
fcell-09-682261 June 23, 2021 Time: 15:4 # 1

ORIGINAL RESEARCH
published: 23 June 2021

doi: 10.3389/fcell.2021.682261

Edited by:
Na Luo,

Nankai University, China

Reviewed by:
Feng Gao,

The Sixth Affiliated Hospital of Sun
Yat-sen University, China

Tao Peng,
Guangxi Medical University, China

*Correspondence:
Baiyong Shen

shenby@shsmu.edu.cn
Xiaxing Deng

kejiadxx@hotmail.com
Zhiwei Xu

xzw10800@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular Medicine,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 18 March 2021
Accepted: 26 May 2021

Published: 23 June 2021

Citation:
Qian H, Li H, Xie J, Lu X, Li F,

Wang W, Tang X, Shi M, Jiang L, Li H,
Chen H, Peng C, Xu Z, Deng X and

Shen B (2021) Immunity-Related
Gene Signature Identifies Subtypes

Benefitting From Adjuvant
Chemotherapy or Potentially

Responding to PD1/PD-L1 Blockage
in Pancreatic Cancer.

Front. Cell Dev. Biol. 9:682261.
doi: 10.3389/fcell.2021.682261

Immunity-Related Gene Signature
Identifies Subtypes Benefitting From
Adjuvant Chemotherapy or
Potentially Responding to
PD1/PD-L1 Blockage in Pancreatic
Cancer
Hao Qian1,2†, Hongzhe Li1,2†, Junjie Xie1,2†, Xiongxiong Lu1,2, Fanlu Li1,2, Weishen Wang1,2,
Xiaomei Tang1,2, Minmin Shi1,2, Linxi Jiang1,2, Hongwei Li1,2, Hao Chen1,2,
Chenghong Peng1,2, Zhiwei Xu1,2* , Xiaxing Deng1,2* and Baiyong Shen1,2,3,4*

1 Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School
of Medicine, Shanghai, China, 2 Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School
of Medicine, Shanghai, China, 3 State Key Laboratory of Oncogenes and Related Genes, Shanghai, China, 4 Institute
of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China

Tumor microenvironment comprises of a variety of cell types, which is quite complex
and involved in chemotherapy and immune checkpoint blockage resistance. In order
to explore the mechanisms involved in tumor immune microenvironment in pancreatic
ductal adenocarcinoma (PDAC), we first constructed an immunity-related 18-gene
signature using The Cancer Genome Atlas (TCGA) PDAC project data. Then we applied
the 18-gene signature to divide PDAC patients into low score and high score groups.
Patients in high score group showed inferior prognosis, which was validated in another
four independent cohorts, including Ruijin cohort. High score group showed significant
enrichment of pathways involved in cell division and cell cycle especially in G1/S phase
transition. In high score group, IHC analysis revealed higher levels of the proliferative
indexes of Ki67 and PCNA than that in low score group. Prognostic analysis confirmed
that patients in high score group could benefit from the gemcitabine-based adjuvant
chemotherapy. In low score group, the programmed cell death 1 ligand 1(PD-L1) (+)
cases showed worse prognosis but higher T cell infiltration than PD-L1(−) cases.
Our immunity-related 18-gene signature could effectively predict PDAC prognosis,
and it might be a practical predictive tool to identify PDAC subtype benefitting from
gemcitabine-based adjuvant chemotherapy or potentially responding to PD1/PD-L1
blockade therapy.
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INTRODUCTION

Pancreatic cancer is a fatal malignancy with extremely poor
prognosis (Sodir et al., 2020), accounting for an estimated 57,600
new cases and 47,050 deaths annually (Siegel et al., 2020).
Owing to its anatomical and pathological features, pancreatic
cancer occurs occultly and grows rapidly. Most patients have
lost their chance of surgery when diagnosed (Strobel et al.,
2019). Although significant improvement has been achieved
in pancreatic cancer treatment, the 5-year survival rate of
pancreatic ductal adenocarcinoma (PDAC) is still rather low
(Zhu et al., 2018).

