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Abstract: In quantum physics, two prototypical model systems stand out due to their wide range of
applications. These are the two-level system (TLS) and the harmonic oscillator. The former is often
an ideal model for confined charge or spin systems and the latter for lattice vibrations, i.e., phonons.
Here, we couple these two systems, which leads to numerous fascinating physical phenomena.
Practically, we consider different optical excitations and decay scenarios of a TLS, focusing on the
generated dynamics of a single phonon mode that couples to the TLS. Special emphasis is placed
on the entropy of the different parts of the system, predominantly the phonons. While, without any
decay, the entire system is always in a pure state, resulting in a vanishing entropy, the complex
interplay between the single parts results in non-vanishing respective entanglement entropies and
non-trivial dynamics of them. Taking a decay of the TLS into account leads to a non-vanishing
entropy of the full system and additional aspects in its dynamics. We demonstrate that all aspects of
the entropy’s behavior can be traced back to the purity of the states and are illustrated by phonon
Wigner functions in phase space.
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1. Introduction

Entropy is one of the most fundamental concepts in physics. According to the second law of
thermodynamics, in a closed system, it never decreases, which has far reaching consequences, from the
limited efficiency of thermodynamic machines [1] to cosmological implications [2,3]. Under thermal
equilibrium conditions, it determines the state of a thermodynamic system: In a closed system,
the realized state is the one with maximal entropy; in a system in thermal contact with a heat bath,
the realized state results from an interplay between energy and entropy and is governed by the
minimum of the free energy [4]. Under nonequilibrium conditions, the second law of thermodynamics
prohibits the decrease of the entropy of a closed system; however, this does not hold for the entropy of
a subsystem which is interacting with other subsystems or with its surroundings [5,6]. In this case,
the study of the dynamics of the entropy of these subsystems provides valuable information on the
evolution of the nature of the system’s state [7].

From the point of view of information science, entropy is closely related to the imperfect
knowledge about a system [8,9]. As such, it plays a key role in all fields related to information
processing and communication, and, in particular, in the highly topical fields of quantum information
and communication, where the entropy is closely related to phenomena like purity of quantum states,
entanglement, and decoherence [10].

In this paper, we study the entropy dynamics in a prototypical model of quantum mechanics and
quantum information theory. It consists of two subsystems, a quantum-mechanical two-level system
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(i.e., a representation of a qubit) which can be manipulated by an external field (e.g., a light field) and
which is coupled to a harmonic oscillator (e.g., a single phonon mode or a nanomechanical oscillator).
The generation of specific quantum states of such a harmonic oscillator and the manipulation of
these states has recently attracted much interest [11–14]. Prominent examples are coherent states and
Schrödinger cat states, i.e., superpositions of coherent states. We analyze the entropy dynamics of
the two subsystems after excitation with a short optical pulse or a pair of such pulses. In particular,
we compare the case of a unitary evolution in the absence of damping processes, when the coupled
system remains in a pure state, with the case of a decaying two-level system resulting in a mixed state
also of the combined system. We will show that the analysis of the time-dependent entropy provides
interesting insight into the nature of the quantum state of the two subsystems.

2. Theory

We consider a two-level system (TLS) which can be excited and de-excited by a resonant optical
field E. Additionally, a pure dephasing coupling to a single phonon (ph) mode is taken into account.
Thus, the Hamiltonian reads [15]

H = h̄Ω |x〉 〈x| −
[
M · E(t) |x〉 〈g|+ M∗ · E∗(t) |g〉 〈x|

]
+ h̄ωphb̂† b̂ + h̄g

(
b̂ + b̂†) |x〉 〈x| . (1)

The states |g〉 and |x〉 describe ground and excited state of the TLS with an energy splitting of
h̄Ω, respectively. The time dependent optical driving is mediated by the dipole matrix element M.
Phonons with the discrete energy h̄ωph are created and annihilated by b̂† and b̂, respectively.
For simplicity, the coupling constant of the exciton-phonon interaction g is supposed to be real.

Such a TLS system coupled to a single bosonic mode is a prototypical model that can be considered
for the description of various solid state systems. For the TLS, one might think of an exciton in a single
semiconductor quantum dot [16] or excitations of defects in insulators, like diamond [17] or hexagonal
boron nitride [18], while the phonon could be an optical mode [19], a local mode [20], a van Hove
singularity [21], or the mechanical excitation of a microresonator [22].

Phonon-induced transitions between the states |g〉 and |x〉 of the TLS are negligible because of the
strong energy mismatch between the exciton energy, which is of the order of one or a few electronvolts
(eV), while phonon energies range from a few micro-electronvolts (µeV) (for micromechanical
resonators) up to a few tens of milli-electronvolts (meV) (for optical phonon modes). The linear
coupling in the phonon displacement reflects typical electron-phonon interaction mechanisms
in solids like deformation potential coupling, piezoelectric coupling, or Fröhlich coupling [23].
Although extensions of this model have been considered that take a quadratic coupling to the phonons
into account [24–27], the original independent boson model [28] in Equation (1) is successfully
used in different contexts. It reproduces recent linear and nonlinear spectroscopy signals [18,29],
Rabi oscillations [30], and rotations [31] in excellent agreement with experiments, to name just a few.

