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Abstract: (Tl2O3)30-(Li2O)10-(B2O3)(60−y)-(Sm2O3)y glass system with various Sm2O3 additives
(y = 0, 0.2, 0.4, 0.6) was studied in detail. The vibrational modes of the (Tl2O3)30-(Li2O)10-(B2O3)(60−y)

network were active at three composition-related IR spectral peaks that differed from those mixed
with Samarium (III) oxide at high wavenumber ranges. These glass samples show that their per-
meability increased with the Samarium (III) oxide content increase. Additionally, the electronic
transition between localized states was observed in the samples. The MAC, HVL, and Zeff values for
radiation shielding parameters were calculated in the energy range of 0.015–15 MeV using the FLUKA
algorithm. In addition, EBF, EABF, and ΣR values were also determined for the prepared glasses.
These values indicated that the parameters for shielding (MAC, HVL, Zeff, EBF, EABF, and ΣR) are
dependent upon the Samarium (III) oxide content. Furthermore, the addition of Samarium (III) oxide
to the examined glass samples greatly reinforced their shielding capacity against gamma photon.
The findings of the current study were compared to analyses of the XCOM software, some concretes,
and lead. In the experiment, it was found that the SMG0.6 glass sample was the strongest shield.

Keywords: Sm-B2O3 glass; optical property; radiation attenuation property; MC simulation

1. Introduction

Radioactivity is created by naturally occurring radioactive sources. These radioactive
sources are found in the Earth’s crust (soil, air, water, plants, and other creatures). Ra-
dioactivity is emitted by human activity and is used in various fields, such as medicine,
industry, agriculture, livestock, daily-use products, research, and nuclear power [1]. Since
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radiation was first identified as harmful to humans, scientists began to take precautions
against it, especially penetration by higher intensity gamma radiation. A radiation dosage
should be kept as low as possible; for this purpose, dense shielding fabrics have been
used for hazardous waste, industrial waste, and biological waste. The most frequently
used metal is lead because of its density and high atomic number. There are various types
of lead material, such as dust and glass [2]. Pure Pb is smooth and hard, but its major
disadvantages include toxicity, weight, and secondary ionizing radiation. Since lead is not
biologically inert, its toxic effect cannot be eliminated. The evolution of high-performance
radiation facilities is critical for radiation protection, especially for consolidated systems
and mobile equipment such as naval nuclear propulsion systems, wagon-mounted neutron
sources, space-based nuclear power reactors, and other sophisticated nuclear systems [3,4].
The main purpose of using a radiation shield is to reduce radiation emission and, for this
reason, a shield must be put around nuclear facilities [5]. Since space in nuclear facilities is
limited, the shield must be reinforced, light, and specific [6]. Major factors in the physical
features of materials are their chemical composition, bonding forces, and density [7]. As
concrete has various benefits (ease of fabrication and low cost), it is widely used for ra-
diation safety. Unfortunately, these materials are prone to cracking over time due to the
stresses generated by stretching. Moreover, these cracks are invisible [8]. Glass materials
have been suggested as an alternative material for protection from radiation because they
resist the defects in lead materials. Glass materials stand out in many applications due to
their high transparency, high chemical resistance, and good radiation-protection properties.
Because of their super absorption of gamma radiation, glass materials that contain lead (Pb)
are commonly used in radiation safety applications [9]. However, as Pb is environmentally
and biologically harmful, glass products without Pb must be used as a substitute [10].
Glass-forming oxides like borates are commonly used in technological applications. Borate
is one of the top mineral glass materials, as it helps glass solidify and improve glass quality
through improved clarity, refractive index, and rare earth ion solubility and hardness.
Samarium (Sm), a rare-earth ion, can be used as an additive in various crystal hosts and
can also be utilized as a glass host for intense emissions in the visible region. Samarium
has a high neutron absorption capacity. On the other hand, Li2O-Lithium oxide, one of the
oxides used in glassmaking, is a plasticizer. Li2O is especially preferred in the production
of special glasses and is widely used as a regulator in glass production. In addition, Tl2O3
has photocatalytic and thermochromic properties. It absorbs visible light, has a moderate
electrical conductivity, and can function as a transparent conductor [11]. Therefore, the
Sm2O3-B2O3-Tl2O3-Li2O glass sample has been investigated as a potentially promising
glass system in gamma ray and neutron radiation shielding. All technical details of the
study and its experimental and theoretical basis are explained later in this article. It should
be emphasized that the findings of this study may be applicable to future uses of the glass
types tested and investigated for nuclear radiation protection. In addition, as can be clearly
seen from the obtained results, the positive effect of Samarium (III) oxide addition on the
nuclear shielding performances of the examined SMG0.0, SMG0.2, SMG0.4, and SMG0.6
glass samples are understood more clearly.

