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Metabolic features are crucial in tumor immune interactions,
but their relationship with antitumor immune responses is
not yet fully understood. This study used Mendelian randomi-
zation analysis to identify the causal relationships between
blood metabolites and immune cells and to evaluate the effects
of metabolic pathways and reactions on antitumor immune re-
sponses in various cancers. Levels of 156 metabolites exhibited
significant associations with selected immune cells. Metabolic
enrichment analysis indicated laurate, propionyl-carnitine,
carnitine and L-acetylcarnitine are enriched in fatty acid (FA)
metabolism pathways. These enriched pathways are signifi-
cantly correlated to CD8+ T cell function signatures in tumor
environment and favor better prognostic outcomes. Metabolic
reactions contributing to better immunotherapy responses
were identified and used to establish the immuno-metabolic re-
action score (IMRS). IMRS were significantly correlated to
CD8+ T cell infiltration levels and CD8+ T cell signature scores
in either 10� Visium spatial transcriptomic or RNA-seq
samples. Finally, IMRS could significantly predict favorable
survival outcomes in different cancer patients treated with
immunotherapy. Our study revealed a link between certain me-
tabolites and their related metabolic pathways to tumor im-
mune landscape and immune functions. These results could
promote the accurate stratification of patients before treatment
and improve the efficacy of immunotherapy.

INTRODUCTION
Metabolic reprogramming is a key hallmark of cancer. Tumor cell
metabolism modifies the composition of metabolites in the tumor
microenvironment (TME). These metabolites have been increasingly
recognized for their impact on the immune cells present in this niche
through energy, amino acids, and lipid metabolism pathways.1 Meta-
bolic barriers, including glucose competition of tumor cells with acti-
vated effector T cells and upregulation of ligands on tumor cells that
bind to inhibitory receptors on immune cells, would impair the effi-
cacy of anti-cancer immunotherapy.2 With a growing array of immu-
notherapies entering clinical practice, it remains necessary to assess
mechanisms that could shed light on how they might be influenced
by immune-metabolic effects.2,3 Given the intricacies and rapid
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fluctuations in metabolite concentrations and distributions, there
are still many difficulties in pinpointing specific relationships between
metabolites and the immune landscape in the TME.

Various immune cells in the TME are crucial for antitumor immu-
nity, but they are inevitably influenced by the metabolic products
within this niche. CD8+ T cells, which are responsible for the
adaptive immune response, specialize in recognizing and eliminating
malignant cells. A recent study revealed that tumor-derived D-2-hy-
droxyglutarate (D-2HG) is taken up by CD8+ T cells, disrupting their
metabolism and impairing their cytotoxicity and interferon-g
signaling in the TME. The impaired functions of CD8+ T cells can
be restored by removing immunosuppressive D-2HG from the TME
using mutation-specific isocitrate dehydrogenase inhibitors.4 Other
immune cells in the TME, such as tumor-associated macrophages
(TAMs), accumulate 25-hydroxycholesterol, which enhances their
immunosuppressive functions by activating 50 AMP-activated
protein kinase-a via the GPR155-mammalian target of rapamycin
complex 1.5 Furthermore, metabolites derived not only from tumors
in situ but also from the gut microbiota can modulate immune cell
functions in the TME via systemic circulation.6 Jia et al. reported
that Lactobacillus johnsonii collaborates with Clostridium sporogenes
to produce indole-3-propionic acid, which could facilitate the
generation of progenitor exhausted CD8+ T cells by increasing
H3K27 acetylation at the super-enhancer region of Tcf7.7 While these
studies provide valuable insights into utilizing metabolic targets to
enhance cancer treatment via immunotherapy, they require extensive
experimentation and the screening of large clinical sample sets using
omics approaches. A more efficient approach is required to promptly
identify potential associations and rapidly narrow down the scope of
candidate metabolites.
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The concentration and composition of metabolites in the blood-
stream are known to be highly dynamic. The causal effects of these
metabolites on immune system modulation, particularly in immune
cells, remain an unresolved issue in the field.8 As the proportion of
immune cells is a direct indicator of cancer immunotherapy
response,9 many tools have been developed to analyze TME cell pro-
portions and their relation to prognosis or tumor immunotherapy
outcomes, such as TIME2, CIBERSORT, MCP-counter, EPIC, and
Estimate.10 Therefore, establishing the causal relationship between
blood metabolites and immune cells is critical for precise patient seg-
mentation and personalized immune interventions. Mendelian
randomization (MR) provides an opportunity to distinguish causal
and noncausal effects from cross-sectional data, without the need
for randomized controlled trials.11 Recently, a study usedMR to iden-
tify causal relationships between blood metabolites and seven cancer
types, revealing that lipids are particularly causally associated with
colorectal cancer (CRC).12 Moreover, a comprehensive peripheral
blood immunoprofiling study developed a signature score based on
blood cell RNA sequencing (RNA-seq) and immune cell profiles;
the score is correlated with the immunotherapy response across
multiple cancer types.13 In the present study, we hypothesize that
the causal relationship between blood metabolites and key immune
cells could reflect the immune cell landscape in the TME. These me-
tabolites and the activities of related reactions may serve as prognostic
predictors for immunotherapy efficacy.

