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Abstract

Centerline extraction of the carotid artery in MRI is important to analyze the artery geometry

and to provide input for further processing such as registration and segmentation. The cen-

terline of the artery bifurcation is often extracted by means of two independent minimum

cost paths ranging from the common to the internal and the external carotid artery. Often the

cost is not well defined at the artery bifurcation, leading to centerline errors. To solve this

problem, we developed a method to cooperatively extract both centerlines, where in the

cost to extract each centerline, we integrate a constraint region derived from the estimated

position of the neighbor centerline. This method avoids that both centerlines follow the same

cheapest path after the bifurcation, which is a common error when the paths are extracted

independently. We show that this method results in less error compared to extracting them

independently: 10 failed centerlines Vs. 3 failures in a data set of 161 arteries with manual

annotations. Additionally, we show that the new method improves the non-cooperative

approach in 28 cases (p < 0.0001) in a data set of 3,904 arteries.

Introduction

Centerline detection of the carotid artery in MRI is important to analyze its geometry [1], and

to provide input for segmentation [1–3] and registration methods of the carotid artery [4, 5].

There are two main type of approaches to extract vessel centerlines using different image

modalities: global optimization methods based on minimum cost paths, and local approaches

[6]. Local methods include tracing medial axis from inscribed disks or spheres [7, 8], finding

the centers of intensity ridge traversals [9, 10], and localizing local maxima from filter outputs

[11, 12].

As minimum cost paths methods are based on global optimizations, they could result in

robust centerlines [1, 13–16]. Often the carotid artery centerline is detected as two indepen-

dent paths [1, 7, 17], one for each of the two arteries that originate from the Common Carotid

Artery (CCA) at the bifurcation. These two arteries are the Internal Carotid Artery (ICA) and

the External Carotid Artery (ECA). Using minimum cost path approaches, each path is

defined as the minimum cost path between two points, where the cost is the output of a
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function that should be low at the center of the artery and high elsewhere. In this work, the

centerlines are represented as minimum cost paths. There are two main techniques to find the

minimum cost paths: graph approaches (Dijkstra algorithm [18], A� and F� algorithms [19])

and continuum approaches (fast marching [20]). In this work we use fast marching as it suffers

less from metrication errors [21], and it provides the possibility to consider the anisotropic

characteristic of the MRI images [20, 22].

Defining a good cost function is a difficult task especially at the bifurcation. Generally, this

cost at each image position is a function of the intensity and/or the surrounding shape [1, 6,

13–16], where the surrounding shape is estimated using Hessian eigen-analysis or medialness

filters [12, 23]. However the intensity inside the artery presents a complex distribution along

the vessel which is affected by artifacts, also surrounding structures may have similar intensi-

ties. Additionally vessel detector filters based on Hessian or medialness filters mainly work

well on cylindrical shape structures. This can cause the centerline to present errors especially

at the bifurcation, where the shape is not cylindrical. A common problem in carotid centerline

extraction from MRI is that the centerline traced from either ICA or ECA jumps to the more

clearly visible artery. An example is given in Fig 1.

To solve this problem, better cost functions that make use of features that describe well the

artery shape and the intensities distribution inside the artery could be defined. Another solu-

tion can be to define a cost function that takes the anatomy and geometry of both arteries

(ICA and ECA) into account. This could potentially prevent errors as shown in Fig 1. In this

paper, we propose a method to cooperatively extract both ICA and ECA centerlines where the

cost at each path considers the geometry of the neighbor artery.

