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Surname-Inferred Andean Ancestry Is Associated with Child Stature and Limb
Lengths at High Altitude in Peru, but not at Sea Level

EMMA POMEROY,1,2* JONATHAN C.K. WELLS,2,3 SANJA STANOJEVIC,4 J. JAIME MIRANDA,5 LORNA G. MOORE,6

TIM J. COLE,7 AND JAY T. STOCK2

1Newnham College, University of Cambridge, Cambridge, United Kingdom
2Division of Biological Anthropology, Department of Archaeology and Anthropology, University of Cambridge, United Kingdom
3Childhood Nutrition Research Centre, UCL Institute of Child Health, University College London, London, United Kingdom
4Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
5CRONICAS Center of Excellence in Chronic Diseases and Department of Medicine, School of Medicine, Universidad Peruana Cayetano
Heredia, Lima, Peru
6Department of Obstetrics/Gynecology, University of Colorado Denver, Aurora, Colorado
7Population, Policy and Practice Programme, UCL Institute of Child Health, University College London, United Kingdom

Objectives: Native Andean ancestry gives partial protection from reduced birthweight at high altitude in the Andes
compared with European ancestry. Whether Andean ancestry is also associated with body proportions and greater post-
natal body size at altitude is unknown. Therefore, we tested whether a greater proportion of Andean ancestry is associ-
ated with stature and body proportions among Peruvian children at high and low altitude.

Methods: Height, head circumference, head-trunk height, upper and lower limb lengths, and tibia, ulna, hand and
foot lengths, were measured in 133 highland and 169 lowland children aged 6 months to 8.5 years. For highland and
lowland groups separately, age-sex-adjusted anthropometry z scores were regressed on the number of indigenous
parental surnames as a proxy for Andean ancestry, adjusting for potential confounders (maternal age and education,
parity, altitude [highlands only]).

Results: Among highland children, greater Andean ancestry was negatively associated with stature and tibia, ulna,
and lower limb lengths, independent of negative associations with greater altitude for these measurements. Relation-
ships were strongest for tibia length: each additional Andean surname or 1,000 m increase at altitude among highland
children was associated with 0.18 and 0.65 z score decreases in tibia length, respectively. Anthropometry was not signif-
icantly associated with ancestry among lowland children.

Conclusions: Greater Andean ancestry is associated with shorter stature and limb measurements at high but not
low altitude. Gene-environment interactions between high altitude and Andean ancestry may exacerbate the trade-off
between chest dimensions and stature that was proposed previously, though we could not test this directly. Am. J.
Hum. Biol. 27:798–806, 2015. VC 2015 The Authors American Journal of Human Biology Published by Wiley Periodicals, Inc.

Studies of responses to hypoxia among populations resi-
dent at high altitude for many generations provide a clas-
sic means of investigating both genetic adaptation and
plasticity in development and growth (Baker and Little
1976; Beall, 2013; Frisancho, 1993). Native high-altitude
populations, including Andeans and Tibetans, are par-
tially protected from the negative effects of hypoxia on
birth weight compared with more recent migrants to alti-
tude (Julian et al., 2007; Krampl et al., 2000; Zamudio
et al., 1993). However, birth weight still continues to
decrease with altitude among residents of Peru, the focus
of this study, such that mean birth weight falls by �130 g
per 1000 m increase in altitude (Mortola et al., 2000).

Despite their generally lower socioeconomic status
(SES) compared with Andean residents of European
ancestry, and this dose-response “altitude-penalty” on
birth weight, neonates of Andean descent have higher
birth weight than those of European ancestry at equiva-
lent altitudes above �2500m. For example, Julian et al.
reported that infants born in Bolivia to parents of Andean
ancestry weighed on average 200–250 g more than those
of European ancestry at the same altitude, controlling for
gestational age and other known influences on birth
weight (Julian et al., 2009; Vargas et al., 2007). The
degree of protection from decreased birth weight corre-
lates positively with the proportion of Andean ancestry

(Julian et al., 2007; Soria et al., 2013), and paternal
Andean ancestry exerts a stronger effect than maternal
Andean ancestry by �80 g (Bennett et al., 2008).