Immunity is the essential component of the tumor
microenvironment, which plays a pivotal role in tumor
initiation, progression, and metastasis (Qian and Pollard, 2010;
Berraondo et al., 2016; Keren et al., 2018). Each immune subtype
harbors different functions and can be used to predict the
states of tumors (Mollaoglu et al., 2018). In the previous study,
researchers showed that interfering with immune conditions by
targeting specific molecules could suppress tumor progression
and improve the effectiveness of chemotherapy (Galluzzi et al.,
2015). Among the specific molecules, those mainly expressed on
the cell membrane could maintain self-tolerance and modulate
immune responses by triggering immunosuppressive signaling
pathways, defining them as immune checkpoints (Wykes and
Lewin, 2018). Novel therapy targeting immune checkpoints,
such as programmed cell death 1 (PD1)/programmed cell
death 1 ligand 1 (PD-L1), cytotoxic T-lymphocyte associated
protein 4 (CTLA4) and T-cell membrane protein 3 (TIM3)
have made breakthrough in many types of cancer treatment
(Sharma and Allison, 2015; Topalian et al., 2016). However,
only a fraction of patients could acquire significant effect from
immune checkpoint blockade (Zappasodi et al., 2018). PDAC
patients responding little to immune checkpoints blockade may
be due to the insensitive immune microenvironment (Zhao et al.,
2019). In a phase II trial, the advanced PDACs could not benefit
from anti-CTLA4 (Ipilimumab) treatment (Royal et al., 2010).
In addition, anti-PD-L1 immunotherapy also showed limited
effects in PDAC in a phase I trial (Brahmer et al., 2012). Many
studies have revealed some factors involved in the sensitivity of
immune checkpoint blockade, such as the expression of targeted
molecules, microsatellite instability, mutation load, and immune
infiltration (Catalano et al., 2019; Mandal et al., 2019). For
example, the tumors with CD3(+) and CD8(+) T cell infiltration
were sensitive to anti-PD-L1 and anti-CTLA4 immunotherapy
(Foy et al., 2017; Wu et al., 2018). Thus, exploring the tumor
immune microenvironment could help us make the personalized
treatment of immune checkpoint blockade in PDAC.

The method of combining immunity-related genes with
clinical characteristics has been applied to predict prognosis,
recurrence and response to therapy in multiple cancers (Wu
et al., 2018). In a previous study, researchers constructed a
stromal immunotype to predict patients’ overall survival (OS)
and diseases free survival (DFS) in bladder cancer (Foy et al.,
2017). In gastric cancer, a least absolute shrinkage and selection
operator (LASSO) Cox regression model was established to
predict patients’ prognosis and identify the subgroup suitable

for adjuvant chemotherapy (Cheadle et al., 2003). These studies
revealed the detailed mechanisms of the tumor immune
microenvironment and provided significant indications for
clinical therapy.

In the present study, we aimed to develop an immunity-
related gene signature based on LASSO Cox regression to
predict patients’ outcomes using data from TCGA, which was
further validated in another four independent cohorts from the
International Cancer Genome Consortium (ICGC), the Gene
Expression Omnibus (GEO), and Ruijin cohort. Furthermore, the
signature could be used to identify PDAC subtype benefitting
from gemcitabine-based adjuvant chemotherapy or possibly
responding to anti-PD1/PD-L1 immunotherapy.

MATERIALS AND METHODS

PDAC Datasets Extraction and Data
Processing
Raw count data and corresponding clinical characteristics of
173 patients with PDAC were downloaded from the TCGA
database1. ICGC CA (Canada) raw RNA sequencing dataset
and corresponding clinical characteristics of 115 patients, and
the ICGC AU (Australia) gene expression microarray dataset
and corresponding clinical characteristics of 68 patients were
downloaded from the ICGC database2. The GEO dataset
GSE57495 and corresponding clinical characteristics of 63
patients were downloaded from GEO database3. RNA-sequencing
data was normalized by transcript per million (TPM), and
gene expression was calculated as log2 (TPM + 1). For
the gene expression microarray, if one gene was detected
using multiple probes, the probe with the maximum average
used. Then, gene expression values were normalized by log2
transformation. To remove the batch effects of different
platform in this study, the expression values of each gene were
z-score transformed.

Identification of Immunity-Associated
Genes
By interrogating the ImmPort database4, we obtained a total of
1,811 immunity-related genes. After matching with genes in the
TCGA database, 1,308 immunity-related genes were used for
further analysis.

Patients
A total of 101 fresh frozen primary PDAC samples were
utilized as the validation cohort (Ruijin cohort), which
were collected consecutively at Ruijin Hospital from April
2012 to November 2014. The inclusion and exclusion
criteria were as follows: (1) Pathologically diagnosed as
having pancreatic ductal adenocarcinoma (PDAC) without
any other types of pancreatic cancer; (2) without other

1https://cancergenome.nih.gov/
2https://icgc.org/
3https://www.ncbi.nlm.nih.gov/geo/
4https://www.immport.org/home
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FIGURE 1 | Flowchart presenting the process of construction of immunity-related 18-gene signature, validation and clinical significance relevance in this study.

TABLE 1 | The association of the immune signature with clinicopathological
characteristics in TCGA database.

Features Total Score level p-value

High Low

Gender 0.4997

Male 94 63 31

Female 78 56 22

Age 0.1493

≤60 58 36 22

>60 114 83 31

T 0.0078*

T1 + T2 30 15 15

T3 + T4 141 105 36

N 0.0121*

N0 48 27 21

N1 120 91 29

M 0.5745

M0 76 55 21

M1 4 2 2

TNM stage 0.0018*

I 20 8 12

II + III + IV 150 111 39

Histologic Grade 0.0469*

G1 29 14 15

G2 93 67 26

G3 48 36 12

G4 2 2 0

*P < 0.05.

malignant cancers; and (3) did not receive any preoperative
adjuvant therapy. The clinicopathological variables are listed in

Supplementary Table 2. All patients provide signed informed
consent. The study was approved by the Ethical Committee
of Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China.