RESULTS
MR causal relationship of metabolites to immune cells

As outlined in the study scheme (Figure 1), the MR results for all
selected immune cells are summarized (see also Table 1). Func-
tional analysis of single-nucleotide polymorphisms (SNPs) selected
as instrument variables were revealed. These SNPs are correlated
to metabolic pathways such as the carboxylic acid metabolic pro-
cess, biological oxidation, transport of small molecules, organic
anion transport, and the lipid catabolic process (Figure 2A). After
MR analysis, 156 metabolites have at least 2 causal relationships
with blood immune cells and were considered immune-related
metabolites (IRMs) (Figure 2B). These metabolites were subject
to pathway enrichment analysis, which indicated that these
IRMs enriched in 4 metabolic pathways significantly (adjusted
p < 0.05). Within these pathways, b-oxidation of very-long-chain
fatty acids (BOVLCFAs) and oxidation of branched chain FAs
(OBCFAs) both belong to the FA oxidation (FAO) pathways
that are most significantly enriched (Figure 2C). These enriched
IRMs are laurate (C12), propionyl-carnitine, carnitine, and L-ace-
tylcarnitine (Figure 2D). Causal MR analysis revealed that these
Figure 1. Research scheme

(Part 1) GWAS summary data were analyzed using Mendelian randomization (MR) to ide

associations, without corresponding negative MR relationships, were selected for meta

associated with members of significantly enriched pathways were selected and sub

immunotherapy-treated cohorts, based on clinical information. Significant prognostic r

lation. The IMRS was then analyzed for its correlation with cell infiltration, immune-rela

additional cohorts.
IRMs may have causal effects on B cells, myeloid-derived sup-
pressed cells (MDSCs), CD4 regulatory T cells (Tregs), and natural
killer T (NKT) cells (Figure 2E).

Effects of FAO pathways on tumor immune interaction

A prediction model of immunotherapy efficacy in pan-cancer
patients was established using scores from significantly enriched
metabolic pathways. Univariate logistic regression and meta-analysis
results indicated that higher FAO pathway scores, represented by
BOVLCFAs and OBCFAs were associated with better immuno-
therapy outcomes (hazard ratio [HR] < 1, p < 0.05) (Figure 3A). Pre-
diction of metabolic pathway scores for immunotherapy responses
varied across cancer types (Figure 3A). For instance, univariate
analysis indicates that high OBCFA pathway scores predicted non-re-
sponse outcomes in hepatocellular carcinoma (HCC) and non-small
cell lung cancer patients although these outcomes are insignificant
(HR > 1, p > 0.05). To investigate the immune cell modulation effects
of FAO pathways, scores for these two pathways were applied to cor-
relation analysis with T cell signatures across all datasets. The OBCFA
and BOVLCFA pathways were both positively correlated to cytotox-
icity in multiple immunotherapy cohorts (Figure 3B). The OBCFA
was positively correlated with oxidative phosphorylation, while the
BOVLCFA pathway was negatively correlated with exhaustion in
certain cohorts (Figure 3B). In the IMvigor210 cohort, glycolysis
was negatively correlated with the immune-proficient CD8+ T cell
signature. In melanoma, the OBCFA and BOVLCFA pathways
were both positively correlated with CD8+ T cell activation. However,
in the HCC cohort, the two FAO pathways were negatively correlated
with CD8+ T cell signatures, suggesting that FAO pathwaysmay act as
immunosuppressive modulators in HCC (Figure 3C). Meta-prog-
nostic analysis of the two pathways in The Cancer Genome Atlas
(TCGA) pan-cancer datasets also indicate that higher OBCFA and
BOVLCFA activities in TMEmay be associated with better prognostic
outcomes (Figure 3D).

