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High morbidity and mortality of diabetes mellitus (DM) throughout the human population is a serious threat which needs to be
addressed cautiously. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are most prevalent forms.
Disruption in insulin regulation and resistance leads to increased formation and accumulation of advanced end products
(AGEs), which further enhance oxidative and nitrosative stress leading to microvascular (retinopathy, neuropathy, and
nephropathy) and macrovascular complications. These complications affect the normal function of organ and tissues and may
cause life-threatening disorders, if hyperglycemia persists and improperly controlled. Current and traditional treatment
procedures are only focused on to regulate the insulin level and do not cure the diabetic complications. Pancreatic
transplantation seemed a viable alternative; however, it is limited due to lack of donors. Cell-based therapy such as stem cells is
considered as a promising therapeutic agent against DM and diabetic complications owing to their multilineage differentiation
and regeneration potential. Previous studies have demonstrated the various impacts of both pluripotent and multipotent stem
cells on DM and its micro- and macrovascular complications. Therefore, this review summarizes the potential of stem cells to
treat DM and its related complications.

1. Introduction

The diabetes mellitus (DM), one of the most prevalent non-
communicable disease, is characterized by hyperglycemia
leading to the development of severe life-threatening compli-
cations [1, 2]. Recent decades have witnessed a sudden
increase of diabetes throughout the world, in spite of numer-
ous efforts made to control to outspread of this metabolic

disorder. Currently, type 1 diabetes mellitus (T1DM) and
type 2 diabetes mellitus (T2DM) are the most prevalent type
of diabetes. The T1DM, which is also known as insulin-
dependent DM, is caused due to impairment in regulation
of blood glucose by absolute destruction of insulin-
producing β-cells, whereas insufficient or no response to
insulin is attributed to the pathogenesis of T2DM. The Inter-
national Diabetes Federation (IDF) reported that the number
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of diabetic population will increase from 415 million in 2015
to 642 million by 2040 [2]. Of note, any defect in insulin reg-
ulation in blood triggers the in metabolic disorders of carbo-
hydrate, fat, and protein leading to a condition of
hyperglycemia [3]. Insulin secretion is mainly stimulated by
glucose; however, other factors such as amino acids, fatty
acids, acetylcholine, pituitary adenylate cyclase-activating
polypeptide (PACAP), glucose-dependent insulinotropic
polypeptide (GIP), and glucagon-like peptide-1 (GLP-1) also
participate in regulating the metabolism of their respective
biomolecules [4]. The thirst, polydipsia, weight loss, polyuria,
and blurred vision are some common symptoms of diabetes;
in severe cases, hyperglycemia along with ketoacidosis or
nonketotic hyperosmolar conditions are prevalent [4].

Currently, diabetic retinopathy, nephropathy, and neu-
ropathy are the major reported complications. The other
complication also includes foot ulcer [3, 5]. These complica-
tions have been reported to mediate via advanced glycations
end products (AGEs), which mainly are the posttranscrip-
tional modified proteins or lipids, and might be excessively
synthesized during hyperglycemic conditions or present in
the diet. These high levels of AGE also disrupt the defense
mechanisms and assist in the destruction of β-cells [6].
1Specifically, AGEs bind to their multiligands, known as a
receptor of advanced glycation end products (RAGE), which
activates different kinase and NADPH oxidase leading
increased levels of ROS and further promotes the synthesis
of more AGEs, thereby triggering cell-damaging mecha-
nisms [7–9]. Notably, the AGEs not only destroy insulin-
producing cells but also develop insulin resistance, a major
symptom of T2DM [10].

It is well-known that the exercise and diet control are
helpful to manage glucose level at initial stage [11]. The use
of therapeutic insulin and other external hypoglycemic
agents have also been employed to control the glucose level
in blood, yet they are not capable enough to mimic the natu-
ral activity of endogenous insulin and may result in a hypo-
glycemic coma [12, 13]. The other therapeutic approach is
transplantation of pancreas or islet cells; however, this
approach is limited due to the lack of donors and surgical
and postsurgical complexities associated with therapy [14].

