and 
UACR of 45–300 mg/g creatinine. Consistent with results 
seen with finerenone, UACR mainly decreased within 4 
months and remained low thereafter [15, 16]. During the 
first 24 weeks of treatment with esaxerenone, eGFR grad-
ually declined and held steady for the remainder of the 
study. At the end of treatment, the eGFR reduction rate 
was about 10% on average and the percentage of patients 
with a ≥30% reduction in eGFR on two consecutive occa-
sions was 5% in the esaxerenone group and 2% in the pla-
cebo group [15]. These results are consistent with the 
findings that esaxerenone was administered to patients 
with T2DM and UACR ≥300 mg/g creatinine [92]. Re-
markably, in phase III studies of finerenone, eGFR also 
decreased faster in the finerenone group than in placebo 
group until month 24, after which the finerenone group 
with higher eGFR exhibited a renal protective effect [16, 
17]. The follow-up time in esaxerenone trials to date 
might be too short to observe this effect.

Safety of Esaxerenone
The proportion of patients with adverse events was 

similar in esaxerenone, eplerenone, and placebo groups. 
The most notable adverse events were increased serum 
potassium and decreased eGFR. The EXSA-HTN study 
found that the proportion of patients with two consecu-
tive serum potassium levels ≥5.5 mM or ≥6.0 mM once 
during the treatment period was 0.9% in the esaxerenone 
2.5 mg/day group, 0.6% in the esaxerenone 5 mg/day, and 
no patient in the eplerenone group had serum potassium 
levels meeting these criteria. Compared with the eplere-
none group, the maximal serum potassium level in the 
esaxerenone 2.5 and 5 mg/day groups was slightly higher 
(4.48 and 4.56 mM compared to 4.40 mM in eplerenone) 
[14]. In patients with T2DM and nephropathy, the pro-
portion of patients with two consecutive serum potassi-
um levels ≥5.5 or one ≥6.0 mM was 9% in EXSA-DN, 
which is consistent with subgroup analysis that showed 
that rates of hyperkalemia in the esaxerenone group were 
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higher in patients with baseline eGFR <60 mL/min/1.73 
m2 and baseline serum potassium level >4.5 mM [15]. In-
terestingly, all studies revealed that serum potassium lev-
el generally increased during the first 2 weeks of the trials 
and reached a maximum at 2–6 weeks [14, 15, 92]. Thus, 
monitoring serum potassium levels in early stages, espe-
cially for specific patients, and adjusting dosage accord-
ingly is important. If serum potassium levels stayed with-
in safe limits during this time, esaxerenone could be safe-
ly administered.

In patients with hypertension, the eGFR in the esaxer-
enone groups decreased by about 5–8 mL/min/1.73 m2 by 
the end of the study, with decreases generally seen in the 
first 12 weeks with levels remaining steady after this ini-
tial decrease; the eGFR in the eplerenone groups re-
mained stable [14, 89]. A phase I study showed that esax-
erenone dose-dependently increased plasma renin activ-
ity and plasma aldosterone concentration via MR blockade 
[93]. These effects were verified in the EXSA-HTN study 
where they were greater than those seen with eplerenone, 
indicating that esaxerenone may act more strongly on re-
nal tubules and inhibit MR in other tissues more strongly 
than eplerenone [14]. Although the eGFR slightly de-
creased in both studies, a post hoc analysis of the SPRINT 
and ACCORD-BP trials supported that an eGFR decrease 
of up to 20% after BP lowering can be accepted and sug-
gested that the limit can be extended up to 46% depend-
ing on the achieved BP reduction [94]. In EXSA-DN, the 
percent change in eGFR from baseline to the end of treat-
ment in the esaxerenone group was significantly higher 
than that in the placebo group (−11% vs. −1%) and the 
eGFR continued to decrease until week 24, after which it 
remained stable and returned to a level similar to that of 
the placebo group at the post-treatment follow-up [15]. 
In patients with T2DM and macroalbuminuria, eGFR de-
creased by 8.3 mL/min/1.73 m2 in the esaxerenone group 
which is similar to decrease seen in patients with hyper-
tension.

All in all, increased potassium levels and reduced 
eGFR appear to be reversible, suggesting that esaxere-
none can be safely used in patients with hypertension. Its 
use in patients with nephropathy needs further study.