The possible states of the entire system can be separated into the phonons forming product states
with the ground state of the TLS and those forming product states with the excited state

|g〉 ⊗
∣∣phg

〉
and |x〉 ⊗ |phx〉 . (2)

From the full density matrix of the system ρ, we can calculate the one of a subsystem by tracing
over the respective other, i.e.,

ρTLS = Trph(ρ) and ρph = TrTLS(ρ) . (3)

In the same way as in Reference [32], we model a decay of the excited state with the rate Γ via the
Lindblad dissipator

D(ρ) = Γ
[
|g〉 〈x| ρ |x〉 〈g| − 1

2
{
|x〉 〈x| , ρ

}]
, (4)
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leading to the master equation for the density matrix:

d
dt

ρ =
1
ih̄
[H, ρ] +D(ρ) . (5)

We will not take an additional phenomenological pure dephasing of the TLS into account. We will
study different regimes of decay rates Γ compared to the characteristic phonon frequency ωph. On the
one hand, when describing, for example, optical phonons with energies in the range of tens of meV
the decay time of the TLS is typically much longer than a phonon period, i.e., Γ� ωph [18]. On the
other hand, when considering typical mechanical resonators with phonon energies in the µeV range
we have Γ > ωph [33].

As we have explained in Reference [32], the entire quantum state and especially the Wigner
function of the phonons can be calculated analytically when considering a series of ultrafast laser
pulses to drive the TLS. Especially if the pulse duration is much shorter than the phonon period,
the pulses can be approximated by delta-functions as

M · E(t)
h̄

= ∑
j

θj

2
exp

[
−i

(
Ω− g2

ωph

)
t + iφj

]
δ(t− tj) . (6)

The pulses excite the TLS at times tj with pulse areas θj and phases φj. By this choice and the
introduction of the generating functions

Yα(t) =
〈
|g〉 〈x| exp(−α∗ b̂†) exp(αb̂)

〉
, (7a)

Cα(t) =
〈
|x〉 〈x| exp(−α∗ b̂†) exp(αb̂)

〉
, (7b)

Fα(t) =
〈

exp(−α∗ b̂†) exp(αb̂)
〉

, (7c)

with
〈

Â
〉
= Tr

(
ρÂ
)

denoting the expectation value of an operator Â, a closed system of partial
differential equations for the time-evolution of the generating functions is obtained and all phonon
assisted density matrices can be calculated analytically without approximations. Note that Fα contains
the entire information on the phonon system, while Cα describes the phonon assisted occupation of
the excited state, i.e., the phonons in |x〉 ⊗ |phx〉, and Yα is the phonon assisted coherence.

Our analysis of the phonon quantum states is based on their Wigner function [34]

W(U, Π) =
1

4π

∞∫
−∞

〈
U +

X
2

∣∣∣∣ ρph

∣∣∣∣U − X
2

〉
exp

(
− i

2
XΠ

)
dX , (8)

which is a quasi-probability distribution in the phase space defined by the quadratures û and π̂ and
their respective eigenstates

û = b̂ + b̂† , π̂ =
1
i
(b̂− b̂†) , (9a)

û |U〉 = U |U〉 , π̂ |Π〉 = Π |Π〉 . (9b)

Due to their definition by the phonon annihilation and creation operators, the quantities U
and Π directly correspond to the lattice displacement and momentum, respectively. The generating
function Fα, at the same time, is a characteristic function of the Husimi Q function [35]. From this,
we can directly calculate the instructive Wigner distribution analytically for a given pulse sequence
via [34]:

W(U, Π, t) =
1

4π2

∞∫∫
−∞

exp
(
−|α|

2

2

)
Fα(t) exp {i [Re(α)Π + Im(α)U]} d2α . (10)



Entropy 2020, 22, 286 4 of 19

In the same way, we can isolate the Wigner function Wx for the phonons associated with the
TLS being in the excited state |x〉 by choosing Cα instead of Fα in Equation (10). By doing the same,
but choosing Yα, we define Wp as the Wigner function of the phonon assisted coherence. In summary,
we have

Fα →W , (11a)

Cα →Wx , (11b)

Yα →Wp , (11c)

Fα − Cα →W −Wx = Wg , (11d)

where Wg is the Wigner function of the phonons associated with the TLS being in the ground
state |g〉 ⊗

∣∣phg
〉
.

Following the original definition by von Neumann [36], we investigate the time-dependent
entropy of our coupled quantum system defined by

S = −Tr
[
ρ ln(ρ)

]
. (12)

In general, subadditivity states that the entropy of the full system is a lower boundary for the
sum of the entropies of the subsystems [37]:

S(ρ) ≤ S(ρTLS ⊗ ρph) = S(ρTLS) + S(ρph) . (13)

It is important to note that for every pure quantum state ρpure, the entropy vanishes, i.e.,

Spure = −Tr
[
ρpure ln(ρpure)

]
= 0 , (14)

and the entropies of the subsystems coincide if the state of the full system is pure [37]

Sph = S(ρph) = S(ρTLS) . (15)

To show this, following Reference [37] for an arbitrary composed system, we decompose the
pure state of the entire system |ψ〉 into an orthonormal basis |ψ〉 = ∑i,k Cik|φi〉|χk〉 with the coefficient
matrix C = (Cik). Here, |φi〉 and |χk〉 are basis states of the two subsystems, respectively. From the
complete density matrix ρ = (ρikjl), one obtains a reduced density matrix by tracing over the respective
other subsystem ρ1 = Tr2(ρ):

ρikjl = 〈φi|〈χk|ρ|χl〉|φj〉 = CikC∗jl , (16a)

⇒ ρ1,ij = 〈φi|ρ1|φj〉 = ∑
k

CikC∗jk = (CC†)ij . (16b)

Analogously the density matrix of the other subsystem is ρ2 = C†C. Any non-vanishing
eigenvalue λ of ρ1 with the eigenvector y is then also an eigenvalue of ρ2 with eigenvector
z = C†y because

CC†y = λy , (17a)

⇒ C†Cz = C†C(C†y) = C†(CC†)y = λC†y = λz , (17b)

and vice versa.
In our particular system, we can choose the TLS’s states as the |φi〉 ∈ {|g〉, |x〉} and a Fock basis

for the phonon system |χk〉 ∈ {|0〉, |1〉, . . .}. This means that the coefficient matrix C consists of 2×∞
elements. The entropy of the TLS, i.e., of its density matrix:
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CC† = ρTLS =

(
1− c p

p∗ c

)
, with c = 〈|x〉 〈x|〉 , p = 〈|g〉 〈x|〉 , (18a)

can be easily calculated via [37]

S(ρTLS) = −λ+ln(λ+)− λ−ln(λ−) , (18b)

where

λ± =
1
2
±
√

1
4
+ c2 − c + |p|2 =

1
2
± 1

2
|v| (18c)

are the two eigenvalues of the TLS’s density matrix with the Bloch vector v =
(
2Re(p), 2Im(p), 2c− 1

)
.