The problem of jointly extracting multiple centerlines has been addressed before in medical

imaging. In [24] a method to track the centerlines of abdominal vessels in 3D ultrasound is

presented. They use several manually annotated points at the common, bifurcation, and at the

bifurcated vessels; then the points are connected by straight lines which start an active contour

evolution (snake) leading to the centerlines. This is an interesting approach and may work well

if the initialization represented by the connected straight lines is inside the artery. However in

many curved vessels the straight lines could be outside the artery. Other methods find rough

segmentations of all the vessels of interest, and subsequently a skeletonization results in the

centerlines [25]. This method may work if the segmentation is relatively accurate. However,

the segmentation of the carotid artery in MRI is difficult and generally requires elaborated

methods that use initializations based on centerlines [1–3]. Another method is [26], which

obtains a complete tree of vessel centerlines by matching appearance models based on fitting

cylindrical patterns. This is an interesting method as it is fully automatic; however they

reported errors at the bifurcation for complex shapes.

Joint extraction of several minimum cost paths has been addressed before for multiple

path planning where interaction and constraints in the paths are considered [27–29]. We

find especially interesting the method presented in [27] where the cost of each path is

defined by the path distance to the target and a constraint around the neighbor paths.

This principle could be used to find multiple centerlines where the cost of the paths is a

combination of the traditional cost based on intensity and shape features, and a constraint

around the neighbor centerline. This should prevent the centerlines following the same

paths either at the ICA or ECA as described in Fig 1 leading to more accurate centerlines at

the bifurcation.

In this paper, we use a similar approach to find carotid artery centerlines. We define the

centerlines as minimum cost paths where a constraint around the neighbor path is included.

The cost is defined similarly to [1]. Further we solve the minimum cost paths using anisotropic
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fast marching as in [22] to consider the inherent anisotropic characteristics of MRI. Smooth-

ness is also enforced by constraining the length of the path as in [21]. To evaluate the method,

we compare the automatically extracted centerlines to manually annotated centerlines. In a

large data set of 3904 arteries where manually annotated centerlines are not available, visual

inspection of the results were performed in all cases where the conventional and proposed

approach yield different results.

Fig 1. Centerline detection at the carotid artery by finding two independent minimum cost paths. The blue curves

represent the manually annotated centerlines, and the green curves are the automatically detected centerlines. The

centerlines are overlaying an MRI cross-section.

https://doi.org/10.1371/journal.pone.0197180.g001

Cooperative centerline extraction

PLOS ONE | https://doi.org/10.1371/journal.pone.0197180 May 30, 2018 3 / 16

https://doi.org/10.1371/journal.pone.0197180.g001
https://doi.org/10.1371/journal.pone.0197180


1 Method

First we describe how to obtain a representative cost image using only image information. Sub-

sequently, we describe the anisotropic fast marching to extract minimum cost paths. Finally,

we present the cooperative centerline extraction method which includes in the cost a con-

straint region derived from the likely position of the neighbor centerline.

1.1 Method overview

1. Obtain cost image which is low at the center of the artery and high elsewhere.

2. From seed points at CCA, ICA, ECA, and the bifurcation, apply anisotropic fast marching

to get minimum cost paths between points.

3. As the paths may coincide after the artery bifurcation, we apply the new cooperative center-

line extraction method to force the centerlines to follow different paths beyond the

bifurcation.

1.2 Cost image

In [1] the cost is defined by a combination of the inverse of a multi-scale medialness filtering

m : R3 ! ½0; 1� [12] and inverse of artery lumen intensity similarity s : R3 ! ½0; 1� [1]. The

medialness filter gives a high output at the center of circular shapes, while the lumen intensity

similarity metric is high when the intensity is similar to the mean intensity inside a Region Of

Interest (ROI) around the set of seed points. These ROIs are spheres centered at the seed

points with radius of 3.5mm for the CCA, and 2.5mm for ICA and ECA. As in [1] the cost

function at voxel position x is given by:

pðxÞ ¼
1

�þmðxÞasðxÞb
; ð1Þ

where � is a small positive value to prevent singularities, and the parameters α and β control

the contribution of the medialness filter and the lumen similarity metric. In the case of multi-

spectral MRI, the maximum output of the medialness and the intensity similarity terms over

the different MR sequences is taken to compute p.