RNA Extraction and Quantitative
Real-Time Reverse Transcription PCR
(qRT-PCR)
Total RNA from 101 PDAC samples (Ruijin cohort) was
extracted using the TRIzol reagent (Invitrogen, Waltham, MA,
United States) according to the manufacture’s protocol. Reverse-
transcription PCR was performed using a Reverse Transcription
kit (TOYOBO, Osaka, Japan). Quantitative real-time PCR was
carried out in 10 µl reaction mixtures with an HT 7900
machine (Applied Biosystems, Foster City, CA, United States)
using SYBRTM Select Master Mix (Applied Biosystem). The
gene primers were designed and synthesized by Sangon Biotech
(Shanghai, China), and are listed in Supplementary Table 3.
GAPDH (encoding glyceraldehyde-3-phosphate dehydrogenase)
was applied as an internal control. Gene expression was
normalized as −1CT = − (CT gene – CT GAPDH). Finally,
expression values of each gene were z-score transformed
(Cheadle et al., 2003).

Identification and Validation of the
Immunity-Related Gene Signature
First, we used the TCGA PDAC dataset as the training cohort.
Using univariate Cox analysis, immunity-related genes that
were significantly associated with good or poor prognosis were
identified using the “Survival” package in the R software5. The

5https://www.r-project.org/
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TABLE 2 | The association of the immune signature with clinicopathological
characteristics in Ruijin cohort.

Features Total Score level p-value

High Low

Gender 0.2518

Male 63 42 21

Female 38 21 17

Age 0.0757

≤60 46 33 13

>60 55 30 25

Tumor size 0.5461

≤4 cm 82 50 32

>4 cm 19 13 6

Vascular invasion 0.7750

Yes 55 35 20

No 46 28 18

Lymph node metastasis 0.3263

Yes 62 41 21

No 39 22 17

Differentiation 0.0145*

Well/moderate 15 18

Poor 48 20

TNM stage 0.1340

I 19 9 10

II + III + IV 82 54 28

*P < 0.05.

prognostic genes were displayed by a forest plot using “forestplot”
in R. Then, LASSO Cox regression was performed to generate a
prognostic signature with the immunity-related genes using the
“glmnet” package in R (Liu et al., 2019). Finally, a nomogram
based on 18 immunity-related genes was plotted using the “rms”
package in R, and the corresponding formula was extracted
using the “nomogramEx” package in R. According the risk
score and survival status of every patient, optimal cutoff values
were set and all patients could be assigned to a high score or
low score group.

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathway Analyses
By comparing the differentially expressed genes (DEGs)
between the high score or low score group using the
“limma” package in R, we obtained the significantly
changed genes between the two groups. The gene names
were imported into the Metascape database, and GO
and KEGG pathway analyses were performed. The
significantly enriched pathways were displayed in a histogram
(p < 0.01).

Gene Set Variation Analysis (GSVA) and
Gene Set Enrichment Analysis (GSEA)
The GSVA analysis was performed using “GSVA” package in R.
The gene sets using in GSVA analysis were downloaded from

GSEA molecular database6. T cell immunoreaction and PD1-
related immunosuppressive pathways were extracted and used
for GSVA analysis. As for GSEA analysis (Mootha et al., 2003;
Subramanian et al., 2005), we construct a gemcitabine resistance
related gene set by comparing the DEGs between the gemcitabine
resistance population and main tumor cell population in GSE
36563 dataset and using genes with p value < 0.05 and | Log2
fold change | > 1. The gemcitabine resistance related gene set
was shown in Supplementary Table 4.

Immunohistochemistry (IHC)
Of the above 101 PDAC samples, 81 tissue specimens were
fixed using 10% neutral buffered formaldehyde, and then
embedded in paraffin. Tissue sections were cut into 5-µm thick
slices, which were coated with 3-aminopropyltriethoxysilane.
Expression of CD3 + T cell, CD8 + T cell, and PD-L1
in these paraffin-embedded tissue sections were examined by
IHC using the streptavidin-peroxidase method. A rabbit anti-
human Ki67 monoclonal antibody (dilution, 1:250; catalog no.
ab16667; Abcam, Cambridge, United Kingdom), a rabbit anti-
human PCNA monoclonal antibody (dilution, 1:250; catalog no.
ab265609; Abcam, Cambridge, United Kingdom), a rabbit anti-
human PD-L1 monoclonal antibody (dilution, 1:250; catalog
no. ab 213524; Abcam, Cambridge, United Kingdom), a rabbit
anti-human CD3 monoclonal antibody (dilution, 1:150; catalog
no. ab135372; Abcam), a rabbit anti-human CD8 monoclonal
antibody (dilution, 1:250; catalog no. ab93278; Abcam) were
used. The experimental procedure was as follows: (1) Slides were
baked at 65◦C for 2 h, deparaffinized in xylene four times (8 min
each time), and then rehydrated in 100, 95, 85, and 75% ethanol
successively (5 min each time). For antigen retrieval, the sections
were autoclaved at 121◦C for 10 min in citrate buffer (10 mmol/l
sodium citrate; pH 6.0). By incubating the slides in 0.3% H2O2
solution, the endogenous peroxidase activity was blocked. After
blocking with normal goat serum, the sections were incubated
with the primary antibodies overnight at 4◦C. Secondary
antibodies (goat anti-rabbit antibody; 1:100 dilution; cat no.
CW2069A; CWBio, Beijing, China) was incubated with the tissue
sections for 15 min at room temperature. Finally, the slides were
stained with 3, 3-diaminobenzidine tetrahydrochloride (DAB)
and the nuclei were counterstained with hematoxylin. To semi-
quantify the expression of Ki67, PCNA, and PD-L1 in PDAC
tissue, we referenced both the proportion and intensity of
stained tumor cells. Proportion scores: <5%, 5–25%, 25–50%,
50–75%, and ≥75% were recorded as 0, 1, 2, 3, 4, respectively.
Staining scores: negative, weak, moderate, and strong staining
were recorded as 0, 1, 2, 3, respectively. Finally, IHC scores
was calculated as “proportion score × intensity score.” For each
case, five high power fields (400×) were evaluated and averages
were calculated.