Given that most studies investigating the relationship
between ancestry and growth at altitude have been
restricted to birth weight, there is a particular need to
extend such research postnatally and to consider whether
outcomes such as growth are affected. Understanding the
relationship between Andean ancestry and growth, as
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measured by body size and proportions, at altitude can
offer new insight into the developmental etiology of adap-
tations to hypoxia among native high-altitude residents.
Highland Andean children and adults are generally
shorter than low-altitude populations, with larger chests
and shorter legs relative to the trunk (although see Fri-
sancho et al., 1975a; Stinson and Frisancho, 1978), but
some of these differences may be largely attributable to
contrasts in healthcare, SES, and temperature which cor-
relate negatively with altitude, rather than hypoxia per
se (Frisancho et al., 1970; Greksa, 2006; Greksa et al.,
1984; Niermeyer et al., 2009; Pawson and Huicho, 2010;
Pawson et al., 2001). With decreasing temperature
(increasing latitude), limbs are shorter relative to the
trunk and distal limb segments become similarly shorter
relative to proximal segments among modern and ancient
human populations (Katzmarzyk and Leonard, 1998; Rob-
erts, 1978; Trinkaus, 1981). However, the extent to which
such variation in body proportions is genetically deter-
mined (Cowgill et al., 2012; Holliday, 1997) or is a direct
effect of ambient temperature on growth (Serrat et al.,
2008) remains uncertain.

Several hypotheses are proposed concerning the relation-
ship between Andean ancestry and postnatal body size and
proportions. Hypothesis 1 is that, other factors being equal,
individuals with greater Andean ancestry grow taller and
are heavier postnatally as well as prenatally at altitude as
a result of genetic adaptations to hypoxia. Recent studies
have detected signatures of natural selection among
Andeans in genes associated with the hypoxia-inducible
factor (HIF) pathway, which is involved in tissue oxygen
homeostasis (Bigham et al., 2009, 2010). However, the phe-
notypic effects of these genotypes are uncertain, although
progress is being made in this regard (Bigham et al., 2014).
Andeans do not have major genetic variants that elevate
arterial oxygen saturation, unlike Tibetans (Beall et al.,
1994, 1999), and variants of the genes EGLN1 and EPAS1,
which show evidence of positive selection in highland
Andeans, are not associated with blood hemoglobin concen-
tration (Bigham et al., 2013). Alternatively, numerous stud-
ies show that highland Andean children have larger chests
and lung volumes for their age and/or height compared
with non-Andeans at high altitude (Beall, 1982; Brutsaert
et al., 1999; Frisancho et al., 1975a; Hoff, 1973; Mueller
et al., 1978b; Palomino et al., 1978; Stinson, 1980, 1982),
although Tibetans and Europeans are also reported to have
increased chest and/or lung dimensions at high altitude
compared with their low-altitude counterparts (Beall 1982;
DeGraff et al. 1970; Droma et al. 1991; Greksa 1986;
Greksa 1988; Greksa and Haas 1982; Greksa et al. 1988).

While larger chest/lungs could increase arterial oxygen-
ation and thus reduce hypoxic constraints on growth (con-
sistent with Hypothesis 1), others have proposed that the
greater acceleration of chest growth among highland
Andeans is compensated for by reduced height (Frisan-
cho, 2013; Frisancho et al., 1975b; Mueller et al., 1978a;
Pawson and Huicho, 2010). Hypothesis 2 is therefore that
Andean ancestry is associated with altered postnatal
growth patterns, including shorter stature. Various stud-
ies suggest that under conditions of environmental stress
(e.g., hypoxia, malnutrition) growth is prioritized in some
parts of the body, typically the brain (Barbiro-Michaely
et al., 2007; Barker, 1998; Giussani, 2011; Wells, 2013) at
the particular expense of lower limb and distal limb seg-
ment (tibia) length and, to a lesser extent, trunk length

(Bailey and Hu, 2002; Bailey et al., 2007; Bogin et al.,
2002; Gunnell et al., 1998; Lampl et al., 2003; Pomeroy
et al., 2012; Pomeroy et al., 2013; Whitley et al., 2008).
Thus, if brain and chest size are prioritized over stature
among children of Andean ancestry, we might also antici-
pate that lower limb and especially tibia length experi-
ence the greatest reductions in growth, altering relative
trunk and limb proportions.