1.3 Minimum cost path using anisotropic fast marching

Given the cost image p, the minimum cost path C� : R! R3 between two points is defined as

the path C minimizing the total accumulated cost. In the continuous space the total accumu-

lated cost by the path is defined by:
Z

C
ðpðCðsÞÞ þ oÞds ¼

Z

C

~pðCðsÞÞds; ð2Þ

where s is the arc-length parameter. As in [21] to enforce smoothness in the path, a constant ω
is added to p. By this, the maximum path curvature is inversely proportional to ω [21].

To minimize Eq 2, first the minimal action map U : R3 ! R associated to the starting

point p0 2 R
3 has to be defined. This minimal action map is defined as the minimum total

cost to reach each point in the map, which satisfies the Eikonal equation represented by:

krUðxÞk ¼ ~pðxÞ; ð3Þ
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where U(p0) = 0. Subsequently, after having the minimal action map U, the minimum cost

path C� between p0 and the end point p1 2 R
3 is obtained by backtracking the vector fieldrU

(x) from p1 to p0.

Fast marching [20] is a numerical method to efficiently solve Eq 3 in the image space. As

the images we use are 3D anisotropic MRI images, we use the 3D anisotropic fast marching

algorithm based on [22]. Here U(x) is the solution to the quadratic numerical approximation

of Eq 3 given by:

X

i¼fx;y;zg

maxfðUðxÞ � Uðx� diÞÞ; ðUðxÞ � UðxþdiÞÞ; 0g
hi

� �2

¼ ~pðxÞ2;

ð4Þ

where xdi is the displacement of position x by one voxel in the i-direction, and hi is the voxel

size in dimension i. U is approximated using Eq 4 starting from p0 to p1 using a front propaga-

tion. To achieve this front propagation a controlled marching approach is used where every

voxel position x is moving from three different sets: ALIVE: point for which U has been com-

puted and frozen; TRIAL: point for which U has been estimated but not frozen; and FAR:

point for which U is unknown. The method starts by including p0 in ALIVE, and assigning

FAR the rest of points in the image. Then, in TRIAL are assigned the neighbor points of

ALIVE belonging to FAR. In our case we use a 6-connected neighborhood. Then, U is esti-

mated for the points in TRIAL. Further, in ALIVE is assigned the point in TRIAL with the low-

est value of U. These steps are iterated until p1 2 ALIVE.

Subsequently, the minimum cost path is obtained by backtrackingrU(x). To make the

procedure more stable to noise, the vector field is normalized by:rU(x)N =rU(x)/krU(x)k.

rU(x)N is set to zero in non-alive positions, then they do not affect the tracking. This back-

tracking is done by approximating the differential equation: @C�/@s = −rU(C�)N, starting

from p1. This approximation is obtained using the fourth order Runge-Kutta method with a

step size δ resulting in the optimal path Cp0 ;p1
: R! R3. In the rest of the paper we call the

resulting centerline after applying Anisotropic Fast Marching (AFM) from p0 to p1 using cost

~p as the result of the function AFM: Cp0 ;p1
¼ AFMð~p; p0; p1Þ.

1.4 Cooperative centerline extraction

From three seed points A, B, and C, we get two minimum cost paths on ~p using AFM: A! B

(CA;B ¼ AFMð~p;A;BÞ) and A! C (CA;C ¼ AFMðp~;A;CÞ), where we would like to avoid

intersections at some parts of the paths.

Inspired by [27], we propose a cooperative extraction of the paths A! B and A! C. The

idea of this new method is to add to the cost ~p a constraint around the neighbor centerline at

the locations we do not want them to intersect, so the current path is influenced by the position

of its neighbor. Ideally, we want to avoid overlap between the centerline and the neighbor

artery; therefore the constraint region should cover this neighboring artery.