2. Methods and Materials

Glass samples in the (Tl2O3)30-(Li2O)10-(B2O3)(60−y)-(Sm2O3)y system, where y values
are given as 0, 0.2, 0.4, and 0.6 wt.%, were equipped by use of melt quenching technique at
1200 ◦C in an electric furnace in a porcelain pot. After this, the dry oxygen was bubbled for
2 h. Then, these mixtures were poured into stainless steel molds and allowed to cool to
form flat, round shapes. After the quenching process was completed, the glasses had to be
cooled to room temperature. Initially, annealing was carried out at a temperature under
the transition temperature of the proposed glass system for 3 h at 300 ◦C to reduce thermal
stress (Figure 1).
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material or vacuum; the materials can be simple elements or compounds. In the entry file, 
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a Pb-cylindrical collimator with an outer diameter of 12 cm, an interior diameter of 0.2 cm 
and a length of 13 cm. There are many types of detectors in FLUKA; USRBDX, USRBIN, 
USRTRACK, USRYIELD are the most widely used detector types. A USRTRACK score-
card defined the NaI area as the track length variation. USRTRACK is used to obtain en-
ergy spectra depending on each track length selected during the tracking of particles 
within a region. It is also possible to determine the average differential flux of particles 
within the region. According to the statistical error (<1%), the total number of primary 
photons simulated ranged between 10 and 20 million. The scattering of a photon inside 
the volume of the detector was determined using a USRBIN card. USRBIN is used to cal-
culate the energy stored in a particular region, known as integrated fluxes. It provides 
results with three-dimensional, full-color images. A BEAM card was then used to charac-
terize the particle shape and energy. A BEAM card was created to determine the beam 
source in this investigation to establish a monoenergetic photon (0.2 cm in diameter) at 
energy values of 0.081, 0.356, 0.662, 1.173, and 1.33 MeV. Additionally, a BEAMPOS card 
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dinates of the beam spot center and the beam direction are defined on the BEAMPOS card 
[14–16]. At low energy levels, the photon transmission power reduction was regulated to 
a value of 10−7 GeV using an EMFCUT card. EMFCUT contributes to the determination of 
both the energy thresholds for electron and photon creation in various materials and the 
interruptions in electron and photon transit in specified locations. The cylindrical shape, 

Figure 1. Fabricated (Tl2O3)30-(Li2O)10-(B2O3)(60−y)-(Sm2O3)y glass system.

The Archimedes principle was used to determine the molar volume and density of the
processed samples. The weight measurements of these samples were produced in toluene
and air (at room temperature ρliq = 0.866 g/cm3) with a 4-digit precision microbalance. At
room temperature, the absorbance (A) value was determined using a Shimadzu UV-2101
spectrometer (Kyoto, Japan) over a wavelength range of 190–1100 nm. FLUKA is one
of the Monte Carlo radiation transport programs [12]. It is a multipurpose Monte Carlo
program developed to calculate particle transport and the interaction of particles with
matter. FLUKA has the ability to simulate electromagnetic and hadronic interactions and
particle transport in any target material. Each command contains one or more lines [13].
This line is also called the card. Each geometric region is covered with a homogeneous
material or vacuum; the materials can be simple elements or compounds. In the entry file,
the materials are identified with the MATERIAL entry card. Here, the atomic number of the
materials, their atomic mass, density, and the name of the material are given. If the material
used is a compound, the COMPOUND card must be attached to the MATERIAL card.
The density, name, and number of the compound are then written to the entry file. The
purpose of FLUKA and similar Monte Carlo simulation codes is to analyze the interactions
of charged particles or radiation with matter. The interactions of primary particles, entering
the system by passing through various materials, are calculated individually during the
simulation and obtained depending on the ‘detector’ cards specified in the user’s input
file. A cylindrical-shaped NaI scintillation detector (3 inches × 3 inches) was put in a
Pb-cylindrical collimator with an outer diameter of 12 cm, an interior diameter of 0.2 cm
and a length of 13 cm. There are many types of detectors in FLUKA; USRBDX, USRBIN,
USRTRACK, USRYIELD are the most widely used detector types. A USRTRACK scorecard
defined the NaI area as the track length variation. USRTRACK is used to obtain energy
spectra depending on each track length selected during the tracking of particles within
a region. It is also possible to determine the average differential flux of particles within
the region. According to the statistical error (<1%), the total number of primary photons
simulated ranged between 10 and 20 million. The scattering of a photon inside the volume
of the detector was determined using a USRBIN card. USRBIN is used to calculate the
energy stored in a particular region, known as integrated fluxes. It provides results with
three-dimensional, full-color images. A BEAM card was then used to characterize the
particle shape and energy. A BEAM card was created to determine the beam source in this
investigation to establish a monoenergetic photon (0.2 cm in diameter) at energy values of
0.081, 0.356, 0.662, 1.173, and 1.33 MeV. Additionally, a BEAMPOS card was created to adjust
the beam source direction and location in the plus z-axis. The coordinates of the beam spot
center and the beam direction are defined on the BEAMPOS card [14–16]. At low energy
levels, the photon transmission power reduction was regulated to a value of 10−7 GeV
using an EMFCUT card. EMFCUT contributes to the determination of both the energy
thresholds for electron and photon creation in various materials and the interruptions in
electron and photon transit in specified locations. The cylindrical shape, with a diameter of
4 cm and thicknesses ranging over 0.02–0.2 cm, was employed to simulate glass samples.
The samples were sorted based on RPP body shape. The rectangular parallelepiped-
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RPP is illustrated by six numbers called X-axis, Y-axis, and Z-axis, and defined by the
perpendicular sides. Best results were achieved using +5 cm and −5 cm values for Xmax
(Ymax) and Xmin (Ymin) [17]. As a consequence, a target material 15 cm in length and
width was developed in varying thicknesses, and it was named Zmax and Zmin. The
detector chamber was then filled with photons that interacted with the sample. A Pb
collimator was added to obscure the scattering photons. However, the FLUKA algorithm
was used to forecast MAC values by obtaining both the number of photons traveling
through the material and the starting photon count in the detector volume. Additionally,
USRBIN was used as a detector card, allowing the estimation of photon flux inside detector
volume (Figure 2).
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3. Results and Discussion
3.1. Investigations on Structural Properties