Two variants of Hypothesis 2 may also be proposed.
Hypothesis 2a is that patterns of chest, stature, and limb
proportions associated with Andean ancestry are genetic
adaptations to hypoxia and expressed regardless of alti-
tude. Hypothesis 2b is that the Andean growth pattern
results from gene-environment interactions whereby
greater chest size has a genetic basis, but is facultatively
expressed during development at high altitude. Previous
studies suggest that accelerated Andean chest develop-
ment is conditional upon high-altitude exposure and
ancestry: children of European ancestry also develop rela-
tively larger chests at high altitude (Greksa, 1986, 1988;
Greksa and Haas, 1982; Greksa et al., 1988), but to a
lesser extent than Andeans (Brutsaert et al., 1999;
Greksa, 1986, 1988; Greksa et al., 1988; Palomino et al.,
1978; Stinson, 1982). If the highland Andean body plan is
contingent on hypoxia exposure, Andean ancestry would
be expected to be associated with stature and limb propor-
tions among highland but not lowland children. At low
altitude, no increase in chest size would be favored; hence,
limb growth would not be sacrificed.

The purpose of this study was to examine the relation-
ship between native Andean ancestry (inferred from sur-
name analysis) and the size and proportions of the head,
trunk, limbs, and limb segments among highland and
lowland Peruvian children. We aimed to investigate which
of the hypotheses outlined best accounts for any variation
in postnatal body size and proportions associated with
Andean ancestry by evaluating the following predictions:

Hypothesis 1. If genetic adaptation to hypoxia benefits
overall growth at altitude, highland children with a
greater proportion of Andean ancestry will have a taller
stature and longer limbs;

Hypothesis 2a. If genetic adaptation to hypoxia among
native Andeans favors a larger chest at the expense of
stature and limb length, a higher proportion of Andean
ancestry will be associated with shorter stature and limbs
regardless of altitude;

Hypothesis 2b. If genetic adaptation to hypoxia among
native Andeans favors a larger chest at the expense of
stature and limb length only on exposure to hypoxia, a
greater degree of Andean ancestry will be associated with
shorter stature and limbs among highland children only.

Methods

The sample is part of that from a larger study of body
size and proportions among Peruvian children (Pomeroy
et al., 2012). A convenience sample of 447 children was
recruited from two populations. The first population was
the “pueblo joven” (shanty town) of Pampas de San Juan de
Miraflores on the south side of Peru’s capital, Lima (lati-
tude 212.0, longitude 277.0, altitude 140 m). The settle-
ment was unplanned and comprised of migrants
predominantly from highland Peru. Although it remains a
relatively low SES community, many houses are now more
substantially constructed and are connected to water and
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sewage systems (Checkley et al., 2004; Masterson Creber
et al., 2010; Miranda et al.. 2009; Sterling et al., 2012).
There are also schools and health posts in the settlement.
The highland sample came from small, rural communities
in the Vinchos and Santillana districts of Peru’s Ayacucho
Region (latitude 213.2, longitude 274.2 for Ayacucho city).
Communities were located at 3,100–4,400 m altitude, and
comprised mainly of subsistence agropastoralists (Master-
son Creber et al., 2010; Miranda et al., 2009).

Participants of the original study were aged 6 months
to 14 years, falling within specific target age groups (Pom-
eroy et al., 2012). Date of birth was confirmed using
national identity documents, birth record cards, or school
records. Participants had been born and raised in their
study region, and did not have any medical conditions,
which might compromise growth aside from general
undernutrition. A maximum of one child per household
participated in the study on a voluntary basis. A parent or
guardian provided written informed consent, and partici-
pants aged 6 years or over gave verbal or written assent.
The study was approved by the Institutional Ethics Com-
mittee at the Universidad Peruana Cayetano Heredia,
Lima, and the Health Directorate for Ayacucho Region
(Direcci�on R�egional de Salud Ayacucho, DIRESA).

Anthropometry was measured by one trained observer
(EP) following standard techniques (Cameron, 2004; Loh-
man et al., 1988). Standing and head-trunk (sitting)
heights were measured to the nearest mm with a Seca
Leicester Height Measure, or as crown-heel and crown-
rump length in children aged less than 2 years using a
Rollametre (Dunmow, UK). Total lower limb length was
calculated by subtracting head-trunk from standing height
(or crown-rump from crown-heel length). Tibia, ulna, upper
arm, hand, and foot lengths were measured to the nearest
mm using sliding callipers, and total upper limb length cal-
culated by summing ulna and upper arm length. Head cir-
cumference was measured using a 15 mm-wide nonstretch
fiberglass tape (Hoechtmass, Germany). Intraobserver
error on adult subjects gave a technical error of measure-
ment below 1% and a coefficient of reliability (R) of at least
0.97 for all measurements, which were judged to be within
acceptable limits (Ulijaszek and Kerr, 1999).