We start including the constraint region k � Z3 around the best path CBest 2 {CA,B, CA,C},

as we assume this path is not going to change much its position during the cooperative correc-

tion process. We define the best path as the one with the lowest average cost, where the total

cost is given by the minimal action map U at the end point, which is divided by the path length

to get the average cost. To constrain the neighbor path CN to be at least a distance ρ from CBest,
we include in ~p a constraining region defined by a spherical dilation with radius ρ in all points

of CBest where we want to set the constraint. As we want to set the constraint after the artery
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bifurcation, the constraint region κ starts after this position where the artery starts bifurcating.

Then after defining the constrain region κ, the new cost pN is given by:

pNðxÞ ¼

(
~pðxÞ; if x =2 k

K; if x 2 k
; ð5Þ

where K is a high constant value. Therefore, the correction of path CN is given by

~CN ¼ AFMðpN ;A; fB;CgÞ.
Subsequently, a new constraint region around the corrected path ~CN is included in ~p to cor-

rect CBest. This whole process is illustrated in Fig 2.

2 Experiments and results

2.1 Evaluated methods

From three marked seed points at CCA, ICA, and ECA; we cooperatively extract two paths

between CCA-ICA and CCA-ECA. Here κ starts at the closest points of the initially estimated

centerlines to an extra marked point at the artery bifurcation where the two arteries ICA and

ECA separate. We call this Cooperative method from the Common to Internal and External

CCIE. We also evaluated another cooperative approach where a centerline bifurcation point

(BIF) is used as a seed point. BIF is a shifting of the artery bifurcation point (see Section 2.3).

Using BIF as a seed point, we force the centerlines to pass through this point. Therefore, in this

approach we extract three paths: between CCA-BIF, and cooperatively we extract two paths

between BIF-ICA and BIF-ECA. We call this Cooperative approach between Common to

Bifurcation to Internal and External CCBIE.

We compare the cooperative centerline approaches to the traditional approach to extract

the centerlines independently. In one approach, two Separated independent centerlines are

Fig 2. Schematic showing the cooperative centerline extraction method. Blue curves are the manually annotated centerlines; while black, red, and green

curves are the automatic paths at CCA, ICA, and ECA respectively. First, the automatic paths are obtained using anisotropic fast marching, however the

ICA and ECA erroneously follow the same path after the bifurcation. To fix this, a constraint region, shown by the purple surface, is constructed around the

best path given by the red curve. Using this constraint, a new path is computed for ECA. Subsequently, a new constraint region is built around this new

path. Then the path at ICA is computed again. Finally, both paths at ICA and ECA do not intersect and are close to the manually annotated ones.

https://doi.org/10.1371/journal.pone.0197180.g002
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extracted from the Common to Internal and External (SCIE). And in other approach we use

BIF as a seed point where three separated independent centerlines are extracted (SCBIE).

2.2 Image data

We used data from the Rotterdam study [30]. An MRI of the carotid bifurcation was per-

formed in subjects with carotid artery plaque (defined as at least one carotid artery with a max-

imum wall thickness�2.5mm measured with ultrasound). The method was initially evaluated

in a data set with manually annotated centerlines composed of 161 carotid arteries from 83

subjects. Five arteries had to be discarded due to manual annotation errors. Further, the

method was evaluated in a data set of 3,904 arteries from 2,018 subjects where seed points

were available but no manually annotated centerlines. Several MRI sequences were acquired:

Proton Density Weighted Black-Blood MRI (BB), Proton Density Echo Planar Imaging MRI,

3D T1-weighted gradient echo MRI, T2-weighted Echo Planar Imaging MRI, and Phase Con-

trast MRI (PC). As in [1], BB and PC were used together to get the cost image p as described in

Section 1.2, which are the sequences that provide a better description of the artery lumen [30].

The image resolutions are (in-plane voxel size × Slice thickness): 0.507 × 0.507 × 0.9mm for

BB, and 0.703 × 0.703 × 1mm for PC.