The vibration-manners of the 60B2O3-30Tl2O3-10Li2O glass system are effective at
three different IR spectral peaks in the high range of wavenumber (Figure 3).

These values are 1035-1643-3434 cm−1, respectively. The wavenumber range between
850–1200 cm−1 is related to the B–O stretching of tetrahedral BO−

4 units [18–20]. The peak
absorption of 1643 cm−1 is related to the H–O–H bending mode and crystal water [21]. On
the other hand, wide composite bands near the infrared region (3200–3800 cm−1) originate
from the hydroxyl or B-OH groups found in the samples [22,23]. A new peak representing
Sm-O bonds appeared in the glass system (Tl2O3)30-(Li2O)10-(B2O3)(60−y)-(Sm2O3)y (y = 0.2,
0.4, 0.6) at 2355 cm−1, as shown in Table 1.
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Table 1. IR band of (Tl2O3)30-(Li2O)10-(B2O3)(60-y)-(Sm2O3)y (y = 0, 0.2, 0.4, 0.6) glass samples.

Code SMG0.0 SMG0.2 SMG0.4 SMG0.6 IR Band Assignments Reference

IR band
positions

1035 1049 929 1049 (B–O stretching of
tetrahedral BO−

4 units) [24]

1643 1643 1643 1643
Crystal water with
H−O−H bending

mode
[25]

3434 3434 3434 3434 B–OH [25]
- 2355 2342 2355 Sm–O [26]

3.2. Investigations on Optical Properties

Figure 4 shows the absorbance of the samples in the(Tl2O3)30-(Li2O)10-(B2O3)(60−y)-
(Sm2O3)y (y = 0, 0.2, 0.4, 0.6) glass system over 400–1100 nm. As seen, absorbance decreases
with increasing Samarium (III) oxide contribution. The transmittance (T) spectra are
shown in Figure 5 to vary depending on the wavelength values in the (Tl2O3)30-(Li2O)10-
(B2O3)(60−y)-(Sm2O3)y (y = 0, 0.2, 0.4, 0.6) glass system with different doping rates. Addi-
tionally, in Figure 5 it is apparent that as Sm2O3 contribution increases the transmittance
values also increase. This increase is observed more clearly at wavelengths longer than
600 nm. In the examined glass samples, an increase of 15% to 30% is observed in the
transmittance values, with the Samarium (III) oxide weight content increasing from 0% to
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0.6%. Rare earth oxides have a desired effect on the optical properties in the glassy systems,
as glass transparency increases positively with the ratio of rare earth oxides in the glass.
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The absorption coefficient α of the proposed glass system samples, depending on the
absorbance values (A), is calculated with the help of the following equation [27]:

α = 2.303
A
t

(1)

In Equation (1), t shows the film thickness. The modification of the absorption coef-
ficient (α) with incident photon energy (hv) for glass samples in the (Tl2O3)30-(Li2O)10-
(B2O3)(60−y)-(Sm2O3)y system is depicted in Figure 6. As the content of Samarium (III) oxide
in the solution increases, α value decreases, and the edges become extremely energized.
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The extinction coefficient can be determined using (k) that is increasing exponen-
tially [28]:

k =
αλ

4π
(2)

The dispersive absorption index for the (Tl2O3)30-(Li2O)10-(B2O3)(60−y)-(Sm2O3)y
(y = 0, 0.2, 0.4, 0.6) glasses is shown in Figure 7. The action of k increases graphically
with wavelength values, as shown in the diagram. At a particular temperature, the values
of the absorption coefficient at the absorption edge follow the empirical Urbach law, which
is given by the equation [21]:

α = αoe
hν
Eo (3)

where αo and Eo are the constant and the width of localized states, respectively. The plots
of ln(α) vs. incident photon energy (hν) (Tl2O3)30-(Li2O)10-(B2O3)(60−y)-(Sm2O3)y (y = 0,
0.2, 0.4, 0.6) glass system are shown in Figure 8. As Samarium (III) oxide contribution
increases in glass samples, there is a decrease in ln(α) values. Additionally, the graphic
demonstrates that the electronic transition between states is accurate in the (Tl2O3)30-
(Li2O)10-(B2O3)(60−y)-(Sm2O3)y glass samples.