Parental surnames were used as a proxy for ancestry as
in various studies in the Andes and elsewhere (Azcorra
et al., 2013; Chakraborty et al., 1989; Colantonio et al.,
2003; Relethford, 1995). Peruvians inherit the paternal
surname of their mother and father, giving each individ-
ual two surnames, and they do not change their surnames
at marriage. Therefore, the linguistic origin of a partici-
pant’s parents’ surnames (giving 4 surnames for analysis)
can be used to infer the proportion of indigenous ancestry
of that individual. While an imperfect marker (Brutsaert,
2001; Greksa, 1992), this approach has been used success-
fully in numerous studies of Andean populations that
have aimed to relate birth characteristics to ancestry
(Bennett et al., 2008; Gonzales et al., 1996; Julian et al.,
2007; Mueller et al., 1978a; Soria et al., 2013) and the
association between native ancestry and surname origin
in the Andes has been previously validated (Chakraborty
et al., 1989). The four parental surnames of each individ-
ual were classified as “indigenous,” “mestizo,” (mixed) or
“foreign” based on their linguistic origin using a surname
dictionary complied by one of the authors (LGM).

Sex-age-specific internal z scores were calculated for
anthropometry in the combined lowland and highland

sample after fitting centiles using the LMS method (Cole
and Green, 1992), and analyses used these z scores
throughout. For the highland and lowland groups,
anthropometry z scores were regressed separately on the
number of indigenous surnames (entered as a continuous
variable, range 0–4) and potential confounding variables
using a backwards stepwise model where potential con-
founders with P< 0.1 were retained. Potential confound-
ers were altitude (highland sample only), maternal
education (an aggregate marker of SES, e.g., Jansen
et al., 2009; Kramer et al., 2000; Raum et al., 2001; van
den Berg et al., 2013; which was used as such in previous
study of Andean surnames and growth: Bennett et al.,
2008), maternal age and birth order. These variables were
included as they have previously been shown to relate to
child growth and/or body proportions (Dasgupta et al.,
2008; Hatton and Martin, 2010; Lawson and Mace, 2008;
Li et al., 2007; Li and Power, 2004; Semba et al., 2008;
Whitley et al., 2008), and because they are correlated with
the number of indigenous parental surnames in our sam-
ple. Indigenous surnames increase in frequency with alti-
tude in the Andes because European migrants arriving
from the 16th century onwards generally settled at low to
mid altitudes, and perhaps because indigenous Andeans
tend to adopt more Spanish-sounding surnames as they
acculturate (Schull and Rothhammer, 1977), while SES
and access to education decrease at higher altitude (Nier-
meyer et al., 2009; Rivera-Ch et al., 2008).

As patterns of growth are complex and transient during
puberty, analyses were restricted to children aged 6
months to 8.5 years (lowland n 5 169, highland n 5 133).
Although pubertal onset was not assessed directly, the vast
majority of children aged below 8.5 years were pre-
pubertal in a similar low SES population in the Americas
(Wilson et al., 2011). Analyses were restricted to individu-
als who had all four parental surnames recorded, as well
as all potential confounding variables for the regression
models (exclusions are detailed in Supporting Information
Table S1). Within each sample, t-tests or chi-square tests
as appropriate confirmed that there were no significant dif-
ferences between those with and without full surname
data in terms of altitude, maternal age or education, or
anthropometry z scores (height, head circumference, sitting
height, and tibia length: P> 0.05, results not shown). Anal-
yses of relative total limb, ulna, tibia hand and foot lengths
were performed by adjusting for head-trunk height z score
in the regression model. Analyses were conducted in SPSS
v.21, with P values below 0.05 considered significant.

