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Abstract
Cortical morphological networks (CMN), where each network models the relationship in morphology between different cortical
brain regions quantified using a specific measurement (e.g., cortical thickness), have not been investigated with respect to gender
differences in the human brain. Cortical processes are expected to involve complex interactions between different brain regions,
univariate methods thus might overlook informative gender markers. Hence, by leveraging machine learning techniques with the
potential to highlight multivariate interacting effects, we found that the most discriminative CMN connections betweenmales and
females were derived from the left hemisphere using the mean sulcal depth as measurement. However, for both left and right
hemispheres, the first most discriminative morphological connection revealed across all cortical attributes involved (entorhinal
cortex↔ caudal anterior cingulate cortex) and (entorhinal cortex↔ transverse temporal cortex) respectively, which gives us new
insights into behavioral gender differences from an omics perspective and might explain why males and females learn
differently.
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Introduction

The brain construct encodes subtle differences in cognitive
functions between men and women. These differences emerge
during foetus development period where research has shown
that male fetuses appear to involute fewer overproduced cor-
tical neurons than females (De Courten-Myers 1999). This
gender difference could explain in part that the male brain
undergoes greater functional impairments from early brain
damage whereas the female brain exhibits a higher incidence
and prevalence of dementia. Hence, since several brain disor-
ders can be related to gender, it is important to first pin down
gender differences in the healthy human brain. This can po-
tentially help devise a personalized treatment for different
neurological disorders, tailored for male and female

populations, respectively. In particular, the cortex is a multi-
folded complex shape nesting vital brain function and cogni-
tion. Such complexity cannot be solely grasped using low-
level region to region comparison approaches across two
groups. Hence, we resort to modeling the brain as a network,
where the interaction between regions becomes a biological
feature of interest.

A plethora of research studies investigated gender differ-
ences using brain network datasets (i.e., brain connectomics)
in both health and disease based on the two most widely used
measures of brain connectivity in the literature: functional
connectivity and structural connectivity, derived from func-
tional magnetic resonance imaging (fMRI) and diffusion
weighted imaging (DWI). For instance, using structural neu-
roimaging (Gur et al. 1991; Gur and Gur 2016), found that
males and females manifest different neurological patterns
when it comes to aging effects on cognitive abilities. In (Gur
and Gur 2017a) the authors found that aging-related changes
affect more males than females. On the other hand, using
structural brain networks (Ingalhalikar et al. 2014), has found
that females have a strong interhemispheric connectionwhere-
as males have strong intra-hemispheric connections in most of
the brain regions, which could reveal the reasons behind the
observed gender-related complementarity in behavior. In a
different study using functional brain networks (Gur and
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Gur 2017b), reported that the period between childhood and
early adult shows an advancement in accuracy and speed of
performance especially in executive and reasoning tasks.
Another study using fMRI (Bell et al. 2006) found that males
outperformed females in spatial attention tasks with males
having faster reaction times. These findings were supported
by (Gur and Gur 2016, 2017a) suggesting that males have
better spatial processing as well as an enhanced motor speed
while females have a significant word and face memory and
performed better overall in social cognition tasks. Despite this
growing body of research on such networks and how they
encode for gender differences, however, there is still a large
gap in the literature where cortical morphological networks
(CMN) remain unexplored with respect to gender.

More importantly, based on the tension theory of cerebral
cortex morphogenesis suggesting that cortical morphology
reflects the underlying changes in the structural and functional
connectome (Van Essen 1997), recent studies have started
exploring morphological connections of the cortex and how
they are altered by neurological disorders including dementia
(Lisowska and Rekik 2018; Mahjoub et al. 2018) and autism
(Soussia and Rekik 2018; Dhifallah et al. 2018), and how they
are linked to cognition and genomics (Wagstyl et al. 2018).
The majority of these seminal works applied machine learning
on brain morphological network datasets and demonstrated
their potential in unraveling the cortical brain construct from
a connectional viewpoint while leveraging minimal financial
resources for brain scanning without the need of costly and
time-consuming fMRI and DWI. A landmark work investi-
gated gender differences in cortical morphological complexity
(Luders et al. 2004) in independent as opposed to interactive
brain regions; however, no previous studies investigated how
gender influences morphological connections.