3.3. Investigations on Nuclear Radiation Shielding Competencies

Figure 9 illustrates the density values (ρ) of the glass samples as a function of the
Samarium (III) oxide addition. According to the measurements, as Samarium (III) oxide
content increases, an increase is observed in density values. The density variation is
explained by a rise in the amount of high density Sm in glass samples, while the amount
of boron drops. The MAC values of the examined glass samples named SMG0.0, SMG0.2,
SMG0.4, and SMG0.6 in the 0.015–15 MeV photon energy range, as calculated by the XCOM
program, were compared with the FLUKA simulation code, as shown in Figure 10. As
seen in Figure 10, the MAC values drop as photon energy levels increase. Additionally,
a sharp increase in MAC values is found in the low energy zone (0.081 MeV), which is
consistent with the effects of photoelectric supremacy in this range. In addition, cross-
sectional values in this region are proportional to the Z4/E3.5 values [29]. Conversely, as
we move towards the medium energies, a gradual decrease occurs due to the Compton
effect. In addition, as Samarium (III) oxide contribution to glass samples is increased, the
MAC values increase. The obtained results show that the XCOM and FLUKA results were
consistent with each other, and this compliance is shown more clearly in Figure 11. As
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seen in Figure 11, the largest relative discrepancy between FLUKA (simulation) and XCOM
findings is around 8%.
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In order to determine the shielding properties of glass samples, HVL, TVL, and MFP
values are crucial. By measuring the shielding potential of the different glass samples,
glasses with the lowest HVL, TVL, and MFP values are shown to have the highest degree
of shielding. The formulas are given by the following equations of µ coefficients [30]:

HVL =
ln(2)

µ
(4)

TVL =
ln(10)

µ
(5)

MFP =
1
µ

(6)
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The HVL values of the glass samples SMG0.0, SMG0.2, SMG0.4, and SMG0.6 are
shown in Figure 12 according to the photon energy values and considered Samarium (III)
oxide contributions. These values are also shown in Table 2. It is clear that the change in
HVL values is significantly dependent on the Samarium (III) oxide content. HVL values
decrease as Samarium (III) oxide content increases, as expected. According to the results
obtained, the glass sample SMG0.6 has the lowest HVL value. Conversely, as the energy
values of gamma photons increase, an increase is observed in HVL values. Clearly, the
SMG0.6 glass sample is the most effective of the glass samples considered in this work in
reducing gamma radiation.
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The HVL values of the SM0.6 glass sample, which has the best shielding performance,
are compared to those of many other materials, as shown in Figure 13. These materials
are widely used in nuclear applications as protective materials. The brief order of the
materials mentioned above can be listed as O-C (ordinary-concrete), lead (Pb), H-S-C
(hematite-serpentine-concrete), I-C (ilmenite-concrete), I-L-C (ilmenite-limonite-concrete),
and S-S-C (steel-scrap-concrete) [31]. As seen in Figure 13, the HVL values of the SM0.6
glass sample are lower than those of HS-C, O-C, I-C, I-L-C, and S-S-C. Compared to lead, it
has better shielding properties.
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Table 2. The results of the mean free path-MFP and Tenth value layer -TVL of the studied samples.

E
(MeV)

TVL MFP

SMG0.0 SMG0.2 SMG0.4 SMG0.6 SMG0.0 SMG0.2 SMG0.4 SMG0.6

0.015 0.01189 0.01181 0.01172 0.01165 0.00516 0.00513 0.00509 0.00506
0.02 0.02148 0.02135 0.02121 0.02108 0.00933 0.00927 0.00921 0.00916
0.03 0.06211 0.06172 0.06133 0.06096 0.02697 0.02680 0.02663 0.02648
0.04 0.13194 0.13111 0.13033 0.12955 0.05730 0.05694 0.05660 0.05626
0.05 0.23451 0.23041 0.22632 0.22251 0.10185 0.10007 0.09829 0.09663
0.06 0.37029 0.36391 0.35745 0.35151 0.16081 0.15805 0.15524 0.15266
0.08 0.72806 0.71634 0.70504 0.69406 0.31619 0.31110 0.30619 0.30143
0.1 0.31915 0.31718 0.31502 0.31316 0.13861 0.13775 0.13681 0.13600

0.15 0.80731 0.80257 0.79774 0.79325 0.35061 0.34855 0.34645 0.34450
0.2 1.44666 1.43895 1.43132 1.42403 0.62828 0.62493 0.62161 0.61845
0.3 2.76378 2.75246 2.73964 2.72748 1.20029 1.19538 1.18981 1.18453
0.4 3.85814 3.84146 3.82491 3.80926 1.67557 1.66833 1.66114 1.65434
0.5 4.72270 4.70144 4.68495 4.66953 2.05104 2.04181 2.03465 2.02795
0.6 5.43153 5.41119 5.39160 5.37264 2.35889 2.35005 2.34154 2.33331
0.8 6.58785 6.56466 6.54164 6.52011 2.86107 2.85100 2.84100 2.83165
1 7.55066 7.52408 7.49769 7.47420 3.27921 3.26767 3.25621 3.24600