Statistical Analysis
All statistical analyses were performed using GraphPad Prism
7.0 (GraphPad Software Inc., La Jolla, CA, United States). The
Kaplan-Meier method was used to plot survival curves, and the

6https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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FIGURE 2 | Identification and validation of the immune predictive model. (A) A forest plot showing associations between the 53 proteins whose p value were less
than 0.001 and overall survival in the training group. Unadjusted hazard ratios are shown with 95% confidence intervals. (B) The cross-test for selecting parameters
in the LASSO model. Lambda represents the selected parameters, and partial likelihood deviance is plotted against log (lambda). (C) Nomogram predicting the
probability overall survival. Eighteen genes were used to assign the points and draw a line depending on the corresponding values. “Total points,” The sum of these
18 genes’ points makes up the “Total points” and can predict overall survival. (D) The ROC curve of the TCGA (n = 173) training model for predicting patients’ overall
survival.

FIGURE 3 | The distribution and Kaplan-Meier survival curves of the immunity-related 18-gene signature depends on the patients’ risk score. The risk score for all
patients with PDAC were plotted in ascending order and marked as low score (blue) or high score (red). The survival status of the patients is marked as dead (red)
and alive (blue). The proportion of patients who died in the high score group is obviously higher compared with that in the low score group. (A) TCGA (n = 173),
(B) ICGC AU (n = 68), (C) ICGC CA (n = 115), (D) GSE57495 (n = 63), and (E) Ruijin cohort (n = 101) are shown, respectively, and the Ruijin cohort also exhibited
the DFS.
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FIGURE 4 | Comparison of prognostic prediction ability between our immune signature and TNM stage. The Kaplan-Meier survival curves according to TNM stage,
and forest plots show the HR value of our immune signature and TNM stage in (A) TCGA (n = 173), (B) ICGC AU (n = 68), and (C) Ruijin cohort (n = 101).

log-rank test was used to assess intergroup differences. Difference
between two groups was assessed using Student’s t-test. The χ2

test was carried out to analyze the relationship between the
18-gene signature and clinical characteristics. P < 0.05 were
considered statistically significant.

RESULTS

Characteristics of Patients With PDAC
The schematic flow chart of this study is shown in Figure 1.
Our study totally enrolled 520 patients diagnosed with PDAC.
Among them, the TCGA (n = 173) patients with PDAC were
assigned as the training cohort, and the ICGC AU (n = 68),
ICGC CA (n = 115) and GSE57495 (n = 63) PDAC patients
were assigned as validation cohorts. Furthermore, patients
(n = 101) with PDAC from Ruijin hospital, Shanghai Jiao
Tong University School of Medicine were used as another
independent validation cohort. The characteristics of the patients
from the TCGA database and Ruijin cohort are shown in
Tables 1, 2, respectively.

Identification and Validation of
Immunity-Associated Gene Signature in
PDAC
We matched immunity-related genes from the ImmPort database
with genes in the TCGA database and 1308 immunity-related