For a pure state of the full system, according to Equation (17), the phonon density matrix has,
despite being a quadratic infinite dimensional matrix, only two non-vanishing eigenvalues λ±.
So, as long as the entire system is in a pure state and we know the entropy of the TLS via Equation (18b),
we can derive the entropy of the phonon system by Equation (15).

For an arbitrary, non-pure state of the entire system, the calculation of the entropy in a system with
infinite dimensions is far from being trivial. This is the case if, already, the initial state is a statistical
mixture, e.g., at non-vanishing temperature or when dephasing leads to a statistical mixture. Therefore,
approximations have been discussed and a reasonable version is given by the linear entropy [37]:

Slin = Tr
(
ρ
)
− Tr

(
ρ2) = 1− Tr

(
ρ2) = 1− 〈ρ〉 . (19)

To get an impression of this approximation, Figure 1a shows the function of the full entropy
−ξln(ξ) and the one for the linear entropy ξ− ξ2; similar to the presentation in Reference [37], note that
Tr(ρ) = 1. We find that the function of the approximated linear entropy in red is always smaller than
the full entropy in blue. Therefore, we expect that the linear entropy under-estimates the full entropy.

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

(a)

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

(a) (b)

ξ

−ξln(ξ)
ξ − ξ2

c

S(ρTLS)
Slin(ρTLS)

Figure 1. (a) Functions for the full entropy in blue and the linear entropy in red. (b) Entropies of the
two-level system (TLS) with p = 0, full entropy in blue and linear entropy in red.

We can directly compare the linear and the full entropy of the isolated TLS from Equation (18b),
as shown in Figure 1b. There, the full entropy is plotted in blue and the linear one in red as functions
of the excited state occupation c, both for p = 0. In the limiting cases of full inversion c = 1 and no
inversion c = 0, the state is pure and both entropies vanish. For all other occupations, the TLS is in a
statistical mixture, and the entropy is non-zero, and it is Slin 6 S. In the case of an equally distributed
mixture, i.e., c = 0.5, the entropies are maximal and reach values of Slin = 0.5 and S = ln(2) ≈ 0.7.

The biggest advantage of this linear entropy for our study is that it can be directly calculated from
the phonons’ Wigner functions due to the trace-product rule [38] via

Sph
lin = 1− 4π

∞∫∫
−∞

W(U, Π)2 dU dΠ . (20)



Entropy 2020, 22, 286 6 of 19

Note that the prefactor 4π depends on the definition of the quadratures U and Π, i.e., the scaling
of the phase space.

With the separation into TLS and phonon system, the linear entropy is calculated via

Slin = 1− Trph

[
TrTLS

(
ρ2)] . (21)

For this, we again consider the density matrix of the full system as

ρ = (1− c) |g〉 〈g| ⊗ ρph,g + c |x〉 〈x| ⊗ ρph,x + p∗ |g〉 〈x| ⊗ ρph,p + p |x〉 〈g| ⊗ ρ†
ph,p , (22a)

⇒ TrTLS(ρ
2) = (1− c)2ρ2

ph,g + c2ρ2
ph,x + |p|2(ρph,pρ†

ph,p + ρ†
ph,pρph,p) , (22b)

leading to

TrTLS(ρ)− TrTLS(ρ
2) = (1− c)ρph,g − (1− c)2ρph,g

+ cρph,x − c2ρ2
ph,x

− |p|2(ρph,pρ†
ph,p + ρ†

ph,pρph,p) . (22c)

We can now use the separate parts of the Wigner function from Equation (11) to define entropies

Si
lin =

∞∫∫
−∞

[
Wi(U, Π)− 4πWi(U, Π)2

]
dU dΠ , with i ∈ {g, x} , (22d)

Sp
lin = −4π

∞∫∫
−∞

|Wp(U, Π)|2 dU dΠ . (22e)

Note that the polarization Wigner function Wp is a complex quantity. With this and the definitions
of the generating functions in Equation (7), we can write the linear entropy in Equation (21) as

Slin = Sg
lin + Sx

lin + 2Sp
lin . (23)

To briefly summarize, for pure states of the entire system, i.e., without dephasing or decay of the
TLS, we can calculate the full entropy of the phonon state Sph via Equation (15). If the state is not pure,
we can at least calculate the linear entropy from the Wigner functions. We can further distinguish
between the linear entropy of the full system Slin in Equation (23) and the one of the phonons Sph

lin in
Equation (20).