In general, stem cell is a population of cells defined by its
ability to indefinitely expand, self-renew, and undergo asym-
metric divisions to produce progeny cells committed to spe-
cific differentiation lineages [15]. Embryonic stem cells, a
pluripotent cell derived from the inner cell mass of a blasto-
cyst, are capable of generating almost every cell types of the
body but are unable to form an entire organism. Multipotent
stem cells reside within various niches in the body and are
limited to differentiating into specialized cell types of their
tissue of origin such as mesenchymal stem cells and hemato-
poietic stem cells [16]. Stem cells are important for living
organisms due to their functions of homeostatic tissue main-
tenance and replacing dysfunctional and senescent cells.
Given their remarkable regenerative capacities, stem cells
are being applied in treatments for various diseases as a novel
potential therapeutic intervention, which is also referred to as
regenerative medicine (Figure 1). In previous years, the role
of stem cells has been extensively studied for their therapeu-
tic potential to treat diabetic pathology and related complica-
tions. Therefore, this article reviewed the possibilities of stem
cell therapies in diabetes and its associated complications.
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Figure 1: Schematic overview of stem cell therapy in diabetic complications. AGEs: advanced glycated end products; EPCs: epithelial
progenitor cells; MSC: mesenchymal stromal cells; HSCs: hematopoietic stem cells; ADSC: adipose-derived stem cells; ESCs: embryonic
stem cells; iPSCs: induced pluripotent stem cells.
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2. Stem Cells in Treatment of Diabetes

Transplantation of insulin-producing cells [17] has paved the
path to stem cell-based regeneration of insulin-secreting pan-
creatic β-cells [18]. Stem cells are unspecialized having the
potential to regenerate and differentiate into specialized cells
such as myocyte, hepatocyte, leukocyte, lymphocytes, eryth-
rocytes, muscles, and nerve cells under proper environmental
condition and signal [19]. On the basis of cell source, stem
cells are generally classified as embryonic stem cells (ESCs)
or adult stem cells (ASC). However, stem cells are also classi-
fied on the basis of origin, potential methods of derivations,
and so on [19]. ESCs or pluripotent stem cells are isolated
from inner cell mass of the blastocyst and have the potential
to differentiate in different germ cell lines. However, the eth-
ical issues make it very difficult to explore its potential to
regenerate insulin-secreting cells. Notably, ASCs are multi-
potent stem cells and have the capacity to differentiate into
only fewer cell types [17, 19]. ASC such as hematopoietic
stem cell (HSC) not only multiply itself but also develop into
blood cells, whereas mesenchymal stem cells (MSCs) trigger
the generation of fat, bone, and cartilage. ASC also helps in
repair and replacement of damaged tissues along with devel-
opments of the central nervous system and muscle cells. The
therapeutic potential of stem cells may be ascribed to three
major embodied mechanisms of action (Figure 2). First, the
systemically administered stem cells undergo “homing”
which further migrate to the site of injury possibly due to
chemoattraction mediated by cell surface receptors such as
the chemokine receptors. Although the exact mechanism of
stem cells and endothelial interaction at the target site is
not well established, the integrins and selectins have been
suggested to mediate such interactions [20, 21]. The stem cell
transmigration to the focal point of injury occurs across the

endothelium through vascular cell adhesion molecule 1
(VCAM-1) and G-protein-coupled receptor signaling [22].
Secondly, the transplanted stem cell may undergo differen-
tiation into multiple cell types, which after local engraft-
ment can replace damaged tissues and induce restoration
of their function [23, 24]. Thirdly, stem cell may also
secrete growth/bioactive factors, which may potentially pos-
itively influence both local as well as systemic physiological
processes [25].

3. Stem Cell-Derived Secretome in Organ Repair
and Regeneration

Regeneration and repair activities of stem cells depend on
their differentiation potential to replace the damaged or
injured tissues [26]. Recent in vivo studies have established
the fact that most of the transplanted MSCs are cleared
rapidly from the in vivo microenvironment, thus limiting
the regenerative therapeutic potential of stem cell differen-
tiation to direct organ repair [20]. Therefore, their para-
crine and immunomodulatory function of MSCs seems
more effective through cellular communication without
physical contact between cells, along with secreted trophic
factors, extracellular RNAs, and miRNA which leads to cellu-
lar modulation, thereby triggering change in the microenvi-
ronment [21]. Various studies have documented the role of
secretory factors of MSCs in tissue repair and regeneration
via regulating inflammatory and allogenic immune response
[23–25, 27]. It is clearly evident from recent reports that
MSCs release soluble paracrine factors which regulate cellu-
lar proliferation, migration, differentiation, immunomodula-
tion, and anti-inflammatory response through p38 MAPK,
Akt, STAT-3, and TNF receptor pathways [28]. Stem cell-
specific secretome includes the extracellular molecules such
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Figure 2: The possible mechanistic insight of therapeutic action of stem cells. During repair and regeneration, the transplanted MSC exhibit
three modes of action, including homing, multilineage differentiation, and secretion of growth/bioactive factors.