1.5 9.48661 9.45509 9.42380 9.39279 4.11998 4.10629 4.09270 4.07924
2 10.93258 10.89410 10.85589 10.82017 4.74796 4.73125 4.71465 4.69914
3 13.04279 12.99334 12.94777 12.90165 5.66441 5.64294 5.62314 5.60312
4 14.48409 14.42874 14.37379 14.31783 6.29036 6.26632 6.24246 6.21815
5 15.48752 15.42302 15.35899 15.29857 6.72615 6.69813 6.67033 6.64408
6 16.18436 16.11104 16.04369 15.97472 7.02878 6.99694 6.96769 6.93773
8 16.98294 16.89917 16.82201 16.74295 7.37560 7.33922 7.30571 7.27137
10 17.29608 17.21031 17.12522 17.04430 7.51159 7.47434 7.43739 7.40225
15 17.23377 17.13608 17.04534 16.95276 7.48453 7.44210 7.40270 7.36249
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The Zeff values, dependent on the photon energy of the examined glass samples, are
given in Figure 14. Zeff values indicate the radiation absorption capacity of a glass sample.
An increase in Zeff values is evident from SMG0.0 to SMG0.6. In addition, Zeff values
behave differently depending on the processes of interactivity between photons and matter.
The Zeff values for glass samples are greater than threshold in the low-energy zone, and
glass sample peaks occur around the Tl K-edge. The Zeff energy dependence decreases
when the crossover approaches the medium and high energy ranges. The Zeff values for the
SMG0.6 glass sample differ in the range of 10 to 33. Appropriate assays were built to collect



Nanomaterials 2021, 11, 1713 12 of 16

data to assess the buildup variables. The differences found in the examined glass samples
are seen in Figures 15 and 16, based on energy values and different penetration depth (1, 5,
10, 20, and 40 mfp). As shown in Figures 15 and 16, three particle-photon interactions
affected the EBF and EABF counts. For the SMG0.0, SMG0.2, SMG0.4, and SMG0.6 samples,
in the low energy region of 0.015 MeV to 0.1 MeV, the EBF and EABF energies are highest
since Tl K-absorption spectrum lies in this region. Although EAF values are steady between
0.2 MeV and 7 MeV energy values, they rise more rapidly after 6 MeV (particularly at
high penetration depths). It is demonstrated that at intermediate energies where Compton
scattering occurs, the EBF and EABF glass sample values change proportionally to Zeq
(Figures 15 and 16.) Photon buildup is small for an SMG0.6 glass sample with maximum
Zeq values. Between 7 MeV and 15 MeV, the EBF and EABF values of the examined samples
increased more rapidly, owing to the dominance of pair production and its dependence on
Z2 [32]. Figures 15 and 16 display substantially higher EBF and EABF values as penetration
depth (1–40 MFP) increases. This suggests an improved sample thickness in secondary
photons. The SM0.6 sample has the minimum EBF and EABF values at moderate energy,
which is critical for radiation applications, while the SMG0.0 sample exhibited the highest.
This demonstrates that the sample SMG0.6 is more successful at absorbing gamma radiation
than other samples.
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The effective removal cross section (ΣR) values of each glass sample were determined
for fast neutrons. The glass samples were classified according to their MAC values. It
is recognized that glass samples with high ΣR values provide greater neutron radiation
safety. The energy lost by charged particles slows as they move through the substance, and
this result is owed to the kinetic energy shifts of the particles; with lowered energy losses,
the rate of ionization increases. It is important to determine whether the studied materials
can withstand the impact of high-energy charged particles [17,33]. The measured effective
removal cross-section values (ΣR) for all glass samples analyzed are shown in Figure 17.
As the number of protons in the material increases, the neutron shielding ability of the
material decreases. According to Figure 17, as expected, 0.6% of glasses containing the
highest concentration of Samarium (III) oxide has the highest defense against neutrons.
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ide) has a high capacity for radiation shielding. The research hypothesized that increasing 
the Samarium (III) oxide contribution would greatly improve the produced glass samples’ 
radiation attenuation and optical properties. As a result, our findings confirm the hypoth-
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4. Conclusions