2.3 Manual annotations

Manually annotated centerlines were obtained by an expert on the BB images using a similar

annotation framework as described in [17]. Per artery, several points are annotated between

CCA-ICA and between CCA-ECA to obtain two centerlines. These are further up-sampled

using a cubic spline interpolation of resolution equal to the step size δ to get two higher resolu-

tion centerlines between CCA-ICA (CM
ICA) and CCA-ECA (CM

ECA). The seed points located at

CCA (xC), ECA (xE), and ICA (xI) were obtained from the starting and end points of the man-

ual centerlines, where xC is the mean point between the two centerline starting points. In the

experiments where manual centerlines are not available, the three seed points were manually

placed in the BB images by an expert.

Bifurcation point:
Another point located at the artery bifurcation (xBIF) is manually annotated. This point is

located at the gap between the two artery branches at the first slice starting from CCA where

these two are visible. As for SCBIE and CCBIE require the bifurcation seed point at the center-

line bifurcation, we had to shift xBIF to be inside the vessel at the centerline bifurcation. To

shift xBIF, we move it a certain distance through the path between xC- xBIF (CxC ;xBIF
).

First, we define the estimated bifurcation xeBIF, which serves as ground truth of the centerline

bifurcation in the images with manually annotated centerlines. This is obtained as the mean

point between the first positions in CM
ICA and CM

ECA starting from xI and xE where the distance

from these point positions to the neighbor centerline is below 1mm. We define the distance D
from a point x to a path C by the L2 norm between the point and the closest point in the path:

Dðx;CÞ ¼ min
y2C
kx � yk: ð6Þ

We verified by visual inspection that the resulting xeBIF using this approach is close to the

manual centerline bifurcation in most cases.

Subsequently, we define the path between the common point xC and the annotated bifurca-

tion xBIF by CxC ;xBIF
¼ AFMð~p; xC; xBIFÞ. Then we find the closest point in the path to the esti-

mated bifurcation xeBIF. This point represents the shifted bifurcation xsBIF 2 CxC ;xBIF
. The

distance between xBIF and xsBIF is the optimal shifting using this approach. The found optimal
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shifting for all 161 arteries was 5.1mm ± 1.6mm; therefore, we used t = 5.1mm to obtain xsBIF in

all cases.

2.4 Preprocessing

The BB images suffer from intensity inhomogeneity [3]. This was corrected using N4 bias field

correction [31], which is one of the most popular methods to correct intensity non-uniformity

in MRI data. We used the default parameters of the method on the complete image as

described in [31]. Further as in [1], PC images are registered to the BB images. However, by

only using an affine registration as in [1], we observed several registrations errors that resulted

in erroneous cost images p. We could obtain p using only one sequence, however as in [1] we

also observed that it is useful to include both BB and PC to obtain p. Therefore, instead we

used a different approach to perform the registration and include both sequences to get p. Sim-

ilar to [4], we apply a rigid then a non-rigid registration using a registration mask. For the

rigid registration, we use Euler transform, and for non-rigid a 3D B-spline transformation

with 15 mm grid spacing, using in both mutual information as similarity metric. The registra-

tion mask must cover the artery in BB. For this a 10 mm diameter circular mask obtained by

dilating the centerlines with a spherical structuring element with a radius of 5 mm is used. As

this mask must roughly cover the artery, an accurate centerline is not needed. Therefore, to

compute these centerlines we get two minimum cost paths between CCA(xC)-ICA(xI) and

between CCA(xC)-ECA(xE) on a cost obtained from BB only (pBB). Then after registering PC

to BB, we obtain the combined cost p. In Fig 3, the registered PC look well aligned, and the

cost is low at the artery locations.

Fig 3. Examples of the registration and cost extraction results. BB images, registered PC to BB using the presented

approach (PCR), and cost images (p) from four different arteries are shown. Manual centerlines overlaying the images

are depicted in red.

https://doi.org/10.1371/journal.pone.0197180.g003
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2.5 Parameter selection and configuration

As in [1], we choose the contribution of the medialness filter and lumen intensity similarity

equal in Eq 1 (α = β). We evaluated several smoothing values ω 2 {0, 1, 2, . . .10} to get ~p,

where the selected value for each artery was obtained by leave-one-artery-out cross-validation.