Immuno-metabolic reaction scores indicate higher T cell activity

The immuno-metabolic reaction score (IMRS) was calculated using the
following steps (Figure 4A). Briefly, for training cohorts with survival
data, both Cox proportional hazards regression and logistic regression
were applied, while cohorts without survival data were subjected to
logistic regression alone. For each metabolic reaction, univariate Cox
or logistic models were established to predict survival outcomes and
immunotherapy responses. Meta-analysis was then applied to meta-
bolic reactions related to IRMs in significantly enriched pathways.
The final IMRS is the sum of the products by multiplying activities
scores and their coefficients in the model for each significant reaction.
ntify causal relationships between metabolites and immune cells. Significant positive

bolic pathway enrichment analysis. (Part 2) Following COMPASS analysis, reactions

jected to Cox proportional hazards regression and logistic model construction in

eactions identified through meta-analysis were selected and used for IMRS calcu-

ted features, spatial co-localization with immune cells, and prognostic validation in
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Table 1. Immune cell-related metabolites

Selected immune cells No. of samples
No. of SNPs
(p < 1e�5)

No. of causal related
metabolites (IVW p < 0.05)

No. of causal related
metabolites after reverse MR

CD4+ T cell 3,652 179 68 66

CD8+ T cell 3,652 1,414 65 63

NKT cell 3,653 904 49 48

NK cell 3,653 101 55 55

DC 3,374 705 74 71

Gr-MDSC 1,928 163 58 57

Mo-MDSC 1,927 3,706 49 48

Monocyte 3,727 145 66 61

B cell 3,653 223 57 56

Treg cell 3,405 60 72 70

Tcr gd cell 3,650 648 61 59

Granulocyte 3,653 167 58 51

DC, dendritic cell; Gr-MDSC, granulocytic myeloid-derived suppressor cell; Mo-MDSC, monocytic myeloid-derived suppressor cell; Tcr gd, a type of T cell receptor found in gd

T cells.
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The significant reactions were categorized into two types: metabolites
consuming (C) and metabolites producing (P), based on the position
of target metabolites in the reaction equation. Acetyl-carnitine P
reactions indicate worse immunotherapy response (HR > 1), while
dodecanoyl-coenzyme A C reactions and L-carnitine P reactions are
associated with better immunotherapy response (HR < 1) (Figure 4B).
The top significant reactions were distinct between immunotherapy
responders and non-responders in training and validation sets
(Figure 4C). The IMRS was correlated with tumor immune cell
infiltration. The results indicated that the IMRS was positively corre-
lated with T cells, CD8+ T cells, dendritic cells (DCs), and B cells in
the IMvigor210 and Liu_Melanoma_2019 cohorts (Figure 4D). In
the IMvigor210, Rose_2021_GSE176307, and Liu_Melanoma_2019
cohorts, IMRS was also positively correlated with the CD8+ T cell
signature, including interferon response, cytotoxicity, cytokine/cyto-
kine receptors, and adhesion, suggesting that higher IMRS may
contribute to higher T cell-related antitumor activities in these patients
(Figure 4D).

Co-localization of elevated IMRS with CD8+ T effector cell

Spatial transcriptomic data of CRC, CRC liver metastasis (CRLM),
and bladder cancer patients treated with immune-checkpoint inhibi-
tors (ICIs) were analyzed for visualizing the co-localization of IMRS
and CD8+ T effector cells. For CRC, elevated IMRS was significantly
co-localized with CD8+ T effector cells in epithelial cell adhesion
molecule-positive (EPCAM+) regions across all samples. Sample
colon1 and colon4 exhibited better correlation results than colon2
and colon3, which indicated higher heterogeneity in CRC patients
treated with ICIs (Figures 5A and 5B); For CRLM samples, elevated
IMRS was significantly co-localized with CD8+ T effector cells, with
less individual variance compared to CRC (Figures 5C and 5D). For
bladder cancer, elevated IMRS was also positively correlated with
CD8+ T effector cells in tumor regions (Figures 5E and 5F).
4 Molecular Therapy: Oncology Vol. 33 March 2025
Pan-cancer prognostic evaluation of IMRS in patients with