The goal of this study is to investigate for the first time the
most discriminative connections unveiling gender differences
using cortical morphological networks as this latter approach
was effective and reliable when investigating cortical connec-
tivity fingerprinting dementia for aged patients (Lisowska and
Rekik 2018).

Materials and methods

Overview To efficiently handle the complexity of the cortical
network and its multivariate interacting effects, we resort to
advanced learning from data techniques which can greatly
help in the extraction of truly relevant features (i.e., potential
biomarkers) (Huynh-Thu et al. 2012). Such machine learning
techniques can replace the original relevance score associated
with a feature with a measure that can be interpreted in a
statistical way and hence allow the user to determine a signif-
icance threshold in a more informed way (Huynh-Thu et al.
2012). In this study, for each CMN, we aim to identify

relevant connectional features that discriminate between male
and female brains. When devising a machine learning model,
one needs to train and test this model. However, using the
same data to train and test would not guarantee the reproduc-
ibility of the model. Thus, we need to split the data into train-
ing and testing samples. Cross-validation (CV) is a method
that randomly splits available samples into training and testing
sets and guarantees the best performances of the model. For
reproducibility, generalizability and scalability, we deploy a
multiple CV scheme including leave-one-out, 5-fold and 10-
fold CV to train a support vector machines (SVM) classifier to
label each CMN as either ‘male’ or ‘female’. However, the
training of such classifier might be hindered by the high di-
mensionality of CMN features, which presents one of the
major problems in machine learning. To address this issue,
we leverage infinite feature selection (inFS) method (Roffo
et al. 2015), where the selected connectional features are su-
pervised by the subject gender. Finally, by selecting the top 5
highly ranked features by inFS shared across the 3 different
CV schemes, we are able to highlight the most discriminative
cross-validated morphological connectional features encoding
gender differences for each cortical measurement. We note
that SVM parameters were automatically tuned using 5-fold
nested cross-validation. The number of the features selected to
train SVM classifier was empirically tuned by selecting the
number of features that boosted the classification across all
views. We note that this does not affect the discovered most
gender-discriminative features, since features are first ranked
prior to SVM training. Figure 1 sketches the key steps of the
proposed framework to identify the most discriminative mor-
phological connectional features between male and female
populations.

Dataset Our dataset is composed of 698 subjects from the
Brain Genomics Superstruct Project (GSP) dataset (Buckner
et al. 2012; Holmes et al. 2015), each with structural T1-wMR
image, aged between 21 and 23 years old; males (n = 308;
21.6 ± 0.9 years, mean ± s.d.); females (n = 390, 21.6 ± 0.8
years, mean ± s.d.). The T1-w MRI were acquired on a
Siemens head-only 3T scanner (Allegra, Siemens Medical
System, Erlangen, Germany) with a circularly polarized head
coil, 70 transverse slices were acquired by using a turbo spin
echo (TSE) sequences: TR = 7380 nos TE = 119 mss with a
Flip Angle = 150°, and resolution = 1.25 × 1.25 × 1.95mm3

(Gillmore et al. 2011). All subjects are healthy and none of
them had a history of psychological or any sign of brain
disorders.

We examined four cortical morphological networks each
derived from a specific cortical measurements including (1)
maximum principal curvature, (2) cortical thickness network,
(3) sulcal depth network and (4) average curvature network in
a well-matched sample of healthy men (n = 308; 21.6 ± 0.9
years, mean ± s.d.) and women (n = 390; 21.6 ± 0.8 years)
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from the Brain Genomics Superstruct Project (GSP) (Buckner
et al. 2012; Holmes et al. 2015), where participants provided
written informed consent in accordance with guidelines
established by the Partners Health Care Institutional Review
Board and the Harvard University Committee on the Use of
Human Subjects in Research. T1-weighted images were ac-
quired using a 1.2mm isotropic resolution. Test-retest reliabil-
ity was established with a correlation range from 0.75 for the
estimated cortical thickness of the right medial prefrontal cor-
tex to 0.99 for the estimated intracranial volume (Holmes et al.
2015). We used FreeSurfer processing pipeline (Fischl 2012)
to reconstruct the left and right cortical hemispheres. Then we
parcellated each cortical hemisphere into 35 regions using
Desikan-Killiany atlas. Finally, for each subject, we used dif-
ferent measurements to generate a set of cortical morpholog-
ical networks (CMNs) (Fig. 2b) quantifying the morphologi-
cal distance in sulcal and gyral convolutions between distinct
cortical regions as detailed in (Mahjoub et al. 2018).