Therapeutic Effects of Finerenone
After the phase II studies identified the most effective 

and robust dosage of finerenone [95–97], the phase III 
clinical trials FIDELIO-DKD and FIGARO-DKD (shown 
in Table 3), carried out worldwide, both draw a conclu-
sion that finerenone improved cardiovascular composite 
outcomes (death from cardiovascular causes, nonfatal 

MI, nonfatal stroke, or hospitalization for HF) in patients 
with T2DM and CKD compared with a placebo [16, 17]. 
However, analysis of individual cardiovascular outcomes 
showed that finerenone only reduced the risk of hospital-
ization for HF in FIGARO-DKD [16, 17]. The EPHESUS 
trial, which explored the effect of eplerenone on patients 
with left HF after acute MI (left ventricular ejection frac-
tion LVEF ≤40%), and the EMPHASIS-HF trial, which 
looked at patients with systolic HF with mild symptoms 
(NYHA grade II and above, LVEF ≤40%), have both 
shown that eplerenone can significantly reduce the risk of 
hospitalization or death due to cardiovascular events [10, 
11]. The RALES trial also showed that spironolactone sig-
nificantly reduced the risk of hospitalization or death due 
to cardiovascular events in patients with severe HF 
(NYHA grade III and above) [9]. When compared to re-
sults seen in other trials those found in the finerenone 
trials show its efficacy as questionable. The TOPCAT tri-
al showed that spironolactone did not reduce the risk of 
death from cardiovascular events or hospitalization for 
HF in patients with preserved ejection fraction HF (LVEF 
≥45%), which suggests that the reason why finerenone 
did not reduce the risk of cardiovascular death may be 
excluding patients with symptomatic HF (NYHA grade 
II and above), reducing the cardiovascular risk of patients 
and making it hard to get positive results [12]. This also 
indicates the potential of finerenone in both diabetic and 
nondiabetic patients with HF, but its clinical application 
needs further clinical trials.

Only in the FIDELIO-DKD trial was kidney composite 
outcomes (kidney failure, a sustained decrease from base-
line of at least 40% in eGFR for a period of at least 4 weeks, 
or death from renal causes) improved possibly due to the 
different baseline of enrolled patients. FIDELIO-DKD in-
cluded patients with UACR 300–5,000 mg/g and eGFR 
25–60 mL/min/1.73 m2, while patients with UACR 30–
300 mg/g, eGFR ≥60 mL/min/1.73 m2, and patients with 
UACR 300–5,000 mg/g, eGFR ≥75 mL/min/1.73 m2 were 
included in FIGARO-DKD but not FIDELIO-DKD, 
which made the average eGFR of FIGARO-DKD higher 
than that in FIDELIO-DKD (68 and 44 mL/min/1.73 m2, 
respectively) [16, 17]. It is worth noting that kidney com-
posite outcomes with a ≥57% decrease in eGFR were im-
proved in both trials, but only in FIGARO-DKD was the 
incidence of end-stage kidney disease lower in the finere-
none group than in the placebo [16, 17]. This finding sug-
gests that finerenone reduces the risk of clinical cardio-
vascular outcomes and kidney disease progression in a 
broad range of patients with T2DM and CKD, especially 
early in treatment before CKD has progressed. As more 
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than 60% of the patients had albuminuric CKD with an 
eGFR of at least 60 mL/min/1.73 m2 at baseline in FIGA-
RO-DKD, UACR screening is useful for early CKD diag-
nosis and for treatment to improve outcomes [17]. A 
pooled analysis of FIDELIO-DKD and FIGARO-DKD 
further validates these results [98].