The effect of Samarium (III) oxide content on the optical properties of the glass sample
(Tl2O3)30-(Li2O)10-(B2O3)(60−y)-(Sm2O3)y (y = 0, 0.2, 0.4, 0.6) was shown. The SMG0.0
glass system was found to have three peaks. For x = 0.2, 0.4, 0.6 at 2355 cm−1, referred
to in Sm-O bonds, a new fourth measurable peak emerged. For the glass device with
increasing Samarium (III) oxide, an improvement of the optical transmission was observed.
At incident wavelengths longer than 600 nm, this rise was clearly seen. In addition, MAC
values in the 0.015-15 MeV photon energy range were obtained using the XCOM program
with FLUKA code. Using MAC values, the HVL, Zeff, Zeq, EBF, and EABF values were
estimated. As the results demonstrate, the small increase in Samarium (III) oxide content
in the glass samples also caused a small increase in the MAC and Zeff values. However,
as Samarium (III) oxide contribution increased, HVL, EBF, and EABF values decreased,
and MAC, Zeff, and Zeq values increased. These findings indicated that adding Samarium
(III) oxide to glass samples improved their gamma shielding characteristics. As a result,
it may be proposed that SM0.6 (which includes the greatest concentration of Samarium
(III) oxide) has a high capacity for radiation shielding. The research hypothesized that
increasing the Samarium (III) oxide contribution would greatly improve the produced glass
samples’ radiation attenuation and optical properties. As a result, our findings confirm
the hypothesis in terms of progress toward enhancing the nuclear radiation shielding
characteristics of synthesized glasses in a manner consistent with other crucial parameters
such as optical and structural qualities.

Author Contributions: Conceptualization, S.A.M.I., A.E., M.P. and H.O.T.; methodology, H.M.H.Z.,
S.A.M.I., and H.A.S.; software, H.M.H.Z., M.P. and H.O.T.; validation, A.B., A.I.E., G.S., and A.E.;
formal analysis, H.M.H.Z. and S.A.M.I.; investigation, M.P., G.S. and A.B.; resources, H.A.S. and
A.I.E.; data curation, H.M.H.Z. and S.A.M.I.; writing—original draft preparation, H.A.S., H.M.H.Z.,
A.I.E., and S.A.M.I.; writing—review and editing, H.O.T., M.P., A.E., and A.B.; visualization, H.A.S.
and H.O.T.; supervision, G.S., H.O.T., and A.E.; project administration, G.S. and A.I.E.; funding ac-
quisition, A.B. and A.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding. The APC was funded by “Dunarea de Jos”
University of Galati, Romania.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors thank Taif University Researchers Supporting Project number
(TURSP-2020/12), Taif University, Taif, Saudi Arabia. The work of the corresponding author A.E.
was carried out at INPOLDE research center of Dunarea de Jos University of Galati, Romania.



Nanomaterials 2021, 11, 1713 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yim, M.-S.; Ocken, H. Radiation dose management in nuclear power plants. Prog. Nucl. Energy 2001, 39, 31–51. [CrossRef]
2. Al-Buriahi, M.S.; El-Agawany, F.I.; Sriwunkum, C.; Akyıldırım, H.; Arslan, H.; Tonguc, B.T.; El-Mallawany, R.; Rammah,

Y.S. Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Phys. B Condens. Matter 2020,
581, 411946. [CrossRef]

3. Zakaly, H.M.H.; Saudi, H.A.; Issa, S.A.M.; Rashad, M.; Elazaka, A.I.; Tekin, H.O.; Saddeek, Y.B. Alteration of optical, structural,
mechanical durability and nuclear radiation attenuation properties of barium borosilicate glasses through BaO reinforcement:
Experimental and numerical analyses. Ceram. Int. 2021, 47, 5587–5596. [CrossRef]

4. Zakaly, H.M.H.; Rashad, M.; Tekin, H.O.; Saudi, H.A.; Issa, S.A.M.; Henaish, A.M.A. Synthesis, optical, structural and physical
properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: An experimental
and simulation study. Opt. Mater. 2021, 114, 110942. [CrossRef]

5. Alalawi, A. Experimental and Monte Carlo investigations on the optical properties and nuclear shielding capability of Bi2O3–
Na2O-B2O3–Cu2O glasses. J. Non. Cryst. Solids 2020, 548, 120321. [CrossRef]

6. El-Mallawany, R.; Rammah, Y.S.; El-Agawany, F.I.; Lima, S.M.; Mutuwong, C.; Al-Buriahi, M.S. Evaluation of optical features
and ionizing radiation shielding competences of TeO2–Li2O (TL) glasses via Geant4 simulation code and Phy-X/PSD program.
Opt. Mater. 2020, 108, 110394. [CrossRef]

7. Abouhaswa, A.S.; Mhareb, M.H.A.; Alalawi, A.; Al-Buriahi, M.S. Physical, structural, optical, and radiation shielding properties
of B2O3- 20Bi2O3- 20Na2O2- Sb2O3 glasses: Role of Sb2O3. J. Non. Cryst. Solids 2020, 543, 120130. [CrossRef]

8. Alalawi, A.; Al-Buriahi, M.S.; Rammah, Y.S. Radiation shielding properties of PNCKM bioactive glasses at nuclear medicine
energies. Ceram. Int. 2020, 46, 15027–15033. [CrossRef]

9. Abouhaswa, A.S.; Kavaz, E. A novel B2O3-Na2O-BaO-HgO glass system: Synthesis, physical, optical and nuclear shielding
features. Ceram. Int. 2020, 46, 16166–16177. [CrossRef]