3. Results and Discussion

3.1. Single Pulse Excitation

We start our study with the most basic situation, where the TLS is excited by a single optical pulse.
It is well known from previous works that a single ultrafast excitation in general creates a statistical
mixture of coherent states in the phonon system. The excitation of the TLS means for the phonons a
shift of the equilibrium position determined by the dimensionless coupling strength γ = g/ωph. If not
stated differently, in the following, we fix this value to γ = 2 in order to separate the different parts of
the Wigner function in phase space, as will be seen later. Although γ = 2 is a rather large value for
quantum dots and optical phonons, the general physics explained in this paper will not depend on
this value. Some effects might be strengthened or weakened with a different choice of the coupling
strength, as will be highlighted later.
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3.1.1. Phonons Generated by a Non-Decaying TLS

In the first step, we neglect the decay of the excited state by choosing Γ = 0. In this situation,
the state of the full system, including the TLS and the phonons, is pure. Therefore, the full and the
linearized entropy are zero and Equation (15) holds, meaning that the entropy of the TLS and that
of the phonons is the same. Figure 2 recapitulates the phonon dynamics for a pulse area of θ = π/2,
i.e., an inversion of the TLS of 50% or c = 0.5, from Reference [13]. The phonon’s Wigner function reads:

W(U, Π, t) =
1

4π

{
exp

[
−1

2
(U2 + Π2)

]
(24)

+ exp
(
−1

2
{U − 2γ[1− cos(ωpht)]}2 − 1

2
[Π− 2γ sin(ωpht)]2

)}
,

and its dynamics are shown at five different times in Figure 2a. Before the optical excitation,
the phonons are in the vacuum state represented by the Gaussian Wigner function in the center
of the phase space. Half of the weight of the phonon’s Wigner distribution is brought into the excited
state subspace by the optical pulse. This makes them move as a coherent state around the new
equilibrium position, which is shifted by 2γ in U-direction. This trajectory is marked as black circle
in the figure. The other half of the phonon state remains associated with the ground state of the TLS
and, therefore, stays in the vacuum state. The full phonon state after tracing over the TLS states is a
statistical mixture of the vacuum state and a coherent state moving around the shifted equilibrium
position. After a full phonon period at t = tph, the Wigner function agrees with the initial situation
because the coherent state moves through the origin and overlaps with the vacuum state. The phonon’s
influence on the properties of the TLS is shown in Figure 2b. While the occupation of the excited
state stays constant at c = 0.5, the polarization |p| starts at 0.5 directly after the optical excitation at
t = 0 and drops rapidly to almost zero in the following. This dephasing is inverted towards t = tph,
resulting in a full rephasing to |p| = 0.5. While the coherent states separate in phase space, coherence is
lost from the TLS, which already shows that the overlap of the different parts of the Wigner function
plays an important role for the properties of the entire system.

0.00 0.25 0.50 0.75 1.00

t/tph

0.0

0.5

1.0

c

|p|

(b)

0.00 0.25 0.50 0.75 1.00

t/tph

0

0.5

ln(2)

Sph
lin

Sph(c)

−8−4 0 4 8

U

−8
−4

0
4
8

Π

t/tph = 0+
(a)

−8−4 0 4 8

U

1/4

−8−4 0 4 8

U

1/2

−8−4 0 4 8

U

3/4

−8−4 0 4 8

U

1/1

Figure 2. (a) Dynamics of the phonon Wigner function after a single pulse excitation of the TLS. (b) TLS
dynamics with the excited state occupation c in red and the polarization |p| in blue. (c) Entropies of the
phonon system, Sph in green and Sph

lin in red.
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Finally, in Figure 2c, we show the entropy of the phonons which, as mentioned above, agrees with
the entropy of the TLS. As the initial phonon state is pure, both entropies, Sph in green and Sph

lin in red,

start at zero at t = 0. While the different parts in phase space separate, the entropy grows to Sph
lin ≈ 0.5

because the phonons are in a statistical mixture that must have a non-vanishing entropy. The full
entropy follows the same dynamics as the linear one but is always larger, as previously explained,
and grows to Sph ≈ ln(2) ≈ 0.7. Reaching t = tph, the entropies drop to zero again. The reason is
the recovered overlap of the two parts of the Wigner function. Finally, at t = tph, the phase space
representation cannot be distinguished from the vacuum state. Therefore, the entropy also has to agree
with the one of the pure vacuum state being zero.

3.1.2. Phonons Generated by a Decaying TLS

In the previous section, without any decay or additional pure dephasing of the TLS, the quantum
state of the entire system remained pure, resulting in a vanishing entropy of the full system. It also
allowed us to easily calculate the full entropies for TLS and phonons. In this section, we consider a
non-vanishing decay rate of the occupation of the excited state into the ground state, which naturally
results in a statistical mixture in the TLS’s quantum state that also imprints onto the phonons. Therefore,
for the phonons, we can only calculate linear entropies, according to Equation (20). In Reference [32],
we explained how the Wigner function evolves during the decay process in the TLS. Therefore,
we consider the same optical excitation with a pulse area of θ = π, which initially fully inverts the TLS.
Without any decay, the Wigner function would read

W(U, Π, t) =
1

2π
exp

(
−1

2
{U − 2γ[1− cos(ωpht)]}2 − 1

2
[Π− 2γ sin(ωpht)]2

)
, (25)

being a single Gaussian moving on a circle around the shifted equilibrium position of the excited
state. In Figure 3a, Wigner functions for different decay rates Γ are shown at t = 10tph. We find
that the phonon state gets smeared out in phase space. For rapid decays on the left, the phonons
almost completely stay in the vacuum state and look more or less like a coherent Gaussian distribution.
When looking at the corresponding linear entropy dynamics in Figure 3b, in bright red, we see that
it only increases slightly after the optical excitation at t = 0. When slowing down the decay process,
i.e., moving in Figure 3a more to the right, the Wigner function smears out more and more. Accordingly
it looks less and less like a coherent state which also leads to increasing entropies in (b) when going
from bright to dark colors. Additionally, we find that the final entropy value is reached slower because
it follows the decay of the TLS. Especially for the slowest considered decay of Γ = 0.1ωph, where the
full decay takes several phonon periods, the dynamics of the linear phonon entropy develop minima
at full phonon periods t = ntph. These are the times when the Wigner function in Figure 3a starts
overlapping itself. This is exemplarily shown in Figure 3c for t = tph, where the thick Gaussian part
is the oscillating coherent state. This is the first time it intersects with the circular distribution that
has already decayed into |g〉. In agreement with the findings in Figure 2, this leads to the temporary
reduction of the entropy in Figure 3b.
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Figure 3. (a) Phonon Wigner function after a full decay of the TLS at t = 10tph for different decay rates
Γ as given in the picture. (b) Linear phonon entropy as a function of time after the pulse. The decay
rate decreases from bright to dark colors. (c) Exemplary Wigner function for a slow decay rate of
Γ = 0.1ωph at t = tph. (d) Same as (b) but for the full linear entropy. (e) Same as (b) but for the linear
entropy of the TLS. (f) Bloch sphere of the TLS to illustrate the purity of different states; blue shows
pure and red mixed states.