genes (Supplementary Table 1) were obtained for further
analysis. By performing univariate Cox regression analysis,
53 genes whose p values were less than 0.001 were chosen
as candidates (Figure 2A). We then used the LASSO Cox
regression algorithm and a total of 18 genes were identified
to develop a risk score classifier (Figure 2B). A nomogram
of the 18 genes predicting the probability of overall survival
is shown in Figure 2C. The formula of risk score calculation
was illustrated in Supplementary Table 2. We used a receiver
operating characteristic (ROC) curve (Figure 2D) to test the
effectiveness and determine the best cutoff value of the risk
scores. The area under the curve (AUC) was 0.733, and 20.91
was identified as the optimal cutoff value. We divided patients
into high score and low score group using the 18 immunity-
related classifier and plotted the Kaplan-Meier survival curves.
We found that patients in the low score group had more
favorable prognosis than patients in the high score group,
both in training and validation cohorts. In TCGA database
(Figure 3A), patients in the low score group had significantly
longer OS than patients in the high score group (HR = 4.48
(2.93–6.86), p < 0.0001). In the other four validation cohorts
(Figures 3B–E), patients in the high score group also had
inferior outcomes compared with those in the low score group
(ICGC AU cohort: HR = 2.18 (1.20–3.97), p = 0.011; ICGC CA
cohort: HR = 1.55 (0.92–2.15), p = 0.039; GSE57495 cohort:
HR = 2.02 (1.11–3.71), p = 0.029; Ruijin cohort: HR = 3.16
(1.96–5.10), p < 0.0001). In Ruijin cohort, the phenomenon also
applied to DFS, with an HR of 2.56 (1.65–3.96, p < 0.0001).
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FIGURE 5 | Pathways involved in the immunity-related 18-gene signature. The volcano plot of DEGs in (A) TCGA, (B) ICGC AU, (C) ICGC CA databases. The
volcano plots were constructed using fold-change and p values. Genes with fold-change > 1.2 and p < 0.05 were used to pathways analysis. (D,E) Similar GO and
KEGG pathways enriched in high score group in TCGA, ICGC CA, and ICGC AU.

We also found that the immune signature was significantly
related to TNM stage and histological grade in the TCGA
database (Table 1), and similar results were observed in Ruijin
cohort (Table 2).

Prognosis Prediction of
Immunity-Related Gene Signature Is
Superior to TMN Stage
After constructing the immunity-related 18-gene classifier,
we performed univariate and multivariate Cox regression
analysis involved in our immune signature and multiple
clinicopathological features, such as TNM stage (II + III + IV
vs. I), the CA19-9 level (>200 kU/L vs.≤200 kU/L), the adjuvant
chemotherapy status (yes or no), and PD-L1 expression. The
CA 19-9 level was a moderate risk predictor in PDAC and
we assigned 200 kU/L as boundary according to previous
studies (Ballehaninna and Chamberlain, 2012; Aziz et al.,
2019). In TCGA cohort, our immune signature (p < 0.001,
HR = 5.09), TNM stage (p = 0.026, HR = 2.58), differentiation
(p = 0.042, HR = 1.57), chemotherapy status (p = 0.021,
HR = 0.61) and PD-L1 (p = 0.035, HR = 1.38) were found
to be effective predictors of OS by univariate Cox regression
analysis (Supplementary Figure 1A). Then we took these

factors together to perform multivariate Cox regression
analysis. Interestingly, our immune signature (p < 0.001,
HR = 4.86) and chemotherapy status (p < 0.001, HR = 0.40) were
independent prognosis factors (Supplementary Figure 1B). In
Ruijin cohort, our immune signature (p < 0.001, HR = 3.65),
CA 19-9 level (p = 0.003, HR = 2.05) and differentiation
(p = 0.002, HR = 2.42) were significantly related to OS by
univariate Cox regression analysis (Supplementary Figure 1C).
Multivariate analysis revealed that our immune signature
(p < 0.001, HR = 3.45), CA 19-9 level (p = 0.002,
HR = 2.18) and differentiation (p = 0.012, HR = 2.05)
could serve as independent predictors for OS in PDAC
(Supplementary Figure 1D).

In order to compare the prognosis prediction ability
between the immune signature and T stage, N stage, and
TNM stage, we also plotted the Kaplan-Meier survival
curves of these clinicopathological features, and the p
value and HRs were obtained by log rank test. In the
TCGA data (Figures 3A, 4A), the HR value of our
immune signature (HR = 4.48, 2.93–6.86) was superior
to T stage (HR = 2.23, 1.35–3.67), N stage (HR = 2.24,
1.45–3.68) and TNM stage (HR = 2.64, 1.50–4.65). Similar
results were observed in the ICGC AU and Ruijin cohorts
(Figures 3B,E, 4B,C).
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FIGURE 6 | Identification and validation of a highly proliferative subgroup of PDAC. (A) Heatmap showed that G1/S transition pathway was obviously enriched in
high score group. We used kmeans clustering to draw heatmaps, and the lines left to heatmaps represent that the genes at ends of the lines had a high correlation.
And the gene names in each row from top to bottom are ANXA1, AURKA, BCAT1, C10orf99, CCNA2, CCNB1, CCND1, CCNE1, CDC25C, CDC45, CDC6, CDK1,
CDK2, CDK2AP2, CDK6, CDKN3, CDT1, E2F1, E2F7, E2F8, EGFR, EIF4EBP1, EZH2, GMNN, GTSE1, IQGAP3, KIF14, MCM10, MCM2, MCM4, MUC1, ORC1,
ORC6, PML, PSME2, RCC1, RRM2, SFN, TNKS1BP1, TYMS. (B) H&E staining and immunohistochemical analyses of Ki-67, PCNA were performed on the tumor
sections (low score group, n = 31; high score group, n = 50) (C) The IHC scores of Ki-67 and PCNA in low score (n = 31) and high score (n = 50) groups.
***P < 0.001.