A series of prespecified or post hoc analyses have been 
carried out and more details about finerenone have been 
specified. A result from FIGARO-DKD analysis demon-
strated that finerenone reduces new-onset HF and im-
proves HF outcomes (risk of cardiovascular death, first hos-
pitalization for HF, or total hospitalization for HF) in pa-
tients with CKD and T2DM, with no evidence of 
differences in a history of HF [99]. Analyses of FIDELIO-
DKD reported that among patients with CKD and T2DM, 
finerenone reduced the incidence of the composite cardio-
vascular and kidney outcome, and new-onset atrial fibrilla-
tion or flutter, irrespective of treatment effect based on pre-
existing atherosclerotic cardiovascular disease status and 
history of atrial fibrillation at baseline [100, 101]. Hemoglo-
bin A1c (HbA1c) levels have been reported to be an inde-
pendent risk factor for mortality in both diabetic and non-
diabetic patients with chronic HF and previous studies have 
shown that compared with spironolactone, eplerenone had 
a superior metabolic effect, especially on HbA1c in chronic 
HF patients [102, 103]. As such, addressing the question of 
whether finerenone affects or is affected by HbA1c level is 
necessary. A subgroup analysis of FIDELIO-DKD showed 
that neither HbA1c levels nor insulin use has an influence 
on the cardiorenal protective effect of finerenone in patients 
with CKD and T2D, and there is no metabolic effect of fi-
nerenone on HbA1c according to both FIDELIO-DKD and 
FIGARO-DKD [104].

Safety of Finerenone
In terms of safety analysis, FIDELIO-DKD and FIGA-

RO-DKD showed that the incidence of adverse events in 
the finerenone group was similar to that of the placebo 
group, and that finerenone had no effect on body weight. 
Finerenone treatment had modest effects on BP: the mean 
difference between finerenone and placebo in the change 
from baseline in the systolic BP was −3.5 mm Hg at month 
4 and –2.6 mm Hg at month 24 in FIGARO-DKD. Due to 
the difference in patients at baseline, the incidence of hy-
perkalemia in FIDELIO-DKD is higher than that of FI-
GARO-DKD, which is 18.3% versus 9.0% and 10.8% ver-
sus 5.3% in finerenone versus placebo group, respectively 
[16, 17]. The serum potassium level mainly increased 
within month 1 and remains largely stable thereafter. In-
dependent risk factors for at least mild hyperkalemia are 

higher serum potassium, lower eGFR, increased urine al-
bumin-creatinine ratio, younger age, female sex, β-blocker 
use, and finerenone assignment, while diuretic or SGLT2 
inhibitor use reduced risk according to an analysis of FI-
DELIO-DKD [105]. Irrespective of treatment (finerenone 
or placebo), short-term increases in serum potassium lev-
els and decreases in eGFR were associated with subse-
quent hyperkalemia. At month 4, the magnitude of in-
creased hyperkalemia risk for any change of serum potas-
sium and eGFR from baseline was smaller with finerenone 
than with placebo [105]. Monitoring serum potassium at 
months 1 and 4 after finerenone treatment initiation and 
at 4-month intervals thereafter, and dose titration based 
on those results (threshold serum potassium from ≤4.8 to 
≤5.0 mmol/L), minimized the impact of hyperkalemia and 
provided a basis for clinical use of finerenone [105, 106].

The attributes that short half-life, absence of active me-
tabolites, balanced kidney-heart distribution, a novel mech-
anism of distinct MR blockade, and different effects on sub-
sequent gene expression make finerenone more likely to 
have a low rate of hyperkalemia than spironolactone and 
eplerenone. In the ARTS study with spironolactone as con-
trol, finerenone showed a significantly smaller increase in 
serum potassium and equal efficiency in lowering albumin-
uria and cardiac biomarkers in patients with HF and re-
duced left ventricular ejection fraction (HFrEF) and CKD 
[97]. However, the maximal dosage of finerenone in this 
study was 10 mg/day, less than the recommended 20 mg/
day, which is needed for the effects on kidney outcomes to 
approach saturation [79]. It is worth mentioning that the 
rise in serum potassium with finerenone 5 mg twice daily 
was larger in comparison with finerenone 10 mg/day, 
whereas the therapeutic effects for albuminuria and cardiac 
biomarkers were similar [97]. In the ARTS-HF study with 
eplerenone as the control, finerenone did not reduce the 
incidence of hyperkalemia compared with eplerenone and 
the incidence of hyperkalemia in finerenone 15–20 mg/day 
group was slightly higher than in the eplerenone group 
(6.3% and 4.7%, respectively), but the average change of 
blood potassium concentration measured at end of the 
study compared with baseline showed that each concentra-
tion of finerenone group was lower than that of the eplere-
none group (+0.119–0.202 mM and +0.262 mM, respective-
ly) [96]. As previous studies on spironolactone and eplere-
none mainly focus on HF having a different renal function 
at baseline compared with FIDELIO-DKD and FIGARO-
DKD, the incidence of hyperkalemia cannot be compared. 
Therefore, no study to date can systematically explain 
whether finerenone reduces the risk of hyperkalemia com-
pared with spironolactone and eplerenone.
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Conclusion