immunotherapy

To further evaluate the predictive value of IMRS across different can-
cer types, we utilized a multivariable Cox proportional hazards
regressionmodel to analyze the effects of IMRS, tumor stages, and hu-
man ethnicity. In the combined melanoma cohorts, IMRS was signif-
icantly associated with improved overall survival (OS) outcomes
(HR = 0.43, p < 0.001), whereas tumor stages were not significantly
correlated with OS (p = 0.144) (Figure 6A). In the combined bladder
cancer cohorts, IMRS was also significantly associated with improved
OS outcomes (HR = 0.69, p < 0.01). Tumor stages were associated
with worse OS outcomes (HR = 2.15, p < 0.001), while human race
was not a significant predictive factor for OS (p > 0.05) (Figure 6B).
A Kaplan-Meier (KM) survival analysis of combined melanoma
and bladder cancer cohorts showed that elevated IMRS significantly
favored better OS (p < 0.01) (Figures 6C and 6D). For subgroup anal-
ysis, IMvigor210 and Rose_2021 were divided into all-stages groups
(M0 and M1x), a metastasis group (M0), and a non-metastasis group
(M1x). IMRS was significantly associated with better OS outcomes
across all stages including M0 and M1x subgroups (HR < 1,
p < 0.05) (Figures 6E and 6F). In training set Braun_2020 (renal
cell carcinoma [RCC]), IMRS was significantly associated with better
OS outcomes across all stages and in the M0 group, but it was not sig-
nificant in the M1x group (p = 0.106) (Figure 6G). In other validation
cohorts, IMRS was significantly associated with better OS and
progression-free survival (PFS) outcomes in Gide_2019_Melanoma
cohorts (p < 0.05) (Figures 6H and 6I). IMRS was also significantly
associated with better PFS outcomes in Braun_2020 cohorts (HR =
0.66, p < 0.05) (Figure 6J).

DISCUSSION
Awell-recognized feature of cancer cells is metabolic reprogramming,
characterized by the deregulated uptake of glucose and amino acids,
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as well as elevated FA metabolism, which enhances their plasticity to
adapt to extreme environments and metastasis.14,15 Aberrant metab-
olite concentrations in the TME have been observed to aid cancer cells
in escaping host immune surveillance and surviving.16–18 For
instance, metabolic reprogramming of cancer cells can impair
antitumor functions of CD8+ T cells in TME through nutrient compe-
tition,1,19 oxygen deprivation, acidification,20 or directly signaling
modulation via metabolic intermediates.21 Our findings suggest
causal effects of FAO-related metabolites, such as carnitine, dodeca-
noic acid, and propionylcarnitine, on immune cells in the peripheral
blood. These metabolites may also affect immune cell functions in the
TME through direct or indirect signaling pathways. Carnitine, which
shuttles FAs across cell membranes via carnitine palmitoyl trans-
ferase, is a critical cofactor in FAO pathways in almost all cells,
including tumor cells.22 The carnitine palmitoyl transferase family
is the rate-limiting FAO enzyme that plays a key role in cancer meta-
bolic adaptation. It is upregulated in most cancer types and promotes
cancer survival under metabolic stress,23,24 potentially leading to
reduced carnitine concentration in the TME and serum. Studies
have reported decreased serum carnitine levels in various cancers.
Carnitine has shown protective effects in cancer patients by inhibiting
cancer cell proliferation and enhancing anticancer immune re-
sponses.25 Our results demonstrate that FAO pathways requiring
carnitine as a shuttle, along with metabolic reactions producing carni-
tine in the TME, were associated with better immunotherapy re-
sponses, further supporting serum carnitine levels as a potential pre-
dictor of cancer therapy outcomes. Dodecanoic acid belongs to the
medium-chain FAs class. It has been reported to be associated with
the reduced risk of CRC in White participants.26 However, only a
few studies have reported that dodecanoic acid supports the differen-
tiation of pro-inflammatory T helper cells and promotes inflamma-
tion.27 The potential effects of dodecanoic acid in the tumor immune
microenvironment require further investigation. These causal metab-
olites are enriched in FAO pathways, further highlighting the role of
FAO pathways in antitumor immunomodulation.

One consequence of metabolic reprogramming in cancer cells is the
accumulation of free FAs in the TME.28–30 Accumulated FAs disrupt
mitochondrial function and lead to metabolic exhaustion of intratu-
moral CD8+ T cells, which would impair the antitumor immune
response.29 Ma et al.31 also provide evidence that enriched FAs in
the TME and CD36 expression on intratumoral CD8+ T effector cells
together dampen their antitumor function by reducing cytotoxic
cytokine production. The de novo FA synthesis pathway, as a source
of free FAs in the TME, is emerging as a potential target for improving
immunotherapy efficacy.32 Inhibition of SREBP1, an upstream regu-
lator of lipid synthesis in cancer cells, reduces free FAs in the TME,
leading to increased CD8+ T cells and decreased M2-like TAMs dur-
Figure 2. Pathway enrichment analysis of metabolites with causal relation to i