To make a faster computation of U and ΔU, the cost image ~p is cropped in a minimum bound-

ing box ±20 voxels in the x-y plane and ±3 voxels in the axial direction around the seed points.

This bounding box size was enough to cover the artery in all cases. The step size δ is set to

0.1mm, which is significantly smaller than the voxel size.

The diameter 2 × ρ of the constraint region κ is set to 3.5mm. We observed this value was

enough to cover the ICA and ECA artery lumen [32]. In CCIE and CCBIE, κ starts at the clos-

est point of the initially estimated centerline to the artery bifurcation point xBIF.

2.6 Evaluation metric

To compare the automatically extracted centerlines to the manually annotated centerlines we

compute the Hausdorff distance (H) between centerlines. The H distance between two center-

lines CA and CB is defined as:

HðCA;CBÞ ¼ max max
x2CA

Dðx;CBÞ; max
y2CB

Dðy;CAÞ

� �

: ð7Þ

For each carotid artery two centerlines are defined for ICA and ECA. Thus the Centerline

Artery Distance (CAD) between automatic (CA ¼ CA
ICA [ C

A
ECA) and manual artery centerlines

(CM ¼ CM
ICA [ C

M
ECA) is given by the maximum distance between centerlines by:

CADðCA;CMÞ ¼ maxfHðCM
ICA;C

A
ICAÞ; HðC

M
ECA;C

A
ECAÞg: ð8Þ

We consider a centerline detection failed if the CAD between automatic and manual cen-

terlines is above 3.5mm, as the mean artery radius is about this value [32], then the automatic

centerline is likely to be outside the artery. We also confirmed the correctness of this CAD

threshold by visually inspecting the position of the automatic centerlines with respect to the

carotid artery.

2.7 Comparison with manual annotations

Initially, we observed the effect of the smoothing parameter ω in the different approaches. For

each value of ω, we obtained CAD for all 161 vessels for each approach (see S1 Table). Median

values and number of failures for each ω are shown in Fig 4. Better results were observed by

enforcing some amount of smoothness in the centerlines. In all ω values, the cooperative cen-

terline extraction methods (CCBIE and CCIE) showed better results than obtaining the center-

lines independently (SCBIE and SCIE) in number of failures. A reduction in failures was

obtained by including the bifurcation as an extra seed point (CCBIE Vs. CCIE and SCBIE Vs.

SCIE), however this increases the median CAD slightly.

The optimal smoothing value ω per artery and for each method was selected by leave-one-

artery-out cross-validation. From the training set of 160 arteries, we aimed to select the value

for ω that resulted in least failures; in case several ω resulted in the same number of failures,

the value resulting in the lowest mean CAD is selected. The number of failures per method are:

SCIE: 10 failures, SCBIE: 8, CCIE: 5, and CCBIE: 3. A box plot describing the CAD results is

shown in Fig 5. Significant results (McNemar test) for differences in the number of failures

between methods is shown in Table 1. CCBIE is significantly better (p< 0.05) than SCIE.
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Fig 4. Number of failures and median CAD depending on the smoothing parameter ω for each method. SCIE is

represented in blue, SCBIE green, CCIE black, and CCBIE red.

https://doi.org/10.1371/journal.pone.0197180.g004

Fig 5. Box plot showing the CAD errors per method.

https://doi.org/10.1371/journal.pone.0197180.g005
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Other differences are not significant. Several centerlines examples using all methods are

shown in Fig 6.