Comparing the linear entropy of the phonon system in Figure 3b with the linear entropy of
the entire system Slin in (d), we basically find the same overall behavior. The dynamics start at
zero, the final values increase for smaller decay constants, and the final values are reached later.
However, both for small and large Γ, we find qualitative differences. Starting with small Γ in dark blue,
especially for Γ = 0.1ωph, the curve constantly grows without developing any minima. This shows
that the reduction of phonon entropy due to the overlapping Wigner functions does not attain to the
full entropy. The reason for this is that the reduction of the phonon entropy due to overlapping parts
of the Wigner function only happens because the state information of the TLS has been traced out.
Taking the entire coupled system into account, the overlapping phonon parts belong to different states
of the TLS and can therefore be told apart. Therefore, the phonons do not lead to a depression of the
full linear entropy. Conversely, for large decay rates, in bright blue, especially Γ = 5ωph, we find that,
on a short timescale around t = 0.1tph, a pronounced maximum appears in Slin. This effect is not
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found in the phonon part in Figure 3b and therefore stems from the TLS contribution. To understand
this, in Figure 3e, we plot the linear entropy of the TLS as green lines. The bright and dark colors
agree with the ones in Figure 3b,d. In addition, we consider the schematic Bloch vector representation
of the TLS state from Equation (18c) in Figure 3f. The z direction of the Bloch sphere depicts the
occupation of the states, where the south pole is a pure ground state |g〉 and the north pole a pure
excited state |x〉. Between these points, all Bloch vectors that are on the surface of the sphere (blue
line) are superpositions |χ〉 = N(α |g〉+ β |x〉) and are therefore pure. In the other extreme case of the
line directly connecting north and south pole (red), the system is in a statistical mixture of |g〉 and
|x〉. In the center of the Bloch sphere, the TLS is in both states with equal probability, resulting in the
lowest purity. For the entropy of the TLS in Figure 3e, this means that, directly after the excitation into
the excited state and after the full decay, the entropy is zero. In between, the system evolved through
a statistical mixture, which has a non-vanishing entropy. The linear entropy reaches maxima with
STLS

lin = 0.5, in agreement with the result in Figure 1b.

If we want to determine the final linear entropy Sph,∞
lin = Sph

lin(t→ ∞) of the phonon state after the
TLS is fully decayed into the ground state, we can investigate the dynamics in phase space. Note that
the final entropy is only carried by the phonon part because the TLS is in the pure ground state.
As schematically shown in Figure 4a, the movement of the coherent state on the circle in the excited
state subspace and the accompanied decay into the ground state leads to a distribution that can be
seen as a continuous distribution of coherent states with decreasing amplitude. We can parametrize
the circular motion of the Wigner function including the decay of the amplitude by

W∞(U, Π) = Γ
∞∫

0

exp(−Γt)W(U0(t),Π0(t)) dt , (26)

where W(U0(t),Π0(t)) is a Gaussian centered around (U, Π) = (U0(t), Π0(t)). With the circular trajectory
in Equation (25), we have to consider

U0(t) = 2γ[1− cos(ωpht)] and Π0(t) = 2γ sin(ωpht) . (27)

Note that, to retrieve the Wigner distribution in the ground state in Figure 3a, one has to mirror the
schematic in Figure 4a. However, the final linear entropy remains unaffected because it only depends
on the general shape of the distribution. With this, the final linear entropy reads

Sph,∞
lin = 1− 4π

∞∫∫
−∞

W2
∞(U, Π)dUdΠ

= 1− 4πΓ2
∞∫∫

−∞

∞∫∫
0

exp
[
−Γ(t + t′)

]
W(U0(t),Π0(t))W(U0(t′),Π0(t′)) dtdt′ dUdΠ . (28)

The integral over U and Π describes the overlap of two coherent states in phase space. In general,
two coherent states with a phase space distance of a have an overlap of [34]

4π

∞∫∫
−∞

W(0,0)W(a,0)(U, Π)dUdΠ = exp
[
− a2

4

]
. (29)

Therefore, the entropy becomes

Sph,∞
lin = 1− Γ2

∞∫∫
0

exp
[
−Γ(t + t′)

]
exp

(
−
{

2γ sin
[

1
2

ωph(t− t′)
]}2

)
dtdt′ . (30)
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The sine function in the exponent can be approximated by a linear function for small frequencies
or short times. Note that, although the integration is carried out up to t = ∞, the exponential decay
with Γ effectively limits the integrated time interval. Therefore, we expect this approximation to
work well for sufficiently large Γ. For the motion of the Wigner function, this corresponds to a linear
movement in phase space, as schematically shown in Figure 4b. The corresponding linear entropy can
then be calculated to

Sph,∞
lin ≈ 1− Γ2

∞∫∫
0

exp
[
−Γ(t + t′)

]
exp

{
−[γωph(t− t′)]2

}
dtdt′

= 1−
√

π Γ
2γωph

exp

( Γ
2γωph

)2
 erfc

(
Γ

2γωph

)
, (31)

where erfc(x) = 1− erf(x) and erf(x) are the error function.