Results

Tables 1–3 summarize the characteristics and anthrop-
ometry of the highland and lowland samples. Samples
were approximately evenly divided between males and
females. Most children had a mix of indigenous and mes-
tizo or foreign surnames, and foreign surnames were
more common in the lowland sample (Fig. 1). Seven per-
cent of highland children had four indigenous surnames,
while 9% had none, compared with 2 and 34% of lowland
children respectively (highland-lowland difference by v2:
P< 0.001). Only 6% of highland mothers had secondary
education or higher, while 19% had not attended school.
In contrast all lowland mothers had some level of educa-
tion and 77% had complete secondary education or higher
(v2: P< 0.001). Half of lowland children were first-born,
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while only 30% of highland children were first-born and
one-third were the fourth child or later born (v2:
P<0.001). Highland children had lower mean anthrop-
ometry z scores for all measurements than lowland chil-
dren (Table 3: highland-lowland differences have
P<0.001 for all measurements using t-test). Further
details of these samples and differences in anthropometry
were reported previously (Pomeroy et al., 2012, 2013,
2014).

Among highland children, more indigenous parental
surnames were associated with shorter tibia length, rela-
tive tibia length, stature, lower limb length, ulna length
and relative lower limb length (in order of decreasing
regression coefficients for number of indigenous parental
surnames: Table 4). Increased altitude was similarly asso-
ciated with shorter measurement z scores except for head-
trunk height, head circumference, and foot length. An
additional indigenous surname was associated with a 0.18
z-score decrease in tibia length, while 1,000 m increase in
altitude was associated with a 0.65 z-score decrease in

tibia length. This compares with 0.14 and 0.62 z-score
decreases in stature with the same increases in indige-
nous surnames and altitude respectively, clearly very sim-
ilar. Full details of the regression models including
potential confounders included in each model are pro-
vided in Supporting Information Table S2.

Among lowland children, anthropometry z scores were
not associated with the number of indigenous parental
surnames (Table 4, full model details in Supporting Infor-
mation Table S3).

TABLE 2. Summary statistics on parental surnames, altitude, birth order, maternal education, maternal age, and offspring anthropometry z
scores for the highland and lowland study samples

Variables Highland Lowland

Categorical n % Regression categorya n % Regression category

No. indigenous parental surnames
0 12 9 56 33
1 39 29 68 41
2 40 30 35 21
3 32 24 5 3
4 10 8 3 2

Birth order
1 40 30 84 50
2 29 22 51 31
3 19 14 20 12
41 45 34 12 7

Maternal education
None, illiterate 23 17 1 0 1
None, literate 2 2 1 0 1
Primary, incomplete 70 53 2 3 2 1
Primary, complete 30 22 3 6 4 1
Secondary, incomplete 4 3 3 29 17 1
Secondary, complete 3 2 3 68 41 2
Postsecondary, incomplete 0 0 3 25 15 3
Postsecondary, complete 1 1 3 36 22 4

Continuous Mean SD Mean SD

Maternal age at birth of child (yrs) 25.1 7.6 26.4 6.3
Median IQR

Altitude measured (m) 3,730 3,320–3,830 – –

aRegression Category” indicates how original categories were recoded for the purpose of the regression model: categories with small numbers of cases were combined.

TABLE 1. Age and sex distribution of the sample

Age group
(years)

Lowland Highland

Female
(n)

Male
(n)

Total
(n)

Female
(n)

Male
(n)

Total
(n)

0.5–1.49 14 15 29 13 13 26
1.5–2.49 16 14 30 7 10 17
2.5–3.49 13 14 27 15 11 26
3.5–4.49 13 12 25 13 14 27
5.5–6.49 16 15 31 9 13 22
7.5–8.49 14 13 27 9 6 15
Total 86 83 169 66 67 133

TABLE 3. Summary statistics for child anthropometry, giving mean
measurements at age 4 years by sex, and mean internal age-sex

adjusted z scores by site

Variable

Measurement
(in cm) at age

4 years: pooled
samplea Sex-age specific z scores

Males Females Highland Lowland

Mean SDb Mean SD Mean SD n Mean SD n

Head circumference 49.5 1.3 48.9 1.4 20.4 0.8 125 0.3 1.0 165
Stature 98.1 5.0 97.2 5.2 20.8 0.7 133 0.7 0.7 167
Head-trunk height 57.9 2.5 57.3 2.7 20.6 0.8 131 0.5 0.9 167
Total upper limb

length
33.7 2.3 33.4 2.5 20.9 0.7 106 0.6 0.7 154

Ulna length 14.7 1.0 14.5 1.1 20.9 0.7 108 0.6 0.7 163
Hand length 11.3 0.7 11.3 0.7 20.8 0.7 103 0.5 0.8 156
Total lower limb

length
40.3 3.0 39.9 3.0 20.8 0.8 131 0.7 0.7 167

Tibia length 19.4 1.7 19.3 1.6 20.9 0.7 116 0.7 0.6 162
Foot length 15.5 1.0 15.3 1.0 20.7 0.7 116 0.6 0.8 163

aDerived from LMS model (Cole and Green, 1992) for the full dataset.
bSD: standard deviation.
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Discussion