The Immunity-Related 18-Gene
Signature Predicts Patients’ Response to
Adjuvant Chemotherapy in PDAC
To interrogate potential signaling pathways involving in
our immune signature in PDAC, we compared differentially
expressed genes between high score group and low score group,
and selected the genes with fold-change > 1.2 and p.adjust
value < 0.05 to perform the GO and KEGG enrichment
analyses (Figures 5A–C and Supplementary Figures 2A–C).
Similar enriched pathways from the 3 datasets were displayed

in Figures 5D,E. Cell cycle, cell division, p53 signaling pathways
were significantly enriched in high score group, which indicated
that it harbored higher proliferative potential. It is well known
that gemcitabine exerts antitumor activity mainly by targeting
G1/S phase. In GO term of G1/S phase transition, 40 genes
were significantly enriched in high score group in TCGA cohort,
and similar results were observed in another three independent
cohorts (Figure 6A). Then H&E staining was used to detect
the proliferation related markers (Ki67 and PCNA) in 81 PDAC
patients (low score group, n = 31; high score group, n = 50) in
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FIGURE 7 | Benefit of gemcitabine-based chemotherapy among patients in high and low score groups. (A) The gemcitabine resistance related gene set was
significantly enriched in the low score group of TCGA cohort by GSEA analysis. The green curve represents enrichment score (ES). The highest point was used to
represent ES value in gemcitabine resistance pathway. The ES value indicates the correlation between gene and gemcitabine resistance pathway. The black bar
codes represent genes in gemcitabine resistance pathway and these genes were ordered according to their expression levels. The left end or right end genes are
leading edge subset strongly contributed to ES value. The bottom numbers represent the order of expression levels in the genome from highest to lowest. (B) The
198 gemcitabine resistance-related genes were significantly attenuated in high score group of TCGA cohort (p < 0.05). Patients from the (C) TCGA database
(n = 173) and (D) Ruijin cohort (n = 101) are divided into four groups (TCGA, Low score non-chemotherapy, n = 17, Low score chemotherapy, n = 36, high score
non-chemotherapy, n = 45, high score chemotherapy, n = 75; Ruijin, Low score non-chemotherapy, n = 23, Low score chemotherapy, n = 15, high score
non-chemotherapy, n = 34, high score chemotherapy, n = 29) and then Kaplan-Meier survival curves were plotted.

Ruijin cohort. The IHC analysis verified that higher levels of Ki67
and PCNA in high score group than that in low score group
(Figures 6B,C). These results indicated that patients in high score
group might be more responsive to chemotherapy targeting cell
cycle (Venkatasubbarao et al., 2013).

As the first-line medicine for chemotherapy, gemcitabine
has proven its effectiveness in PDAC (Fuchs et al., 2015).
Cells possessing a vigorous proliferation ability are more
sensitive to gemcitabine therapy (Zheng et al., 2015). Thus,
we suspected that patients might be more sensitive to
gemcitabine-based chemotherapy in high score group. We
further constructed a gemcitabine resistance related gene set by
using GSE36563 dataset (Van den Broeck et al., 2012), which
contained 484 genes upregulated in gemcitabine resistance
group, named as GEMCITABINE_RESISTANCE_UP. GSEA

analysis showed that the gene set was significantly enriched
in low score group in TCGA cohort (Figure 7A), and
heatmap was further plotted to display 198 significantly
attenuated genes of this gene set in high score group
(Figure 7B and Supplementary Table 5). Prognosis analysis
showed that the patients in high score group could benefit
from chemotherapy in both the TCGA and Ruijin cohorts
[Figures 7C,D, TCGA: chemotherapy vs. non-chemotherapy,
p < 0.0001, HR = 0.39(0.23–0.67); Ruijin: chemotherapy
vs. non-chemotherapy, p = 0.0083, HR = 0.46(0.25–0.82)].
However, the patients in low score group did not display
this phenomenon [Figure 7C, TCGA: chemotherapy
vs. non-chemotherapy, p = 0.52, HR = 1.53(0.45–5.22);
Ruijin: chemotherapy vs. non-chemotherapy, p = 0.21,
HR = 1.72(0.69–4.26)].
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FIGURE 8 | PD-L1(+) cases in low score group show inferior prognosis and lymphocytes infiltration. Kaplan-Meier survival curves of PD-L1 expression in all patients,
the low score group, and the high score group in (A) TCGA (High score: PD-L1 high, n = 74; PD-L1 low, n = 46. Low score: PD-L1 high, n = 26; PD-L1 low, n = 27)
and (B) Ruijin cohort (High score: PD-L1 high, n = 52; PD-L1 low, n = 11. Low score: PD-L1 high, n = 12; PD-L1 low, n = 26). (C) The relative RNA level of immune
infiltration markers in the TCGA database, including PD-L1, CD3D, CD3E, CD3G, CD247, CD4, CD8A, CD8B. (D) Heatmap showed that higher GSVA scores of T
cell immunoreaction pathways and PD1-related immunosuppressive pathways in PD-L1(+) than in PD-L1(–) cases in low score group. (E) IHC profile and
corresponding scores of PD-L1, CD3 and CD8 in four groups (High score_PD-L1 high, n = 40; High score_PD-L1 low, n = 10; Low score_PD-L1 high, n = 10; Low
score_PD-L1 high, n = 21). *p < 0.05; **p < 0.01; ***p < 0.001; n.s., p > 0.05.