2.8 Results in a large population data set

We also obtained the centerlines in a large data set from a population study composed of 3,904

arteries from 2,018 patients. We compare the best method to extract the centerlines indepen-

dently (SCBIE) to the best method to extract them cooperatively (CCBIE). However, for this

data set we do not have manually annotated centerlines, but only the seed points at CCA, ICA,

ECA, and the bifurcation. Therefore, to compare the two methods, we first compute CAD

between the two centerlines (see S2 Table). Then, we looked for large differences so centerlines

with CAD above 3.5mm are the cases of interest. From the 3,904 arteries, we found 42 to have

CAD between SCBIE and CCBIE above 3.5mm. A visual inspection of these 42 cases revealed

that in 28 cases CCBIE is correct while SCBIE fail, 4 SCBIE are correct while CCBIE fail, in 7

cases both fail, and in no case both are correct. One case was discarded due to wrong seed

point locations, and due to occlusion of arteries, the centerline could not be reliably assessed in

two arteries. Applying McNemar test, we obtain that CCBIE is significantly better than SCBIE

(p< 0.0001) resulting in fewer centerline failures.

3 Discussion

In this work we presented a method for improved extraction of the carotid artery center-

lines which results in fewer failures. With this method both artery centerlines from CCA to

Table 1. Statistical significance of differences in number of failures between methods according to McNemar’s

test. p-values are shown for each method comparison for the 161 arteries experiments described in Section 2.7 and for

the 3,904 arteries experiment described in Section 2.8 (in parenthesis).

SCIE SCBIE CCIE CCBIE

SCIE – 0.5 0.06 0.02

SCBIE – – 0.45 0.06(0.0001)

CCIE – – – 0.5

https://doi.org/10.1371/journal.pone.0197180.t001

Fig 6. Examples of centerline results where failures are present. Manual centerlines are represented in blue, SCIE in

cyan, SCBIE in green, CCIE in purple, and CCBIE red. Methods that use the bifurcation as a seed point are shown at

the top row. SCIE fails in all cases (CAD error�3.5mm); SCBIE fails in cases c-h; CCIE fails in a, b, g; and CCBIE fails

in g.

https://doi.org/10.1371/journal.pone.0197180.g006
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ICA and ECA are extracted cooperatively by integrating geometrical information of the

artery bifurcation in the cost. Inspired by [27], geometrical information is integrated as

constraint sections around the paths to prevent path intersections. We demonstrated that

the presented method performs better than the traditional approach that extracts the cen-

terlines independently.

Commonly the centerlines in the carotid artery bifurcation are extracted as two minimum

cost paths [1, 13–16], however if the cost image is not well defined failures may arise. In this

work, we showed that these inaccuracies in the cost could be overcome using the presented

cooperative centerline extraction approach. Another possible solution to get better centerlines

would be to improve the cost image. In [1, 33], a refined cost is generated using the extracted

centerline, where the medialness is calculated at planes sampled perpendicular to the center-

line, which may result in a better cost image. However, this approach is likely to fail if the cen-

terline used to reformat the image is outside the vessel lumen. Therefore, the failure cases

addressed in this work would not be prevented using this approach. For instance in [1], using

this approach they reported two failed cases out of 76 arteries and discarded two other arteries

due to bad image quality. This is a similar performance to our approach to extract two inde-

pendent centerlines SCIE (4 fails out of 78 Vs. 10 fails out of 161).

There are other methods to jointly or cooperatively extract the centerlines based on evolu-

tion approaches [24], skeletonization of the segmentation [25], and matching appearance

models [26]. Evolution approaches require an initialization, where if this is outside the artery

an incorrect centerline would be likely obtained, as these methods may get stuck in a local

minimum. Skeletonization of the segmentation may work well in cases of relatively correct

segmentations, however segmentation of the carotid artery from MRI is not an easy task and

most methods require a centerline as initialization. Skeletonization of segmentations using the

method presented in [34] may be a good option, as it does not require the centerline as initiali-

zation and presents good results. The matching appearance model presented in [26] is an

interesting method as it is fully automatic, however this could fail in complex geometries. In

any of these methods it is not guaranteed that the vessels do not intersect after the bifurcation

which is a common source of centerline failures, while in the presented method we guarantee

both centerlines will not follow the same path after the bifurcation.