Our results indicate that a greater number of indige-
nous parental surnames was associated with reduced
stature and the lengths of the tibia, lower limb and ulna,
but not head circumference or hand and foot lengths,
among highland children after adjusting for relevant fac-
tors including altitude. The strongest associations were
observed with tibia length. In contrast, there were no
such associations among lowland children. Among high-
land children, anthropometry was negatively associated
with higher altitude independent of the number of indige-
nous surnames. We considered that these results were
most consistent with Hypothesis 2b; namely, that acceler-

ated chest growth at altitude, dependent both on hypoxia
exposure and augmented by Andean ancestry, results in
reduced growth elsewhere in the body (see Introduction).
While this is consistent with what others have proposed
(Frisancho, 2013; Frisancho et al., 1975b; Mueller et al.,
1978a; Pawson and Huicho, 2010), we lacked chest size
data to test this directly. The strongest associations with
ancestry among highland children were for tibia length,
consistent with previous studies that suggest that tibia
length is particularly sensitive to environmental condi-
tions (see Introduction). This pattern of results supports
the interpretation that ancestry-related differences in
body dimensions result from a growth trade-off at alti-
tude. The results were not consistent with an adaptation
among native Andeans that promotes greater height and
longer limbs at altitude (Hypothesis 1). The lack of associ-
ation between ancestry and height or body proportions
among lowland children does not suggest that reduced
stature and limb lengths is a general characteristic of
Andeans regardless of altitude (Hypothesis 2a).

If accelerated chest growth among high-altitude
Andeans represents an adaptation to reduce tissue
hypoxia (Frisancho, 2013; Frisancho et al., 1975b; Mueller
et al., 1978a; Pawson and Huicho, 2010), it does not seem
to lead to increased growth and stature. Any advantage in
terms of body size may only be achieved once growth is
complete, since growth velocity has been noted to be
slower at high altitude (Frisancho, 1976). Some studies
indicate that increased chest size relative to stature is
more marked in children than adults (Hoff, 1973; Mueller
et al., 1978a,1978b; Palomino et al., 1978), suggesting
that height “catches up” with chest growth later in devel-
opment. Alternatively, the larger chest dimensions of
highland Andeans are associated with improved lung
function (Frisancho, 1969; Mueller et al., 1978b; Whit-
taker, 1992: but see Brutsaert et al., 1999; Tarazona-
Santos et al., 2000) and so may improve work efficiency
rather than impacting growth. Finally, others have sug-
gested that only the most nutritionally-stressed Andean
populations show increased chest growth (Pawson and

TABLE 4. Results of regression models of anthropometry z scores on the number of indigenous parental surnames among highland and lowland
Peruvian children, adjusting for potential confounding variables

Measurement z score

Highland Lowland

Altitude (km) Number of indigenous parental surnames

Number of indige-
nous parental

surnames

B P B Standard error (B) P B P

Tibia length 20.65 <0.001 20.18 0.05 0.002 0.03 0.6
Relative tibia length 20.49 0.001 20.13 0.05 0.005 20.004 0.9
Lower limb length 20.66 0.001 20.16 0.06 0.01 20.02 0.7
Stature 20.62 0.001 20.14 0.06 0.01 0.04 0.5
Ulna length 20.72 <0.001 20.12 0.05 0.03 0.01 0.9
Relative lower limb length 20.57 0.002 20.12 0.06 0.04 20.04 0.5
Head-trunk height ns 20.12 0.06 0.06 0.08 0.3
Head circumference ns 20.11 0.07 0.08 20.03 0.7
Relative ulna length 20.49 0.001 20.08 0.04 0.09 20.02 0.7
Upper limb length 20.61 0.001 20.09 0.06 0.1 0.02 0.7
Hand length ns 20.09 0.06 0.2 20.03 0.7
Foot length 20.37 0.07 20.09 0.06 0.2 20.02 0.7
Relative upper limb length 20.40 0.003 20.05 0.05 0.5 20.01 0.8

Bold indicates P<0.05. Blank cells denote variable excluded from model as P<0.1.
See Supporting Information Tables S2 and S3 for details of confounders for highland and lowland samples respectively. Variables are ordered in the table by P values
for number of indigenous surnames among highland children.