U

(b) (c)(a)

2γ

t
t

Π

U

≈ Π

2γ

0 2 3 51 4
Γ

Γ

/ωph

6ωph

0.0

0.2

0.4

0.6

0.8

1.0

Sph
,∞

lin

Sph,∞
lin

Eq. (31)

O{[     (t−t' )] }

γ = 2.0
γ = 1.0
γ = 0.5

Figure 4. Final value of the entropy after the full decay of the TLS. (a) Schematic of the phase space
dynamics of the Wigner function during the decay. (b) Approximated dynamics as a straight line.
(c) Final linear entropy Sph,∞

lin as a function of the decay rate Γ, full simulation in solid and approximation
from Equation (31) in dashed lines. Different coupling strengths are shown in blue, red, and green.
The dotted green line shows the entropy for an expansion of the squared sine-function up to the
sixth order.

The results for the final entropy Sph,∞
lin are shown in Figure 4c as a function of the decay rate Γ,

where the full calculations according to the dynamics are shown as solid lines and the approximations
from Equation (31) are the dashed lines. We show the three different coupling strengths γ = 2
(blue), γ = 1 (red), and γ = 0.5 (green). Comparing the different coupling strengths, we find that
a stronger coupling leads to a larger final entropy because the Wigner function gets distributed
over a larger area of phase space. As explained before, the approximation in Equation (31) works
very good for large Γ, but we also see that the approximation works over a larger Γ range if the
coupling strength is larger. The reason for this is that, for larger γ, the circle of the Wigner function’s
trajectory is larger, meaning that its curvature can be better approximated by a linear motion. For the
smallest considered coupling strength γ = 0.5, in green, we additionally show the dotted line that
stems from an approximation of the squared sine function up to the sixth order, which is the next
non-divergent contribution in Equation (30). This curve is obviously a better approximation of the full
calculation, in particular, in the range 1 . Γ/ωph . 2. However, in agreement with all dashed lines,

it reaches Sph,∞
lin = 1 for Γ = 0, while all full linear entropies go to smaller values. This shows that any

approximation of the sine function will not give accurate results for very small decay rates. In fact,
it turns out that, for any finite (converging) order of the expansion of the squared sine function in
Equation (30), Slin,∞

ph = 1 is reached in the limit Γ→ 0. This can be understood by realizing that, for any
finite order in the expansion of the trigonometric functions in Equation (27), the trajectory tends to
infinity for t → ∞, thus leading to a delocalized Wigner function. On the other hand, the correct
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Wigner function in this limit is the doughnut-shaped function similar to the rightmost function in
Figure 3a, for which the linear entropy can be calculated analytically, yielding

Slin,∞
ph = 1− e−2γ2

I0
(
2γ2) , (32)

with the modified Bessel function of first kind and zeroth order I0, in perfect agreement with the
numerical results given in Figure 4c.

3.2. Two Pulse Excitation

The phonon quantum state gets more involved when a two-pulse excitation is considered.
As extensively studied in Reference [13,32], an excitation with two pulses having pulse areas of
θ1 = θ2 = π/2 and a delay of t2 − t1 = tph/2 leads to the generation of two Schrödinger cat states,
each in one TLS subspace. A Schrödinger cat state is a coherent superposition of two coherent states,
i.e., of the most classical states of a harmonic oscillator, and, as such, it is of high interest in all areas of
quantum optics [39–41] and, more recently, also phononics [11].

3.2.1. Phonons Generated by a Non-Decaying TLS

We assume the same excitation scheme as just described and again disregard any decays of
the TLS. The dynamics of the Wigner function are exemplarily shown in Figure 5a. Immediately
before the second laser pulse reaches the TLS, the phonons are in the statistical mixture previously
shown in Figure 2a. The second pulse creates a second coherent state in the excited state subspace
of the TLS, but it also makes half of the coherent state in |x〉 go back to the ground state. Therefore,
we end up with two coherent states in both subspaces, |g〉 and |x〉. As nicely seen in Figure 5a,
the corresponding Wigner function shows two of the classic dumbbell structures of the cat state,
two Gaussians and a striped structure of alternating positive (green) and negative (orange) values
between them. These stripes indicate the interference between the two coherent states. The Wigner
function in the ground state rotates around the origin, and the one in the excited state around the
shifted equilibrium at (U, Π) = (2γ, 0) = (4, 0) is marked by the black circle.
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Figure 5. Two pulse excitation without decay. (a) Snapshots of the Wigner function after the second
pulse. (b) Entropy dynamics after the second pulse, solid lines are the entropies of the cat states,
dashed lines the statistical mixture from Figure 2c. The full phonon entropy is green and the linear
one red.
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The entropies of the phonon state are shown in Figure 5b as solid lines. The linear entropy in
red starts at Slin = 0.5 in agreement with the entropy in Figure 2d at t = tph/2 because at this time
the second pulse excites the TLS. In contrast to the behavior after the first pulse, here, the entropy
drops very rapidly and forms a sharp minimum after the second pulse. In total, the entropy performs
two oscillations before remaining constant at the initial value. The same dynamics repeat themselves
in an inverted form before reaching a full period. Another striking feature is a smaller depression
around t = tph/2. Overall, we find that, by the second pulse, the entropy of the phonon is temporarily
reduced but never increased. The maximum entropy is here the one of a statistical mixture of two fully
separated coherent states (see Figure 2), which is obviously the same for a statistical mixture of two cat
states that are fully separated. This is the case during the times around t/tph = 1/4 and t/tph = 3/4
(see Figure 5a). Next, we discuss the reduced entropy around half a period in Figure 5b. Looking at
the corresponding Wigner function in Figure 5a, we find that this is the time when one of the coherent
states in the excited state system (moving on the circle) overlaps with the vacuum state (staying at the
origin). This is the same effect as discussed in the previous sections, where the entropy shrank when the
phonon states were overlapping in phase space. Finally, we have to understand the strong reductions
of the entropy for times around full periods. To do so, we examine the two insets in Figure 5b that
show snapshots of the Wigner function at the marked times, i.e., where the entropy is minimal and
maximal. The left one at the minimum depicts a time where each of the two Gaussians starts to split
into two, which cannot yet be resolved in the figure because their overlap is still too large. However,
the interference terms between them also move apart. At t = 0, their negative and positive values
are distributed in such a way that they exactly compensate each other (see t = 0+ in Figure 5a). But,
in the left inset, we see that at this time negative and positive values add up, respectively, making for
an accurate alternating pattern. Comparing this structure of the Wigner function with one of the cat
states in Figure 5a shows a strong resemblance. So, the reason for the strong decrease of the entropy is
that, at these times, the Wigner function can only hardly be distinguished from a single Schrödinger
cat state, which is a pure state. Likewise, we can analyze the Wigner function at a maximum of the
entropy oscillation in the right inset. In addition, here, the Gaussians have a large overlap, but the
stripes of the interferences are aligned in such a way that the line in the center has vanishing values.
This strongly disagrees with the natural structure of a cat state interference and makes it easily
distinguishable from that pure cat state. The full phonon entropy Sph is shown as a green solid line.
It follows the same dynamics as the linear one but is just scaled to larger values, as discussed before.
Finally, let us remark on the additionally plotted dashed lines, which are the respective entropy curves
from Figure 2c. They exactly form envelopes for the oscillations and therefore demonstrate that the
oscillating dynamics are again a result of the separation process of the different Wigner functions in
phase space.