10. Gupta, N.; Kaur, A.; Khanna, A.; Gonzàlez, F.; Pesquera, C.; Iordanova, R.; Chen, B. Structure-property correlations in TiO 2 -Bi2
O3 -B2 O3 -TeO2 glasses. J. Non. Cryst. Solids 2017, 470, 168–177. [CrossRef]

11. Sadeq, M.S.; Morshidy, H.Y. Effect of samarium oxide on structural, optical and electrical properties of some alumino-borate
glasses with constant copper chloride. J. Rare Earths 2020, 38, 770–775. [CrossRef]

12. Mostafa, A.M.A.; Zakaly, H.M.H.; Pyshkina, M.; Issa, S.A.M.; Tekin, H.O.; Sidek, H.A.A.; Matori, K.A.; Zaid, M.H.M. Multi-
objective optimization strategies for radiation shielding performance of BZBB glasses using Bi2O3: A FLUKA Monte Carlo code
calculations. J. Mater. Res. Technol. 2020, 9, 12335–12345. [CrossRef]

13. Issa, S.A.M.; Zakaly, H.M.H.; Pyshkina, M.; Mostafa, M.Y.A.; Rashad, M.; Soliman, T.S. Structure, optical, and radiation shielding
properties of PVA–BaTiO3 nanocomposite films: An experimental investigation. Radiat. Phys. Chem. 2021, 180, 109281. [CrossRef]

14. Ballarini, F.; Battistoni, G.; Brugger, M.; Campanella, M.; Carboni, M.; Cerutti, F.; Empl, A.; Fassò, A.; Ferrari, A.; Gadioli, E.; et al.
The physics of the FLUKA code: Recent developments. Adv. Space Res. 2007, 40, 1339–1349. [CrossRef]

15. Ferrari, A.; Sala, P.R.; Fasso, A.; Ranft, J. FLUKA: A Multi-Particle Transport Code; Stanford Linear Accelerator Center: Menlo Park,
CA, USA, 2005.

16. Henaish, A.M.A.; Mostafa, M.; Salem, B.I.; Zakaly, H.M.H.; Issa, S.A.M.; Weinstein, I.A.; Hemeda, O.M. Spectral, electrical,
magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites. J. Mater. Sci. Mater. Electron. 2020, 31, 20210–20222.
[CrossRef]

17. Tekin, H.O.; Issa, S.A.M.; Kavaz, E.; Altunsoy Guclu, E.E. The direct effect of Er2 O3 on bismuth barium telluro borate glasses for
nuclear security applications. Mater. Res. Express 2019, 6, 115212. [CrossRef]

18. Gong, J.-T.; Zhang, Z.; Yang, X.-Z. Theoretical investigation of the local structure of Cu2+ doped Bi2O3-ZnO-B2O3-Li2O glasses
by their EPR and optical spectra. Optik 2014, 125, 1698–1700. [CrossRef]

19. Atuchin, V.V.; Subanakov, A.K.; Aleksandrovsky, A.S.; Bazarov, B.G.; Bazarova, J.G.; Gavrilova, T.A.; Krylov, A.S.; Molokeev, M.S.;
Oreshonkov, A.S.; Stefanovich, S.Y. Structural and spectroscopic properties of new noncentrosymmetric self-activated borate
Rb3EuB6O12 with B5O10 units. Mater. Des. 2018, 140, 488–494. [CrossRef]

20. Atuchin, V.V.; Subanakov, A.K.; Aleksandrovsky, A.S.; Bazarov, B.G.; Bazarova, J.G.; Dorzhieva, S.G.; Gavrilova, T.A.; Krylov,
A.S.; Molokeev, M.S.; Oreshonkov, A.S.; et al. Exploration of structural, thermal, vibrational and spectroscopic properties of new
noncentrosymmetric double borate Rb3NdB6O12. Adv. Powder Technol. 2017, 28, 1309–1315. [CrossRef]

21. Ichoja, A.; Hashim, S.; Ghoshal, S.K. Unique optical traits of Sm3+ -doped magnesium borate glass. Chinese J. Phys. 2020, 66, 36–49.
[CrossRef]

22. Golovnev, N.N.; Molokeev, M.S.; Vereshchagin, S.N.; Atuchin, V.V.; Sidorenko, M.Y.; Dmitrushkov, M.S. Crystal structure and
properties of the precursor [Ni(H2O) 6](HTBA)2·2H2O and the complexes M(HTBA)2(H2O)2 (M = Ni, Co, Fe). Polyhedron 2014,
70, 71–76. [CrossRef]

23. Golovnev, N.N.; Molokeev, M.S.; Vereshchagin, S.N.; Atuchin, V.V. Calcium and strontium thiobarbiturates with discrete and
polymeric structures. J. Coord. Chem. 2013, 66, 4119–4130. [CrossRef]