Fig. 1. Numbers of indigenous parental surnames among highland
and lowland Peruvian children in the sample.
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Huicho, 2010; Pawson et al., 2001), but the relationship
between nutritional status, chest size and linear growth
remains to be directly tested.

Alternative explanations for our findings include the
possibility that differences in limb and body proportions
are due entirely to genetic factors. This would seem
unlikely given that, while worldwide population differen-
ces in body size and proportions are thought to include a
genetic component (Eveleth and Tanner, 1990), it prob-
ably accounts for only a small proportion of global varia-
tion in relative sitting height (head-trunk height relative
to stature: �3.6%: Bogin et al., 2001). Furthermore, differ-
ences in relative limb proportions are greater between
populations of European vs. African or Australian ances-
try than between those of European vs. Asian (including
native American) ancestry (Bogin et al., 2001; Feldesman
and Fountain, 1996; Stinson, 2009), and most migrants to
Peru have come from Europe (Bigham et al., 2008; San-
chez et al., 2010).

Whether Andean ancestry is associated with genetic dif-
ferences in body proportions has not been extensively
studied. Adaptation to cold climates (e.g., Trinkaus, 1981)
or moving over steep terrain (e.g., Higgins and Ruff, 2011)
has been proposed to result in relatively shorter limbs and
especially distal limb segments (tibia), but evidence for
such relationships among highland Andeans is lacking.
The Multinational Andean Genetic and Health Program
studies of north Chilean Aymara-speakers gave contradic-
tory results regarding the relationship between ancestry,
altitude, and body size and proportions (Mueller et al.,
1978a; Palomino et al., 1978). Stinson (2009) investigated
stature and relative sitting height among poorer rural and
wealthier urban Bolivian children aged 8–13. Although
ancestry, nutrition, SES and time spent at altitude were
related and difficult to separate, she suggested that Boliv-
ian ancestry (parents born in Bolivia) and time at altitude
might both be associated with relatively shorter legs
within the wealthier urban sample, although the relative
influences of multiple factors could not be assessed. Varia-
tion with ancestry was not investigated within her rural
sample. The relationships between these different envi-
ronmental characteristics, ancestry, and body size and
proportions thus also remain to be elucidated.

The lack of any relationship between growth measures
and parental surnames among lowland children in our
study suggests that the variation in body size and propor-
tions with inferred ancestry among highland children may
result from gene-environment interactions, although this
interpretation has to be cautious. Acculturation, associated
with the tendency to Hispanicize indigenous surnames
(Schull and Rothhammer, 1977), is greater in lowland com-
munities and the lowland sample likely represents a
greater mix of different indigenous populations than the
highland sample, since the settlement comprises migrants
from various rural highland regions of Peru (Checkley
et al., 2002), as well as a small contingent from the coast
and Amazon. Although the majority of children in the low-
land sample were likely to have been of largely highland
Andean ancestry, we can neither confirm this objectively
nor exclude a genetic difference in body proportions
between the highland and lowland samples that is not
environment-dependent. Another potential explanation for
our results among highland children is that parental sur-
names are related not only to ancestry but also to other
environmental variables like SES, which the available

variables may not have controlled for adequately. This pos-
sibility also requires further investigation.

Whether high-altitude neonates show any relationship
between body size and proportions and Andean ancestry
is unclear. While the effects of Andean ancestry on birth
weight at altitude are consistent across studies, few con-
sider differences in other neonatal anthropometry. Birth
length, head circumference, limb lengths, skinfold thick-
nesses and weight are generally reduced at altitude (Gius-
sani et al., 2001; Haas, 1976; Haas et al., 1977, 1980;
McClung, 1969; Mortola et al., 2000; Soria et al., 2013).
Haas et al. (1980) suggested that the decrease in crown-
heel length with altitude was greater among neonates of
European compared with Andean ancestry, though Sor�ıa
et al. (2013) did not replicate this finding.