Data preprocessing steps The FreeSurfer processing steps in-
cluded skull stripping, motion correction, T1-w intensity nor-
malization, topology correction and segmentation of the sub-
cortical white matter (WM) and deep grey matter (GM)

volumetric structures to identify GM/WM and GM/
cerebrospinal fluid (CSF) boundaries (Dale et al. 1999).
Next, following cortical hemisphere construction a topology
correction, each hemisphere was parcellated into 35 anatomi-
cal regions of interest using Desikan-Killiany Atlas. For each
subject, we generated nc = 4 cortical morphological networks:
C1 denotes the maximum principal curvature brain view, C2

denotes the mean cortical thickness brain view,C3 denotes the
mean sulcal depth brain view, and C4 denotes the mean of
average curvature.

Cortical Morphological Network (CMN) definition Following
the parcellation of the cortical surface into nr anatomical re-
gions, for each Ri ROI and for each morphological measure-
ment m, we compute the average cortical measurement ~m
across all vertices v in R as follows:

~mi ¼ 1

# v∈Rif g ∑
v∈Ri

m vð Þ;

where # {v ∈ Ri} denotes the number of vertices v belonging
to ROIRi and m(v) the cortical measurement value assigned to
vertex v. To define the morphological connection Cm(i, j)in
network Cm between ROIs Ri and Rj , we compute the

Fig. 1 Proposed method pipeline to investigate the top connections
fingerprinting gender differences. a We use each of the four cortical
morphological networks (CMNs) encoding the similarity in morphology
between different brain regions to train a supervised infinite feature se-
lection algorithm (Roffo et al. 2015) to identify the top K most discrim-
inative features between healthy male and female groups. b Next, we
select the top K morphological connections derived from each CMN to
train a linear classifier (support vector machine –SVM) in distinguishing

between male and female cortices. c We devise a feature scoring algo-
rithm by quantifying feature reproducibility across multiple cross-
validation strategies (e.g., leave-one-out, 5-fold). The circular graphs dis-
play the top 5 most reproducible gender-specific cortical morphological
connections across CMNs in the left and right hemispheres, respectively.
d For each CMN, we calculate d Cohen’s coefficient of the top 5 most
discriminative connections between male and female groups as detailed
in Table 1
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absolute distance between averaged cortical measurement in

both ROIs: ~mi−~m j
�� ��. Given nr cortical regions in each hemi-

sphere, the size of each fully connected morphological

network nr × nr . We note that according to our definition, as
two ROIs Ri and Rj become similar in morphology, their mor-
phological connectivity Cm(i, j) tends to 0. For each subject s,

Fig. 2 Identification of top 5 morphological cortical connections
discriminating between male and female cortices in left and right
hemispheres. a Cortical surfaces color-coded by morphological measure-
ments (e.g., cortical thickness). b Cortical morphological networks

derived from the cortex using different measurements. c Circular graphs
displaying the top 5 most discriminative and cross-validated morpholog-
ical connections disentangling the male from the female cortex
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we define a feature vector f sm using measurementm. Basically,
since each CMN is symmetric, we extract the off-diagonal
elements of its upper triangular part. The dimension of each
feature vector is thus equal to nf = nr × (nr − 1)/2 . For nr = 35,
each cortical hemisphere is then represented by 595-
dimentional feature vector.

Supervised gender-related feature selection Supervised fea-
ture selection methods allow to reduce the dimensionality of
the training feature vectors by learning how to select the opti-
mal discriminative set of features supervised by the target
sample label (in our case male and female labels), thereby
eliminating redundancy and irrelevant features. In this study,
we leverage supervised inFS method (Roffo et al. 2015),
which has several appealing aspects. For instance, while typ-
ical feature selection methods evaluate and rank features indi-
vidually, inFS accounts for potential interactions among fea-
tures by (i) modeling the relationship between features, then
(ii) assigning a significance score to each feature by taking
into account all the possible feature subsets as paths
connecting them. To do so, we first define a set F of feature