24. Kaçal, M.R.; Akman, F.; Sayyed, M.I.; Akman, F. Evaluation of gamma-ray and neutron attenuation properties of some polymers.
Nucl. Eng. Technol. 2019, 51, 818–824. [CrossRef]

http://doi.org/10.1016/S0149-1970(01)00002-6
http://doi.org/10.1016/j.physb.2019.411946
http://doi.org/10.1016/j.ceramint.2020.10.143
http://doi.org/10.1016/j.optmat.2021.110942
http://doi.org/10.1016/j.jnoncrysol.2020.120321
http://doi.org/10.1016/j.optmat.2020.110394
http://doi.org/10.1016/j.jnoncrysol.2020.120130
http://doi.org/10.1016/j.ceramint.2020.03.033
http://doi.org/10.1016/j.ceramint.2020.03.172
http://doi.org/10.1016/j.jnoncrysol.2017.05.021
http://doi.org/10.1016/j.jre.2019.11.003
http://doi.org/10.1016/j.jmrt.2020.08.077
http://doi.org/10.1016/j.radphyschem.2020.109281
http://doi.org/10.1016/j.asr.2007.05.031
http://doi.org/10.1007/s10854-020-04541-x
http://doi.org/10.1088/2053-1591/ab4cb5
http://doi.org/10.1016/j.ijleo.2013.09.033
http://doi.org/10.1016/j.matdes.2017.12.004
http://doi.org/10.1016/j.apt.2017.02.019
http://doi.org/10.1016/j.cjph.2020.05.010
http://doi.org/10.1016/j.poly.2013.12.021
http://doi.org/10.1080/00958972.2013.860450
http://doi.org/10.1016/j.net.2018.11.011


Nanomaterials 2021, 11, 1713 16 of 16

25. Poltabtim, W.; Wimolmala, E.; Saenboonruang, K. Properties of lead-free gamma-ray shielding materials from metal oxide/EPDM
rubber composites. Radiat. Phys. Chem. 2018, 153, 1–9. [CrossRef]

26. Sayyed, M.I.; Tekin, H.O.; Altunsoy, E.E.; Obaid, S.S.; Almatari, M. Radiation shielding study of tellurite tungsten glasses
with different antimony oxide as transparent shielding materials using MCNPX code. J. Non. Cryst. Solids 2018, 498, 167–172.
[CrossRef]

27. Ali, A.; Singh, B.N.; Yadav, S.; Ershad, M.; Singh, S.K.; Mallick, S.P.; Pyare, R. CuO assisted borate 1393B3 glass scaffold with
enhanced mechanical performance and cytocompatibility: An In vitro study. J. Mech. Behav. Biomed. Mater. 2020, 104231.
[CrossRef]

28. Othman, H.; Elkholy, H.; Cicconi, M.R.; Palles, D.; de Ligny, D.; Kamitsos, E.I.; Möncke, D. Spectroscopic study of the role
of alkaline earth oxides in mixed borate glasses—site basicity, polarizability and glass structure. J. Non. Cryst. Solids 2020,
533, 119892. [CrossRef]

29. Chanthima, N.; Kaewkhao, J.; Limkitjaroenporn, P.; Tuscharoen, S.; Kothan, S.; Tungjai, M.; Kaewjaeng, S.; Sarachai, S.;
Limsuwan, P. Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiat. Phys. Chem. 2017, 137, 72–77.
[CrossRef]

30. Issa, S.A.M.; Darwish, A.A.A.; El-Nahass, M.M. The evolution of gamma-rays sensing properties of pure and doped phthalocya-
nine. Prog. Nucl. Energy 2017, 100, 276–282. [CrossRef]

31. Bashter, I.I. Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 1997, 24, 1389–1401.
[CrossRef]

32. El-Taher, A.; Zakaly, H.M.H.; Pyshkina, M.; Allam, E.A.; El-Sharkawy, R.M.; Mahmoud, M.E.; Abdel-Rahman, M.A.E. A compara-
tive Study between Fluka and Microshield Modeling Calculations to study the Radiation-Shielding of Nanoparticles and Plastic
Waste composites. Z. Anorg. Allg. Chem. 2021, 647, 1083–1090. [CrossRef]

33. Issa, S.A.M.; Tekin, H.O. The multiple characterization of gamma, neutron and proton shielding performances of xPbO-(99-
x)B2O3–Sm2O3 glass system. Ceram. Int. 2019, 45, 23561–23571. [CrossRef]

http://doi.org/10.1016/j.radphyschem.2018.08.036
http://doi.org/10.1016/j.jnoncrysol.2018.06.022
http://doi.org/10.1016/j.jmbbm.2020.104231
http://doi.org/10.1016/j.jnoncrysol.2020.119892
http://doi.org/10.1016/j.radphyschem.2016.03.015
http://doi.org/10.1016/j.pnucene.2017.06.016
http://doi.org/10.1016/S0306-4549(97)00003-0
http://doi.org/10.1002/zaac.202100062
http://doi.org/10.1016/j.ceramint.2019.08.065

	Introduction 
	Methods and Materials 
	Results and Discussion 
	Investigations on Structural Properties 
	Investigations on Optical Properties 
	Investigations on Nuclear Radiation Shielding Competencies 

	Conclusions 
	References