The new nonsteroidal MRAs contain the robust anti-
inflammatory and antifibrotic actions of conventional 
MRAs in a more selective and efficacious way. These out-
standing effects result from their unique molecular struc-
tures, allowing for the absence of active metabolites, bal-
anced kidney-heart distribution, novel mechanisms of 
distinct MR blockade, and different effects on subsequent 
gene expression. Clinical studies of these drugs have vali-
dated their various indications. Esaxerenone is effective 
and well-tolerated in patients with hypertension, exhibit-
ing an albuminuria-lowering effect in patients with 
T2MD and CKD. Monotherapy of esaxerenone has the 
same antihypertensive effect as use of esaxerenone in 
combination with CCB or RAS inhibitor therapy, and its 
long t1/2 further reveals its powerful antihypertensive po-
tency [89]. Spironolactone has been approved to be the 
most effective add-on drug for the treatment of resistant 
hypertension defined as uncontrolled hypertension de-
spite treatment with maximally tolerated doses of three 
drugs [107]. It shows promise to control resistant hyper-
tension more effectively with the administration of non-
steroidal MRAs.

Different from esaxerenone, finerenone shows im-
proved cardiovascular and kidney outcomes in patients 
with T2MD and CKD with little change to BP. The cur-
rent studies of finerenone are confined to diabetic pa-
tients. Despite unfolding protective effects on HF and 
CKD, the application of finerenone on these diseases like 
SGLT2 and RAS inhibitors remains to be verified. Among 
patients with HFrEF, the aggregate treatment effects of 
the combined use of an angiotensin receptor-neprilysin 
inhibitor (ARNI), β blocker, MRA, and SGLT2 inhibitor 
are substantial [108]. Early comprehensive disease-mod-
ifying pharmacological therapy is prospective and may 
become a new therapy standard. Concomitant use of 
SGLT2 inhibitor with finerenone decreased CKD pro-
gression risk, and with esaxerenone decreased hyperkale-
mia risk in patients with CKD and T2DM [79, 109]. The 
effects of finerenone on kidney and cardiovascular out-
comes were consistent irrespective of the use of glucagon-
like peptide-1 receptor agonist (GLP-1RA) [110]. More 
details about combination therapy with nonsteroidal 
MRAs remain to be verified.

When nonsteroidal MRAs are used in the clinic, hy-
perkalemia remains the main concern for physicians, but 
by dynamically monitoring serum potassium as described 
above and the use of combination therapy may help al-
leviate this concern. AMETHYST-DN, a phase II study of 

patiromer, a nonabsorbed, orally administered potassi-
um binding polymer, demonstrated that in the case of 
RAS inhibitor therapy patiromer statistically significantly 
decreases serum potassium level after 4 weeks of treat-
ment in patients with hyperkalemia and diabetic kidney 
disease [111]. Another phase II study AMBER probing 
into the value of patiromer for allowing more persistent 
use of spironolactone in patients with CKD, HF, and re-
sistant hypertension showed that patiromer achieved this 
goal by reducing the risk of hyperkalemia [112, 113]. A 
phase III study aiming at improving RAS inhibitor use in 
patients with HFrEF with hyperkalemia or a history of 
hyperkalemia leading to RAS inhibitor therapy compro-
mise is being conducted [114]. An SGLT2 inhibitor might 
be another option; research has approved the concurrent 
use of an SGLT2 inhibitor to reduce the magnitude of se-
rum potassium elevation without any change to the anti-
hypertensive and albuminuria-suppressing effects in Jap-
anese patients with T2DM and albuminuria treated with 
esaxerenone [109].

In conclusion, nonsteroidal MRAs bind to MRs more 
efficiently and selectively than conventional steroidal 
MRAs, thus protecting cardiorenal function by inhibiting 
MR-mediated inflammation and fibrosis and lowering 
BP by maintaining fluid and electrolyte homeostasis. Es-
axerenone is able to effectively reduce BP, and finerenone 
has a protective effect on cardiovascular and kidney func-
tion in patients with T2DM and CKD. Therefore, nonste-
roidal MRAs may be a novel and optimal option of guide-
line-compliant therapy for these patients.
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