Identification of a Lymphocyte-Infiltrated
PD-L1(+) PDAC Subgroup Associated
With Poor Prognosis
The immunotherapy targeting PD-L1 showed impressive anti-
tumor activity. In this study, PD-L1 expression could successfully
predict the patients’ outcome in PDAC in the TCGA data
(Figure 8A), but not in the other four interdependent cohorts
(Figure 8B, Supplementary Figures 3A–C). However, we found
that low expression of PD-L1 was significantly related to longer
OS in low score group in TCGA and Ruijin cohorts. In TCGA
cohort (Figure 8A), patients with high PD-L1 expression had
poorer OS than patients with low PD-L1 expression in low score
group, with an HR of 3.79 (1.14–12.59, p = 0.033). In the Ruijin
cohort (Figure 8B), patients with low PD-L1 expression had
favorable outcomes compared with patients with high PD-L1in
low score group, with an HR against low PD-L1 expression

of 2.93 (1.01–8.45, p = 0.0092). Although the results did not
show significant differences, we discovered the same trend in
low score group of the ICGC AU cohort and GSE 57495 cohort
(Supplementary Figures 3B,C). However, in high score group,
PD-L1 expression showed the reverse function in the ICGC CA
and ICGC AU cohorts [ICGC CA: PD-L1 high vs. PD-L1 low,
p = 0.035, HR = 0.58(0.32–1.03); ICGC AU: PD-L1 high vs. PD-
L1 low, p = 0.032, HR = 0.37(0.09–1.52)]. The mRNA level of
PD-L1 expression did not show significant differences between
low score and high score groups (Supplementary Figure 3D).
In TCGA database, the CD3D, CD3E, CD3G, CD247, CD4,
CD8A, and CD8B RNA levels were the highest in Low
score_PD-L1 high group (Figure 8C). Moreover, we observed
not only the activation of T cell immunoreaction pathways
in low score group, but also the activation of PD1-related
immunosuppressive pathways by GSVA analysis (Figure 8D).
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FIGURE 9 | Prognosis analysis of TIM3, CTLA4, IDO1 and LAG3 in TCGA database. Kaplan-Meier survival curves of (A) IDO1 (High score: PD-L1 high, n = 75;
PD-L1 low, n = 45. Low score: PD-L1 high, n = 23; PD-L1 low, n = 30), (B) LAG3 (High score: PD-L1 high, n = 88; PD-L1 low, n = 32. Low score: PD-L1 high,
n = 19; PD-L1 low, n = 34), (C) TIM3 (High score: PD-L1 high, n = 100; PD-L1 low, n = 20. Low score: PD-L1 high, n = 38; PD-L1 low, n = 15), (D) CTLA4 (High
score: PD-L1 high, n = 75; PD-L1 low, n = 45. Low score: PD-L1 high, n = 33; PD-L1 low, n = 20) expression in all patients, or by subgroup analysis based on our
immune signature in TCGA database.

In the Ruijin cohort, the IHC result showed higher numbers
of CD3(+) T cells and CD8(+) T cells in PD-L1(+) cases in
low score group (Figure 8E, all p < 0.05). The above results
indicated that PD-L1(+) cases in low score group displayed
stronger immune infiltration and may be suitable for PD1/PD-L1
blockade immunotherapy.

We also performed prognosis of other immune checkpoints
in PDAC, such as IDO1, LAG3, TIM3, and CTLA4. As shown
in Figures 9A–D, high expression of IDO1 was associated
with poor outcome in PDAC in TCGA database [IDO1:
p = 0.039, HR = 1.61(0.95–2.72)], but no significant difference
for LAG3 [p = 0.19, HR = 0.75(0.50–1.13)], TIM3 [p = 0.059,
HR = 1.56(0.92–2.64)] and CTLA4 [p = 0.23, HR = 0.78(0.51–
1.20)]. However, by conducting subgroup analysis based on

our immune signature, high levels of TIM3 and CTLA4 were
significantly associated with poor OS in low score group
[Figures 9A–D, TIM3: p = 0.044, 6.17 (1.83–20.83); CTLA4:
p = 0.0019, HR = 4.99(1.53–16.30)], but not for LAG3 [Figure 9B,
p = 0.15, HR = 0.25(0.07–0.97)]. High level of IDO1 also tended
to be related to short OS in low score group [Figure 9A, IDO1:
p = 0.074, HR = 2.82(0.84–9.50)], but did not show significant
difference, which may be due to small sample size (n = 53).
Because TIM3 and CTLA4 expression could significantly predict
OS in low score group in TCGA database, we further performed
the above analyses of TIM3 and CTLA4 in ICGC CA, ICGC AU
and GSE57495 databases (Supplementary Figure 4). Although
TIM3 and CTLA4 expression showed similar trends generally,
but did not have the uniformity as PD-L1.
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DISCUSSION