Other studies demonstrate a positive association
between birth weight and adult height and weight (Eide
et al., 2005; Sørensen et al., 1999; Yliharsila et al., 2007),
so the apparent loss of this early growth advantage among
children of Andean ancestry at altitude requires explana-
tion. It may reflect the fact that higher birth weight at
altitude among Andeans results from maternal physiolog-
ical adaptations, including greater maternal uterine
artery blood flow, which is augmented in the third trimes-
ter by �36% (Julian et al., 2008; but see Postigo et al.,
2009; Wilson et al., 2007; Zamudio et al., 2007), and
increased resting respiratory rate (Vargas et al., 2007)
compared with non-Andean mothers.

Higher birth weight is also positively associated with
neonatal survival (except at extremely high birthweight:
Karn and Penrose, 1951; Wilcox and Russell, 1983), there-
fore the greater birth weight associated with Andean
ancestry may confer benefits in early postnatal survival
at altitude rather than growth. Such a survival advantage
has been shown for Tibetan (high-altitude native) vs. Han
Chinese (recent migrants) at high altitude (Moore et al.,
2001). Greater fat mass rather than lean mass may be key
to early infant survival at altitude (Wiley, 1994), and new-
borns at altitude in Denver, Colorado have reduced subcu-
taneous fat but not lean mass, head circumference or
femur length (Galan et al., 2001). This may suggest that
fat mass is disproportionately affected by high-altitude
gestation. In a Bolivian high-altitude sample, surname–
inferred Andean ancestry was associated with greater
birth weight but no difference in length compared with
European ancestry, which would be consistent with
greater fat accrual among Andean neonates at altitude,
although direct data on body composition were unavail-
able and differences in ponderal index insignificant (Soria
et al., 2013). If the greater birth weight of highland
Andean infants reflects greater fat rather than lean mass,
this could explain the positive effects of Andean ancestry
on birth weight but not postnatal height and lower limb
length in the highlands.

Strengths of our study include the detailed anthropom-
etry, including limb segment lengths, which allowed us to
investigate in greater detail the relationship between
body proportions and ancestry than is possible in many
studies. Furthermore, while a large number of studies
have considered ancestry in relation to neonatal anthrop-
ometry, few have considered the relationship between
ancestry and body size or proportions in infants and chil-
dren. Unfortunately, we were unable to explore whether
the associations between anthropometry and ancestry
might reflect trade-offs with chest growth, or whether
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they persist into adulthood. Investigating these problems
in the future would help to shed light on the nature and
cause of differences in body size and proportions by ances-
try in the Andean highlands. Furthermore, our data were
cross-sectional, and therefore we were unable to assess
longitudinal differences in body size, proportions, and
growth patterns according to ancestry in our samples.

The use of genetic data rather than surnames (which
are less accurate markers of ancestry) would also serve to
elucidate the nature of links between ancestry and body
size and proportions. While Chakraborty et al. (1989)
showed that the number of indigenous surnames corre-
lated with genetic markers of Andean ancestry, their
study considered north Chilean and Bolivian populations
only, reported a limited range of markers (as expected for
a study of its date), and showed that even those with no
indigenous parental surnames had a significant propor-
tion of Andean admixture. Those with no indigenous sur-
names had on average 64% “native American” loci,
compared with 85% for those with 1–2 indigenous names,
and 89% for those with 3–4. A more recent study of high-
land and lowland Bolivian women similarly showed a
good correspondence between surnames and genetic
indigenous or European ancestry using over 100 Ancestry
Informative Markers (AIMs) (Julian et al., 2009). While
the relationship has not been directly tested in our study
samples, it is likely that surnames provide a reasonable
proxy for ancestry in our analyses.

In conclusion, greater Andean ancestry (inferred from
numbers of indigenous parental surnames) was nega-
tively associated with anthropometry among highland,
but not lowland, Peruvian children. In particular, high-
land children with more indigenous parental surnames
had significantly shorter tibia length (absolutely and rela-
tive to trunk length), lower limb length, ulna length, and
stature. Within the highland sample, altitude also showed
a negative relationship with anthropometry z scores, and
the ancestry and altitude associations with anthropome-
try in the highland sample were independent. The results
suggested that the effect of indigenous Andean ancestry
on increasing birth weight at altitude as demonstrated in
other studies does not translate into larger postnatal body
size. Previously proposed trade-offs between stature and
chest size, contingent on Andean ancestry and exposure
to hypoxia, may explain the pattern of results, but we
were unable to test this hypothesis directly.
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