d i s t r i b u t i o n s F ¼ N 1 μ1;σ1ð Þ;…;N n f μn f
;σn f

� �n o
,

where μ and σ respectively denote the rank and the weight
of the corresponding feature. Next, F is used to define an
adjacency matrix A∈ℝn f �n f modeling the relationship in sta-
tistical distribution between all pairs of features. An
element A(k, l) quantifying the statistical relationship between
features k and l is defined as: A(k, l) =ασkl + (1 −α)ckl, where
α is a loading coefficient (α ∈ [0, 1]), σk, l = max (σ(k), σ(l))
with σ(i) being the standard deviation over samples of feature
f(i) and ckl = 1 − |Spearman (f(i), f(j)) | with Spearman being the
Spearman’s rank correlation coefficient. Last, A is used to
score each feature according to its relevance to the target dis-

criminative task as follows: ~s ¼ ~Se
� �

i , where e is an array of

ones and~S ¼ I−rAð Þ−1−I . We note that I represents the iden-
tity matrix and r a real-valued regularization factor set to 0.01.

Supervised classifier learning Following the ranking of the
most discriminative features between both classes (i.e., male
and female brains), we select the top K = 100 features to train
an SVM classifier using leave-one-out (LOO) cross-validation
strategy. It is important to note that cross-validation ensures
the independence between feature selection and classification
steps, thereby eliminating spurious effects and incorrect
population-level inferences (Vul et al. 2009). From the stand-
point of scientific rigor, cross-validation is a more conserva-
tive way to infer the presence of a gender-CMN relationship
than is correlation. Cross-validation is designed to protect
against overfitting by testing the strength of the relationship
in a novel (unseen) sample, increasing the likelihood of repli-
cation in future studies. Testing and reporting performance in

independent samples will facilitate evaluation of the general-
izability of neuroscientific findings (Shen et al. 2017). Given n
subjects, LOO CV learns the classifier model using (n − 1)
training samples and their corresponding labels (male or fe-
male), then tests the learned model on the left-out subject to
predict its gender. This process is iterated n times.

Multiple cross-validations for model reproducibility and scal-
ability For rigorous scalability and reproducibility, we use
three different cross-validation techniques to identify gender-
related connectional features: LOO, 5-fold, and 10-fold. The
5-fold CV techniques are based on the same approach of the
LOO technique, except that instead of taking only one sample
for testing and do the iterations (which may take a certain
amount of time especially for a large dataset), we split the data
into ncv = 5, wherein each iteration we train the classifier
which ( ncv − 1) subsets, test the performances with the rest
one and continue the iterations until we have used all subsets
for training and testing. The same strategy is deployed for 10-
F CV where ncv = 10.

Identification of gender discriminative connectional features
The feature selection step allows removing the non-relevant
and redundant connectional features by assigning an impor-
tance weight to each feature and ranking it according to its
relevance to gender. Next, we only select the top kf features
with the highest ranks. For each cross-validation strategy, we
obtain a feature ranking vector and its associated weight vec-
tor. Next, we extract the top kf discriminative connections
revealed by each deployed cross-validation scheme. Next,
for each cortical measurement, we compute the average
weights of top kf features across the three CV strategies. We
note that this operation could result in finding kf

0 > kf due to

different top kf features for each cross-validation strategy.
Last, we average the latter weights across measurements and
we select only the top kf features. The circular graph in Fig. 2c
displays the top kf = 5 discriminative connectional features.

Statistics To evaluate the significance of our findings, we cal-
culate the Cohen’s d index which indicates the standardized
difference between two sets of data points (male and female
CMNs in our case). For each identified top discriminative
connectional feature connection ROIs Ri and Rj, we estimate
its mean μf(i, j) and standard deviation σf(i, j) in the female
group (resp., μm(i, j) and σm(i, j) in the male group). d(i, j) is
then defined as:

jμm i; jð Þ−μ f i; jð Þj
stdm

;where stdm ¼ σm i; jð Þ þ σ f i; jð Þ
2

:

We note that Cohen’s d is a number between 0 and 1. The
higher the d index (i.e., closer to 1) the higher the effect is.
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Results and discussion

Classification results revealing most gender-discriminative
CMN Figure 3 shows that SVM classifier achieved the best
classification accuracy results when predicting gender from
sulcal depth in both left and right hemispheres with a slightly
better performance in the left hemisphere (Cohen’s coefficient
d = 0.99 in Table 1). This might indicate that this cortical
attribute holds the most discriminative gender differences con-
nectivities. For instance (Gur and Gur 2017a), found that fe-
males have a better memory speed and accuracy while (Im
et al. 2008) found that sulcal depth plays a major role in mem-
ory construction, which might give insights into gender
differences.