(A) Gene set enrichment analysis of SNP-related genes using Metascape. (B) Metabolite

the b value (nature logarithm of odd ratio, lg(OR)), b > 0 represents OR > 1, and b < 0 re

online tools. Causal related metabolites were significantly enriched in fatty acid oxidat

significant enriched pathways. (E) Causal relationship to immune cells of metabolite me
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ing anti-programmed cell death protein 1 (anti-PD-1) therapy.33

Moreover, the very-long-chain FAO pathway identified in our study
is closely associated with ferroptosis, and elevated activity in this
pathway may enhance the response to immunotherapy.33 The FAO
pathway, which utilized free FAs in TMEmay also serve as a potential
therapeutic target.34 FAO and its downstream oxidative phosphoryla-
tion pathways are essential for T cells, supporting prolonged and
enhanced antitumor functions as well as the formation of memory
T cells.35,36 IMRS in our study was established based on the reactions
related to FAO in the TME. Patients with high IMRS in our study ex-
hibited stronger activities in FA transportation to both mitochondria
and peroxisome for oxidation. Using spatial transcriptomic data to
validate the co-localization of high IMRS area and effector CD8+

T cells in different cancer patients, we may speculate that FAs in
the TME are rapidly consumed in high-IMRS individuals, potentially
alleviating their immunosuppressive functions. Spatial localization in
the TME is essential for the tumor-eliminating function of CD8+ T
effector cells. High IMRS in the TME may create a low free FA niche
for the immune cells, which could improve immunotherapy effi-
cacy.37,38 However, spatial co-localization alone is insufficient to
prove the causal effects of FA concentration on T cell distribution
due to tumor morphological heterogeneity.39 Spatial sequencing
data and methods with higher resolution and broader coverage are
required for further validation.40 Not only the FA concentration
but also the classes of FAs and the specific effects of different FAs
on TME cell components remain poorly understood. Specific FAs,
such as linoleic acid, can improve mitochondrial fitness and promote
memory-like phenotypes of CD8+ T cells, enhancing the efficacy of
adoptive cell therapy in lymphoma models.41 Given the heterogeneity
among cancer types, further studies are needed to validate the effects
of linoleic acid on immunotherapy responses. Considering the
complexity of different kinds of FAs, it is necessary to discover new
immunotherapy-related FAs and to elucidate the mechanisms under-
lying the functions of specific FAs and their impact on cancer treat-
ment efficacy.

Many previous studies have highlighted circulating tumor-derived
metabolic products (e.g., phospholipids, tryptophan, nicotinamide),42

immune cells (peripheral immunotypes),13 proteins (e.g., MBL2,
HABP2, CAMP, CETP, CD163 in HCC),43 and chromatin (e.g., im-
age-based chromatin organization)44 as diagnostic biomarkers for
monitoring cancer progression, metastasis, and treatment efficacy.
Still, it is a significant challenge for researchers to determine how pe-
ripheral blood multi-omics profiles accurately reflect the true situa-
tion in the TME due to limited matched blood-TME investiga-
tions.13,45 Recently, the widespread application of new metabolomic
methods to peripheral blood or tumor specimens from patients
with various cancers has significantly accelerated the discovery of
mmune cells

s with at least two causal relationships with immune cells were selected. The x axis is

presents OR < 1. (C) Metabolite pathway enrichment analysis using Metaboanalyst

ion, glycolysis, and glutathione metabolism pathways. (D) Metabolite members of

mbers of significant enriched pathways.
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newmetabolic biomarkers for diagnostic or prognostic purposes.46–48

Moreover, large-scale clinical trials focusing on blood metabolites for
early detection and diagnosis of various cancer types have recently
been conducted to develop more accurate diagnostic models.49,50

However, identifying the causal mechanisms linking blood metabo-
lites to TME cell components remains challenging.51 Our study
established a causal relationship between bloodmetabolites and blood
immune cell profiles, further developing and validating a prognostic
model using multi-omics datasets. Two-sample MR analysis utilizes
SNP-exposure and SNP-outcome associations from independent
genome-wide association studies (GWASs) experiments and combine
them into a single causal estimate.11With the rapid increase in GWAS
datasets on metabolomics and immune cells,52 large-scale summary
statistics have become widely available, enabling MR analyses with
significantly greater statistical power. COMPASS is another great
tool for translating gene expression data into metabolic reaction
data. Using these tools, we developed a novel prognostic model to
predict immunotherapy responses with reliable causal effects. Tumor
heterogeneity, including variations in stages, locations, and morpho-
logical features within the tumor region, can significantly impact the
efficacy of immunotherapy.53,54 Our analysis incorporated tumor
stage as a covariate in the prognostic model and identified inconsis-
tencies between early- and late-stage RCC patients. Additional tumor
types at various stages should be evaluated to validate the applicability
of the prognostic model for new patients in the future. Overall, these
advancements could accelerate research on peripheral biomarkers to
better reflect the status of the TME.