The relative phase of the two laser pulses changes the phase in the cat states, i.e., the phase of the
striped structure of the Wigner function. As long as the different parts of the phonon state are separated
in phase space, the phase has no influence on the phonon entropy. The other crucial parameter of the
phonon system is the coupling strength γ that determines the distance of the coherent states and the
number of stripes in the interference term, as exemplarily shown in Figure 6a,b. The influence of an
increased coupling strength is presented in Figure 6c, where the linear phonon entropy Sph

lin is plotted
in the same way as in Figure 5b but only for times up to t/tph = 0.25. The red curve shows γ = 2 from
Figure 5b as a reference. Looking at the larger coupling in bright red (γ = 4) and a smaller coupling
in dark red (γ = 1.5), we clearly see that the oscillation of the entropy gets faster when γ grows and
more minima evolve. The reason is that the interference terms consist of more stripes that run through
each other. At the same time, the envelope gets shorter for a larger γ, which can be traced back to the
larger spread of the Wigner function in phase space. While the sizes of the interference terms and the
Gaussians stay the same, as shown in Figure 6a,b, the radius of the trajectory increases. Because the
angular frequency of the motion remains the same, the two interferences separate in a shorter time,
and this time determines the envelope of the entropy in Figure 6c.
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Figure 6. (a,b) Exemplary Wigner functions at t = tph/4 for γ = 2 in (a) (same as in Figure 5a) and

γ = 4 in (b). (c) Linear phonon entropy Sph
lin as a function of time after a two-pulse excitation as in

Figure 5b. The coupling strength γ increases from dark to bright red.

3.3. Phonon Cat State Entropy Dynamics in a Decaying TLS

Next, we increase the complexity of the considered phonon state by analyzing the influence of
the decay of the TLS on the entropy dynamics of cat states. For reasons of clarity, we consider a
single Schrödinger cat state entirely in the excited state |x〉 ⊗ |cat〉 as initial state without any optical
excitation and account for a decay of the TLS into its ground state. Although this state cannot directly
be prepared by optical pulses, in Reference [32] it is explained how it is constructed mathematically as
initial state for the simulated decay dynamics. Some snapshots of the corresponding Wigner function
dynamics are shown in Figure 7a for a small decay rate of Γ = 0.1ωph. As analyzed in Reference [32],
the combined rotation and shift of the phonon equilibrium position due to the decay of the TLS finally
leads to a Wigner function in the shape of an eight. Note that, for a slow decay where the coherent
parts lead to a homogeneously distributed eight-shape, two interference terms transferred into the
ground state at t/tph = (2n + 1)/4 survive the decay process.

The corresponding linear entropies are depicted in Figure 7b, where the blue curves show the
linear entropy of the full system Slin and the red ones the linear entropy of the phonons Sph

lin . The decay
rate increases from dark to bright colors. We find the same dependency on the decay rate as for a single
coherent state in Figure 3b,d, the final entropy increases for a slower decay. In addition, the behavior
for very fast decays, e.g., Γ = 5ωph, is approximately the same as in Figure 3. The entropy of the full
system (light blue) forms a sharp peak due to the evolution of the TLS through a statistical mixture,
while the phonon part (light red) basically just rises before reaching the stationary value. The dynamics
get more involved and new features appear for slow decays, e.g., for Γ = 0.05ωph. Here, the full
entropy in dark blue continuously increases to the stationary value at the end of the decay process,
while the phonon contribution in dark red is always slightly smaller and shows additional dynamics
developing multiple minima and maxima within each phonon period. While the dynamics are rather
irregular on shorter times t < 3tph, it becomes more periodic for longer periods of time.