To the best of our knowledge, while no study had investi-
gated the role of the left-hemispheric sulcal depth in gender
differences (Tian et al. 2011), found that males and females are
both globally efficient in their right hemisphere but females
are more locally efficient in their left hemisphere, which indi-
cates strong gender-related differences in the left hemisphere.

Cohen’s d results revealing most gender-discriminative CMN
Capitalizing on 698 healthy individuals (390 females and 308
males) all aged between 21 and 23 years old and by selecting
the top 5 highly ranked features derived from inFS shared
across the 3 different CV schemes, we identified the most
discriminative cross-validated morphological connectional
features encoding gender differences for each cortical mea-
surement as shown in Table 1. In fact, with a d = 0.99, the
morphological connection between the caudal anterior

cingulate cortex and the superior frontal gyrus in the left hemi-
sphere was identified as most discriminative between male
and female cortices, which is in line with the classification
accuracy results by SVM classifier in (Fig. 3). Moreover, the
connection between the posterior cingulate cortex and the su-
perior temporal gyrus scored second with d = 0.87 and the one
between the superior temporal gyrus and the insular cortex
scored third d = 0.86. The morphological connection between
the medial orbital frontal cortex and the insular cortex had a d
coefficient of d = 0.77 and the fifth most discriminative corti-
cal morphological connection was established between the
caudal anterior cingulate cortex and the superior temporal gy-
rus with d = 0.73. We found that the top four of these top five
most discriminative connections were derived from the sulcal
depth, which was shown to be the best cortical attribute for
gender prediction as displayed in (Fig. 3).

Insights into top 5 most discriminative cortical morphological
connections (Singer et al. 2009) found that insula cortex is
highly engaged in emotional processing (Jabbi et al. 2007;
Saarela et al. 2006; Singer et al. 2004, 2006, 2008). Found
that insula cortex (in particular its anterior part is known as
anterior insula) had a significant role in empathy and emotion-
al processing such as testing pleasant/ unpleasant drinks as
reported in (Jabbi et al. 2007). These findings are well sup-
ported by the fact that the insular cortex is anatomically related
to the amygdala (Diano et al. 2017), known as one of the
highest performance emotional processors in the human brain.
Another study led by (Chang et al. 2010) found that the supe-
rior temporal gyrus has a relevant role in phonetic processing

Fig. 3 Gender classification accuracy for the left and the right
hemispheres (LH and RH). Four cortical measurements were used: (1)
maximum principal curvature, (2) cortical thickness network, (3) sulcal

depth network and (4) average curvature network. We report the average
classification accuracy across four different cross-validation strategies:
leave-one-out, 5-fold and 10-fold using each cortical measurement
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due to its high speech responsiveness and thus supporting the
belief that the superior temporal gyrus is a high-performance
language processor.

Furthermore, as reported in (Boisgueheneuc et al. 2006), the
left superior frontal gyrus is found to be having a significant
role in the construction of the working memory neural network.
Moreover, the caudal anterior cingulate cortex is widely known
to be involved in the sensory-motor (Naito et al. 2000), found
that this region is highly involved in the motor reactions
guaranteeing the speed of these letters. In another study
(Addis et al. 2007), found that the posterior cingulate cortex is
active when people retrieve their autobiographical memories or
plan for the future, this could lead the thought that the posterior
cingulate cortex is engaged in the long-term memory activities.

Therefore, characterizing the connectivity between the cau-
dal anterior cingulate cortex and the superior frontal gyrus in
the left hemisphere as a gender differences biomarker is
backed in literature supporting that males outdo females in
the motor tasks and have a better working memory.
Additionally, the connectivity between the superior temporal
gyrus and posterior cingulate cortex justify why females have
higher results in verbal and memory tasks comparing the
males (Gur and Gur 2016; Hedges and Nowell 1995).
Finally, the connectivity linking the superior temporal gyrus

to the insular cortex is thought to be a significant gender dif-
ferences biomarker where females are known to score better
results in emotional and speech processing.