As metabolic pathways gain increasing attention in cancer therapy,
they are emerging as a prominent topic in the development of adju-
vants to cancer immunotherapy. Cao et al. utilized lactate oxidase
nano-capsules to successfully overcome tumor immunosuppression
and enhance the efficacy of immune checkpoint blockade therapy
without inducing severe nonspecific toxicity.55 Numerous preclinical
studies have highlighted the potent effects of indoleamine 2,3-dioxy-
genase 1 inhibitors, which target tryptophan catabolism, in activating
antitumor immunity and synergizing with anti-PD-(L)1 therapy.56

Regarding FAO, Lai et al.57 demonstrated that dietary elaidic acid,
not normal oleic acids, could activate the expression of major histo-
compatibility complex class I in tumor via NLRC5 and enhance the
efficacy of anti-PD-1 therapy in mice. Our findings present new
approaches and potential targets for identifying novel peripheral
biomarkers to predict immunotherapy responses. However, this
study has certain limitations. First, the GWAS samples were derived
exclusively from European ancestries, which may limit the generaliz-
ability of our conclusions to patients with different genetic back-
grounds. Second, the results from MR analysis may be biased due
to weak instruments and horizontal pleiotropy; however, F-statistics
Figure 3. Prognostic and correlation analysis of enriched pathways

(A) Prediction of immunotherapy response using four significant enriched pathway sco

signature in pan-cancer immunotherapy cohorts. Different colors represent types of T ce

CD8+ T cell signatures in IMvigor210, melanoma, and hepatocellular carcinoma treated

scores on prognostic prediction in TCGA pan-cancer cohorts.
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and statistical tests for pleiotropy may help minimize these biases.
Epidemiological studies involving larger populations and diverse an-
cestries are needed to evaluate the relationships between measured
plasma metabolites and immunotherapy efficacy. Additionally,
experimental research is required to validate these findings. Third,
not all solid tumor patients were included in our studies, meaning
the prediction model developed here may not be applicable to all tu-
mor types. In future studies, additional large-scale immunotherapy
trials on other cancer types with more samples and detailed informa-
tion should be included for developing a better prediction model.
Despite these limitations, our findings suggest that novel meta-
bolism-related biomarkers and interventions will be rapidly identified
through the application of MR, thereby advancing the precise
application of immunotherapy across various cancers.

Conclusion

Our study contributes to the growing body of evidence that metabo-
lites are not passive bystanders in cancer progression but active
participants in shaping the tumor immune landscape. Further
elucidation of these mechanisms could pave the way for therapeutic
strategies that integrate metabolic manipulation with immuno-
therapy, aiming to improve outcomes for patients with solid tumors.
Future research in this area is both warranted and essential for
advancing cancer therapy.

MATERIALS AND METHODS
Exposure and outcomes data

SNP GWAS summary data for instrument variables was downloaded
from previous studies. The summary data of 1,091 metabolites and
309 metabolites’ concentration ratios were sourced from an indepen-
dent GWAS of blood metabolite traits among 8,192 individuals of
European ancestry from the Canadian Longitudinal Study on
Aging.58 GWAS data of a total of 731 immune traits were sourced
from the GWAS Catalog (accession numbers from GCST0001391 to
GCST0002121). The study analyzed 118 absolute cell counts, 389 me-
dian fluorescence intensities reflecting surface antigen levels, 32
morphological parameters, and 192 relative cell counts by flow cytom-
etry in 3,757 individuals.59

Instrument variables selection and related functional analysis

SNPs that were significantly related to themetabolites were selected as
the instrument variables (IVs) according to two thresholds: (1) SNPs
less than the genome-wide statistical significance threshold
(1� 10�5) to serve as IVs and (2) theminor allele frequency threshold
of the variants of interest was 0.01. Linkage disequilibrium (LD)
clumping was performed with a window size of 10,000 kb to select
SNPs that were independently (pairwise LD R2 < 0.01) associated
with plasma metabolites at p < 5 � 10�8, as previously described.60
res. (B) Correlation of fatty acid oxidation pathway scores with tumor-related T cell

ll function signatures. (C) Correlation of four significant enriched pathway scores with

with immune checkpoint inhibitors. (D) Meta-analysis of significant enriched pathway
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Figure 4. Immunotherapy response prediction and correlation analysis of metabolic reactions