To understand the origin of these dynamics in the phonon system, we take a closer look at the
different parts of the Wigner function. According to Reference [13], the Wigner function of a cat state
can be separated into

W = Wcoh + Wint , (33)

where Wcoh describes the two coherent states that have been studied previously, and Wint is the
interference showing up as striped structure in phase space. Under the assumption that the phonon
coupling strength, γ is large enough such that the different parts of the Wigner function do not
significantly overlap in phase space; the linear entropy can also be separated into two contributions,
Scoh

lin and Sint
lin , calculated from the respective contributions of the Wigner function, and we obtain

Sph
lin ≈ Scoh

lin + Sint
lin . (34)



Entropy 2020, 22, 286 15 of 19

In Figure 7c, we show the different entropies for a short time window 4 6 t/tph 6 5. This already
clarifies the picture a bit. First of all, we find that Scoh

lin (green) and Sint
lin (blue) are approximately of the

same size and the sum of the two parts, shown in dashed blue, agrees perfectly with the full linear
phonon entropy (red line). The coherent part Scoh

lin has reduced values at times t/tph = n/2, and Sint
lin

develops minima exactly between those times, i.e., at t/tph = (2n + 1)/4. Because the shapes of the
minima in the two contributions are not the same, the sum appears quite involved.
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Figure 7. (a) Snapshots of the Wigner function during the decay into the ground state for a decay rate
of Γ = 0.1ωph. (b) Linear phonon entropies in red and full linear entropies in blue as functions of time
for different decay rates. Γ increases from bright to dark colors. (c) Zoom-in on one phonon period for
Γ = 0.05ωph. The coherent contribution Scoh

lin is green, the one from the interference Sint
lin is blue and

their sum dashed blue. Next to (c) are exemplary Wigner functions of the coherent part (bottom) and
the interference (top) for the respective minima marked by black lines.

After identifying the different dynamics, we have to understand their origin. Therefore, next to
Figure 7c, we plot the Wigner functions Wcoh and Wint for the respective minima, as marked by the
black lines. Starting with the coherent part at the bottom, we recognize that the situation is equivalent
to the one in Figure 3b,c. The entropy is always reduced when the rotating Wigner function of the
coherent states in the excited state subspace (marked by black circles) overlaps with parts of the Wigner
function in the ground state subspace. In the right example, at t = 4.75tph, the two Gaussians are
clearly separated from the decayed part in the ground state. In the left one, at t = 4.5tph, one of the
coherent states overlaps with the touching point of the two circles that are in the ground state |g〉.
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Because we start with two coherent states in |x〉, the periodicity of the minima is half the phonon
period. Moving on to the Wigner function of the interference contribution at the top, we only see the
expected striped patterns. The times where Sint

lin is reduced agree with the times t/tph = (2n + 1)/4,
where the interference terms that survive the decay process and remain also after the full decay are
transferred into the ground state system (see discussion in Reference [32]). As seen in the depicted
Wigner function on the right, at these times (e.g., t = 4.75tph) in Figure 7c, one of the interference
terms that were already transferred into |g〉 perfectly overlaps with the single interference that is
still in the excited state, resulting in the two separated structures in phase space. For all other times,
three contributions appear, two in |g〉 and one in |x〉, as exemplarily shown on the left for t = 4.5tph.
Thus, the fundamental reason for the reduction of the entropy is that a mixture of two cat states is
more pure than a mixture of three. The perfectly overlapping interferences on the right make the
corresponding Wigner function look more like a mixture of two states than of three.

3.3.1. Phonons Generated by a Decaying TLS

To conclude the discussion, we now take a look at the two pulse excitation discussed in
Section 3.2.1 and consider a non-vanishing decay rate of the TLS. In Reference [32], it was shown that
the final phonon state is in good agreement with the eight-shaped Wigner function of the decayed
single cat state previously analyzed. However, now the phonon generation leads to a statistical mixture
of two cat states that are additionally smeared out in phase space. This is exemplarily shown by the
Wigner functions in Figure 8a. Although the quantum state of the system is more involved, the linear
entropy of the phonons depicted as red line in Figure 8b evolves in a well-structured manner. Especially
after the excitation with the second pulse, marked by the dashed black line, the dynamics resemble
the ones in Figure 5b with an additional increase of the curve according to the decay process. We find
the same broad depressions for half periods and stronger oscillating ones for full periods. The small
additional entropy reductions discussed in Figure 7 are also found here, as shown by the zoom-in in
Figure 5c. However, compared to the effects of the two overlapping cat states, as previously mentioned,
they almost disappear. The linear entropy of the full system shown as a blue line in Figure 5b is always
smaller than the phonon part and grows smoothly. This is in agreement with the situation without any
decay, where the entropy of the full system was always zero while the phonon part was non-vanishing.
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Figure 8. (a) Snapshots of the Wigner function’s dynamics after the second pulse for Γ = 0.05ωph.
(b) Dynamics of the linear phonon entropy in red and the linear entropy of the full system in blue.
(c) Zoom-in on the marked short time window from (b).
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4. Conclusions

In summary, we analyzed the entropy dynamics of a single phonon mode coupled to an
optically-driven TLS. We presented a theoretical framework that allowed us to calculate entropies of the
different parts of the system when the quantum state of the entire system is pure and linear entropies
when it is not pure. Additionally, the concept of Wigner functions for the representation of phonon
quantum states was used. We started our discussion with the most basic optical excitation, i.e., a single
ultrafast pulse, that generated a mixture of two coherent states in the phonon system and assumed a
non-decaying TLS. From this, we further increased the complexity of the generated phonon state by
including non-vanishing decay rates and two-pulse excitations of the TLS. This led to Wigner functions
that smeared out in phase space and the generation of Schrödinger cat states, respectively. While the
decay of the TLS, in general, led to an increase of the system’s entropy, the complex dynamics of the
phonon states resulted in temporally significant reductions of the phonon entropy. All these effects
could be traced back to the purity of the quantum states and the entanglement between phonons and
TLS. This extensive study on the phonon’s entropy led to a thorough understanding of the fundamental
interplay between the dynamics of the two separate parts and their combined influence on the quantum
state purity.
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