The immune microenvironment plays a pivotal role in tumor
progression (Biswas, 2015; Chen and Mellman, 2017). Brooks
used a 54-gene hypoxia-immune signature to identify subtype
associated with prognosis and potentially responsive to targeted
immunotherapies in head and neck cancer (Brooks et al.,
2019). In breast cancer, Oshi et al. (2020) also generated
a 4-gene score to determine the subtype which response to
neoadjuvant chemotherapy and show with high expression of
T cell exhaustion marker genes. The clinical significance of
immune classification has been demonstrated in many diseases
(Brooks et al., 2019; Li et al., 2019; Oshi et al., 2020); therefore,
we attempted to explore the relationship between immunity-
related genes and the clinical significance of PDAC in this study.
Kandimalla et al. (2020) constructed an immune, stromal and
proliferation (ISP) gene signature to predict patient outcome
in PDAC. They obtained a 15-gene signature from a 170 ISP-
related genes panel. However, we focused on the immune-related
genes and acquired the 18 immunity-related gene signature
from an 1,811 immunity-related genes panel. IL32 appeared
both in ISP related signature and our immune signature,
indicating that IL32 could be a pivotal molecule in PDAC
progression. ISP signature and our 18 immunity-related gene
signature could serve as independent predictors to predict OS
of the PDAC patients, and our immune signature also showed
stronger prediction capability than TNM stage. Furthermore,
our results further indicated that patients in high score group
PDACs could benefit from gemcitabine-based chemotherapy and
patients in low score group may potentially response to PD1/PD-
L1 blockade.

In this study, we firstly developed an 18 immunity-related
gene classifier to predict patient outcome from TCGA data.
PDAC patients with high immune score ≥20.91 were defined
as high score group, and the others were defined as low score
group. High score group showed shorter overall survival, which
was validated in another four independent cohorts (a total of
347 patients). GO and KEGG pathway analysis revealed that
the GO terms of cell cycle, cell and mitotic nuclear division
were significantly enriched in high score group, such as G1/S
phase transition. Besides, high score group also displayed higher
levels of the proliferative indexes of Ki67 and PCNA and low
expression of the gemcitabine resistance related genes. As is
well known, gemcitabine mainly blocks cell cycle G1/S phase
transition to exert anti-tumor activity (Fu et al., 2018). The above
results indicated that high score group may be the candidate
who benefited from gemcitabine-based chemotherapy. However,
patients in low score group receiving chemotherapy showed no
benefits and even worse prognosis.

Our signature construction was based on immunity; therefore,
we explored the relationship between the subtypes and the
response to immunotherapy. PD-L1 expressed on the surface of
tumor cells could recognize and bind PD1 expressed on effector
T cells, which transmit inhibitory immune signals to induce
T cell apoptosis and inhibit T cell activation and proliferation
(Gibney et al., 2016; Emens, 2018). However, the anti-PD1/PD-
L1 agents in PDAC have limited efficacy (Lu et al., 2017; Mace

et al., 2018). In addition to establishing effective combination
therapy, it is also necessary to identify subtypes suitable for
anti-PD1/PD-L1 immunotherapy (Topalian et al., 2015). In this
study, patients with low PD-L1 expression suggested a favorable
prognosis in low score group in two cohorts (TCGA and Ruijin).
In the ICGC CA data, the result was different from other four
datasets, perhaps because of microdissection which resulted in
removal of immune component. In the ICGC AU and GSE 57495
cohorts, the lack of statistical differences might have been caused
by the small sample size. However, in high score group, PD-
L1 did not perform this function or even showed the reverse
results. Furthermore, the RNA levels of CD3, CD4, and CD8
in low score group with high PD-L1 expression showed the
highest level among the four subtypes in the TCGA database.
GSVA analysis also indicated T cell immunoreaction activation
and PD1-related immunosuppression in PD-L1(+) cases in low
score group. These results were also supported by the IHC
results in the Ruijin cohort, in which CD3(+), CD8(+) T cells
displayed a distinct enrichment in PD-L1(+) low score group.
The infiltration of CD3(+), CD8(+) T cells was evidence that
could be used to predict a patient’s response to anti-PD1/PD-
L1 immunotherapy (Ribas et al., 2017; Danilova et al., 2019). In
this study, the proportion of patients in low score group with
high PD-L1 expression was approximately 20%. This finding was
consistent with previous studies that only 10–30% of patients
respond to anti-PD1/PD-L1 therapy (Page et al., 2014; Ott et al.,
2019). Taken together, the patients with high PD-L1 expression
in low score group might be a potential subtype suitable for
anti-PD1/PD-L1 immunotherapy in PDAC.

In conclusion, by analyzing genomic data from the TCGA
database, we constructed an immunity-related signature to divide
PDACs into two subtypes: low score and high score groups.
Patients in high score group showed inferior prognosis, but could
benefit from gemcitabine-based chemotherapy. Furthermore,
results also indicated that PD-L1(+) tumors in low score group
might respond to PD1/PD-L1 blockade therapy.
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