(A) Calculation steps of IMRS. (B) Meta-analysis of metabolic reactions to immunotherapy response. (C) Metabolic reaction score distributions in immunotherapy responders

and non-responders. Top 20 metabolic reactions were selected according to their hazard ratio and p value. (D) Correlations of metabolic reaction scores with MCP-counter

immune cell infiltration scores in pan-cancer immunotherapy cohorts. (E) Correlation analysis of metabolic reaction scores with CD8+ T cell signatures in pan-cancer

immunotherapy cohorts.

www.moleculartherapy.org
During the harmonization process, we aligned the alleles to the hu-
man genome reference sequence (build 37) and removed ambiguous
and duplicated SNPs. After we excluded weak IVs by F-statistic <10
and the Steiger test, metabolites with at least three IVs were eligible
for MR analyses. MR-PRESSO and MR-Egger regression tests were
applied to monitor the potential horizontal pleiotropy effect. SNPs
were sorted in ascending order in terms of their outlier test p values
and were then removed one by one. The list of SNPs remaining after
removing pleiotropic SNPs was used for the subsequent MR analysis.
The SNPs selected as IVs were then annotated by Ensembl variant ef-
fect predictor tools for related genes and location.61 For genes with
SNPs located on the exon region, gene set enrichment analyses
were conducted by Metascape.62

MR analysis

Two-sample MR analysis was conducted using the twosampleMR
package in R. We employed five different MR methods for features
containing multiple IVs, including the inverse-variance weighted
(IVW) test, weighted mode, MR-Egger regression, the weighted me-
dian estimator, and MR-PRESSO. Within these methods, the IVW
method is reported to be more powerful than the others.63 To avoid
type I error, Bonferroni correction was applied to each metabolite
Molecular Therapy: Oncology Vol. 33 March 2025 9
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to identify significant associations at Bonferroni-corrected p < 0.05.
To ensure the robustness of findings, complementary analyses were
performed using three additional MR approaches. A test was also
performed for heterogeneity identification using Cochran’s Q statis-
tics in all metabolites. Causal relations results with Q values larger
than the number of instruments minus 1 or Q statistics significant
at p < 0.05 can imply the presence of heterogeneity and be discarded.
To confirm whether immune cells have any causal impact on the
identified significant metabolites, we also performed a reverse MR
analysis (i.e., immune cells as the exposure and the identified
causal metabolites as the outcome) using SNPs that are associated
with immune cells as IVs. Metabolites with reversed causal relations
were filtered out. An MR Steiger directionality test64 was applied
to examine whether exposure was directionally causal for the
outcome.

Metabolism enrichment analysis

Each metabolite which has at least two causal relationships with the
selected immune cells were collected. They were then subjected to
theMetabolAnalyst 6.0 website for metabolite set enrichment analysis
(MSEA).65 First, the metabolite names were compared to the HMDB
database to get the correct HMDB identification number according to
their structure and molecular formula. Second, the metabolites with
unique HMDB identification numbers (“hits”) were applied to
MSEA of the Small Molecule Pathway Database (SMPDB)
metabolic pathways. Finally, the enriched results were visualized by
ggplot2 in R.

Pan-cancer immunotherapy datasets

Pan-cancer bulk RNA-seq datasets of patients treated with immuno-
therapy were acquired in different studies: melanoma,66–69 bladder
cancer,70,71 RCC,72,73 lung cancer,74,75 HCC,76 and gastric cancer77

(Figure 1; Table S1). The survival and Response Evaluation Criteria
in Solid Tumors (RECIST) data were also acquired in their published
information and materials. Gene expression data were normalized
and scaled before analysis. For RECIST data, patients with complete
response and partial response were considered to be responders, while
other patients with stable disease and progressive disease were consid-
ered to be non-responders. Cohorts with tumor stages and human
ethnicity information were combined according to cancer types for
multi-factor Cox proportional hazards regression analysis. IMvi-
Immune metabolic reaction score ðIMRSÞ= b1 � scaled reaction1 score + b2 � scaled reaction2 score + :::+ bn � scaled reactionn score:
gor210, Rose_2021_BC, and Braun_2019_RCC cohorts were divided
into subgroups by metastasis stages.
Figure 5. Spatial co-localization of metabolic reaction and CD8+ T effector cel