For each cortical hemisphere, we compared different
CMNs between males and females and examined their inter-
actions with gender. For each cortical measurement, Table 1
displays the top 5 most discriminative morphological brain
connections consistently revealed by our three cross-
validated analyses. Using maximum principal curvature mea-
surement, the most relevant connection for both hemispheres
connected the entorhinal cortex and the pericalcarine cortex.
Using cortical thickness, the most gender discriminative con-
nection linked the caudal anterior cingulate cortex with the
superior temporal gyrus for both hemispheres. Using sulcal
depth, we found that the connection between the entorhinal
cortex and insula cortex was most discriminative. As for the
average curvature measurement, the left entorhinal cortex and
isthmus cingulate cortex connection and the right entorhinal
cortex and lateral orbital frontal cortex were identified as gen-
der discriminative. Figure 2 displays the top 5 most discrimi-
native connections between male and female brains averaged
across all four cortical measurements. Interestingly, for both
hemispheres, we found that the entorhinal cortex acts as a
morphological ‘hub’ in CMNs derived from measurements

Table 1 Most discriminative morphological connections revealed using cortical morphological brain networks and statistics

According to Cohen (1988), an effect size of d = 0.8 constitutes a large effect (bold), d = 0.5 a medium effect (italic), and d = 0.2 a small effect. (*)
Regions with significant differences between men and women. n.s., differences not significant between males and females. Brain connections that were
reproduced across cortical measurements are colored.
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1,2 and 4 whereas the caudal anterior cingulate cortex acts as a
hub in CMNs constructed using sulcal depth.

Given the results we found when searching for the top 5
discriminative connectivities differencing males from fe-
males, both entorhinal cortex and the caudal anterior cingulate
cortex acted as morphological connectional hubs. We also
found a recurrent pattern wherein most of the top discriminative
connectivities involved memory-related regions linking to ei-
ther motor related or emotionally related regions. Knowing that
females are better in emotional and speech processing and
males are better in motor tasks we can conclude three major
results: (i) given the fact that memory is highly engaged in the
learning process, we found that males and females do learn in
different ways: males learn more through motor experiences
while females learn more from emotional experiences which
lead us to (ii): consider that ovarian hormones play a major role
in shaping emotional processing and thus thememorization and
learning process in females, the absence of these hormones after
menopause could justify why females are more prone to de-
mentia and other neurodegenerative diseases (Truzzi et al.
2012), and (iii) some of the top discriminative connectivities
are slightly different between hemispheres, which justifies the
human brain connectional asymmetry (McGlone 1980). Our
results are in line with the literature and could explain several
behavioral and physiological findings.

These findings might be behaviorally and thus politically
interpreted in a way to solve the long-lasting debated laws to
achieve gender equity. There are some perceptions that gender
differences can give justifications to the wide variety of pro-
posed theories suggesting that gender equality does not nec-
essarily guarantee gender equity, that females and males need
different treatments especially when it comes to addressing
psychological disorders and that males and females need to
be taught differently.

However, to sustain the scientific transparency, some lim-
itations need to be spotted. On one hand, this study was per-
formed on a narrow age range (all the subjects were aged
between 21 and 23 years old). It was also conducted without
any backed up behavioral experiences. We intend to investi-
gate the link between the gender discriminativemorphological
connectivities in relation to behavior in our future work.

Conclusion

In this paper, we presented the first study to investigate the
connectional morphology of the cortex responsible for gender
differences using cortical morphological networks derived from
a population of 698 individuals. We proposed a gender classi-
fication framework which leverages a landmark feature selec-
tion method. By identifying the reproduced connections across
different cross-validation strategies, we found that cortical mor-
phological connections involving (entorhinal cortex ↔ caudal

anterior cingulate cortex) and (entorhinal cortex ↔ transverse
temporal cortex) acted as most discriminative connections fin-
gerprinting gender differences. These are located in memory-
related regions linked to either emotional processing or motor
processing. Cortical morphological networks are a nascent con-
nectional representation of the brain connectome, which can
give unprecedented insights into gender differences in relation
to behavior, learning, and cognition. In our future work, we will
investigate gender-behavior relationship using CMNs in both
healthy and disordered populations.
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