Another possible solution to get more accurate centerlines is applying smoothness con-

straints to the path, as the path intersection errors are often accompanied by high curvature

paths. We explored this solution in Section 2.7 by adding a constant ω to the cost image similar

to [21], which penalizes long paths, and therefore reduce curvature. We proved the smoothing

to be useful as fewer failures and more accurate centerlines were obtained when applying a cer-

tain level of smoothing. We also observed that high smoothing values affected the results nega-

tively. Even though overall the smoothing improves the centerlines, still several failures were

obtained in SCIE. Therefore, smoothing alone is not enough to significantly reduce centerline

failures.

Using the cooperative approaches (CCIE and CCBIE) we showed better results in terms of

number of failures than using the approaches without interaction between paths (SCIE and

SCBIE). Additionally, we observed that only including the bifurcation point as an extra seed

point in SCBIE seemed to have already a small positive effect in terms of number of failures

compared to SCIE. However this effect was not significant in the 161 arteries set. Using the

cooperative centerline extraction methods, we also showed a slight reduction of number of

failures by using the bifurcation as an extra seed point in CCBIE instead of a reference point to

build the constraint regions as in CCIE. Fig 6 showed that the centerlines in CCIE may fail

before the artery bifurcation, so adding the extra seed point helps to prevents these failures.
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However, Fig 4 seems to indicate that adding the bifurcation as extra seed point also

reduces the accuracy of the centerlines in non-failure cases. This can be explained partly by the

fact that in our data, the annotated bifurcation point is located at the artery bifurcation which

is easy to visualize, then this point had to be shifted to be used as a seed point, which may

introduce small inaccuracies in the centerlines. Despite the accuracy reduction in non-failure

cases, we believe CCBIE to be the preferred method because it results in the smallest number

of failures.

Even though the cooperative approach leads to fewer failures, a disadvantage is that it

requires one additional annotated point. However, we argue one point is not too much work

to annotate. Additionally, there are methods to automatically extract bifurcation points which

could potentially be used in the carotid artery [35]. Therefore, we think using an extra anno-

tated point at the bifurcation results in a positive trade-off.

Another disadvantage of the proposed cooperative method compared to the approach to

extract the centerlines independently is the need to perform two extra minimum cost path

computations. However, algorithms with logarithmic complexity for fast AFM computation

are available [20], so the computations of extra paths should not represent a big issue in most

current processing machines.

The best method CCBIE, still resulted in three failures out of 161 arteries and 11 failures

out of 42 difficult cases in the larger study. We observed the cost images to be poorly defined

in some cases due to registration errors, and in other cases neighbor structures close to the

artery had a lower cost. An improved registration, and cost extraction which can discriminate

neighbor structures could be investigated.

For this study we used moderately diseased patients data, for future work an evaluation

including highly diseased patients would be recommended. However, we would expect the

presented method to work well in these cases as we observed good centerlines in the diseased

sections of the arteries.

The main reason to extract the carotid artery centerline is to define a ROI for further pro-

cessing such as registration [4], or to initialize a segmentation method [1–3], where reducing

the centerline failures is very important. If the centerlines follow a wrong path outside the ves-

sel, a registration or segmentation will likely fail [2, 5]. Therefore, we think the presented

method to extract the centerlines is highly suitable for further processing, as it considerably

reduces the number of failures. Additionally, this method might be applicable in other applica-

tions as neuron tracking, pulmonary tree extraction, coronary centerlines; as this method

could be easily extended to extract more than two centerlines.

4 Conclusion

In conclusion, we present a simple, yet effective approach to improve centerline extraction in

the carotid artery bifurcation, which significantly reduced the number of centerline tracking

failures.
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