A, C and E (left) are the feature plot of EPCAM, IMRS, and CD8+ T effector cell score in d

effector cells in tumor sites. (A and B) Spatial feature plot and correlation in CRC. (C and D

feature plot and correlation in bladder cancer.
TCGA pan-cancer datasets and tumoral immune cell infiltration

analysis

RNA expression data from 33 cancer types were fetched from
TCGA database. Metabolic pathway gene sets (protein names)
were downloaded from the SMPDB. Pan-cancer tumor-related
T cell signature genes were collected from published research about
T cell functions related to immunotherapy resistance.78 These gene
sets were utilized for single sample gene set enrichment analysis in
TCGA pan-cancer and immunotherapy bulk RNA-seq datasets.
MCP-counter79 was applied to all datasets for tumoral immune
cell infiltration analysis.

COMPASS reaction analysis

The COMPASS algorithm was designed for in silico modeling
of metabolic heterogeneity based on transcriptomic data.80

We applied COMPASS on spatial transcriptomic and
bulk RNA-seq data to characterize metabolic states of tumor
samples.

Immunotherapy response prediction and meta-analysis

Univariate logistic regression and univariate Cox proportional
hazards regression was performed on each significantly enriched
metabolic pathway score and COMPASS reaction to identify the
pathway score or reactions that are significantly related to the immu-
notherapy response in all pan-cancer datasets. Training cohorts with
survival data were subject to combined Cox proportional hazards
regression and logistic regression; other cohorts without survival
data were subject to logistic regression alone. For each metabolic re-
action, univariate Cox or logistic regression model was established to
predict the survival outcomes and immunotherapy responses. Then,
meta-analysis was applied to metabolic reactions that are related to
IRMs in significantly enriched pathways. For meta-analysis, nine co-
horts (IMvigor210, Hugo_2016_Melanoma, Liu_2019_Melanoma,
Riaz_2017_Melanoma, GSE126044, GSE135222, Hsu_2021_HCC,
Kim_2018_GC, and Miao_2018_RCC) were selected as the training
set. All significant reactions were fitted with random/mixed-effects
models by metafor packages in R. Significant reactions after meta-
analysis were selected for prognostic signature score calculation. Ul-
timately, a prognostic signature was constructed by the multiplication
of scaled reaction scores and regression coefficient (b) according to
the equation:
Based on the formula, we calculated the signature risk scores of all pa-
tients in training and validation cohorts.
ls

ifferent cancer types, B, D and F (right) are the correlation plot of IMRS with CD8+ T

) Spatial feature plot and correlation in CRLM, related to (A) and (B). (E and F) Spatial
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Spatial relationship of metabolites to immune cells in tumor

sites

Spatial transcriptomic data (10X Visium platform) of CRLM and
bladder cancer patients treated with ICIs were collected from two
published studies.81,82 After COMPASS analysis, IMRSs were calcu-
lated in all spots on spatial slides. Spatial transcriptome data were
analyzed and visualized according to Seurat83 and SPATA284 pipe-
lines. Single-sample gene set variation analyses were also performed
to calculate the CD8+ T effector cell signature score in spatial data-
sets.81 Tumor cell-specific gene EPCAM were selected for indicating
the tumor site on 10X Visium slides. Tumor sites were annotated by
visual inspection; IMRSs and CD8+ T effector scores were plotted on
tumor sites by SPATA2. Spearman correlations of IMRS with CD8+ T
effector scores in all tumor sites of 10X Visium samples were visual-
ized by scatterplot.
Prognostic Cox regression of metabolic reaction score

Patients were classified into high-IMRS and low-IMRS groups for
further study according to the optimal cutpoints of the score. A
KM analysis was performed to evaluate the statistical differences in
survival rate after immunotherapy treatment between the high-
IMRS and low-IMRS groups.
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Figure 6. Survival analysis of IMRS in pan-cancer cohorts

(A and B) Multi-factor Cox proportional hazards regressionmodel analysis of IMRS, tumo

(C and D) Kaplan-Meier survival plot of IMRS on OS outcomes in combined melanom

subgroups. (Left) All stages, (center) M0 group, (right) M1x group. (F) Kaplan-Meier surviv

M1x group. (G) Kaplan-Meier survival plot of OS in Braun_2019 (RCC, training set). (Left

OS and PFS in validation cohorts.
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