3Journal of Diabetes Research



as extracellular vesicles (EVs), soluble proteins (e.g., che-
mokines, cytokines, and growth factors), lipids, and free
nucleic acids [29, 30]. These EVs are produced by internal
budding and when released into cellular microenvironment
promotes regeneration of injured/damaged cells similar to
stem cells after endocytosis; this regeneration procedure is
mediated by receptor-ligand interaction, fusion or transfer
of proteins, and nucleic acids or miRNA [31–34]. Based
on their physical characteristics, EVs are further catego-
rized among exosomes, apoptotic bodies, and microvesicles
(MVs) (Figure 3) [35]. Exosomes are made up of spherical
bi-lipid layer ranging from 30–100nm in size. These mem-
brane vesicles are released by various cells and considered
as critical component for cellular communications, and in
altering cellular signaling has rendered it an interesting
candidate in regenerative therapy [36]. Exosomes promote
specific interaction with targeted tissues/cells along with the
disposal of unwanted proteins, antigen presentation, genetic
exchange, immune responses, angiogenesis, inflammation,
tumor metastasis, and spreading of pathogens or oncogenes
[28, 37, 38]. Furthermore, apoptotic bodies are released from
cells undergoing programmed death as blebs of 1–5μm in
diameter [39]. Besides these secretomes, the expression of
factors such as vascular endothelial growth factor (VEGF),
fibroblast growth factor-2 (FGF-2), hepatocyte growth factor
(HGF), insulin-derived growth factor-1 (IGF-1), and thymo-
sin B4 (TB4) is also released and is regulated by Akt signaling
[40]. Interestingly, the increase in expression level of these

factors has been observed under hypoxic conditioned
medium. The increased production of VEGF in MSCs under
normoxia or hypoxia has been found to be associated with
STAT3 and p38 MAPK signaling pathways [28, 41], whereas
in adult rat bone marrow multipotent progenitor cells
(rMAPCs), JAK2/STAT3 signaling pathways have been
ascribed [42]. Moreover, another study suggests that trans-
forming growth factor-α- (TGF-α-) induced VEGF produc-
tion is associated with MEK and PI3-K signaling pathways
in homogenous human BM-MSCs [43]. These observations
indicate the varying signaling pathways are associated with
VEGF production in different species [28]. Besides, the
expression of TGF-β1 in rat MAPCs has also been linked
with STAT3 pathway [42]. TNF receptor (TNFR) and associ-
ated signaling pathways also plays a critical role in expression
of paracrine factors such as VEGF, TNF, cytokines, and IL-6
[28, 44]. It has also been reported that the production of HGF
in human MSCs is closely associated with TNF and TGF-
α/epidermal growth factor (EGF) receptors and MEK, p38,
and PI-3K signaling pathways [45], where the TNF receptor
1 played role in decrease of HGF, when stimulated with
TGF-α and TNF-α. A comparative study of paracrine factor
profile of swine and human bone marrow MSCs showed that
both cell cultures produced similar factors including VEGF
and endothelin, along with other different paracrine factors
under various conditions, which indicate that secretion of
paracrine factors varies according to the species [28, 46].
Apart from this, the age also impacts proliferation rate of
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Figure 3: Mesenchymal stem cell-derived secretome and extracellular vesicles. IL: interleukin; TGF-β: transforming growth factor beta;
PGE2: prostaglandins E2; VEGF: vascular endothelial growth factor; BDNF: brain-derived neurotrophic factor; NGF: nerve growth factor;
HGF: hepatocyte growth factor; IGF: insulin-derived growth factor; STC-1: stanniocalcin-1; SFRP2: secreted frizzled-related protein 2.

4 Journal of Diabetes Research



MSCs and their secretome level of paracrine factors. In a
recent study, p38 and ERK signaling pathways seemed to be
associated with cytokine and growth factors in neonatal
BM-MSCs [47]. Along with the abovementioned factors,
the gender [48, 49], disease status [50, 51], and environmen-
tal factors also significantly influence the type and level of
secretory factors of MSCs [28].

Homeostasis, cell development, and cell repair/regener-
ation/survival are mediated by membrane protein and cell
adhesion biomolecules (integrins, tetraspanins, and cadher-
ins) which direct receptor-mediated cellular communica-
tion [52, 53], whereas coupling of cellular cytoplasm is
mediated by gap junctions [21, 54, 55]. Stem cells lack
gap junction; however, differentiated cells may communi-
cate through gap junctions. This was evidenced in a report
in which BM-MSCs were able to differentiate into cardiac
cells via their communication to near myocytes through
gap junction [55, 56]. Besides, tunneling nanotubes (TNTs)
are a newly explored actin-based elements involved in long
distance-based cellular communication [57, 58], leading to
tissue developments and regeneration [21, 59].

4. Stem Cells Therapy in T1DM

Insulin-secreting β-cells become nonfunctional in T1DM,
and this condition primarily arises due to autoimmune
destruction of cells causing hyperglycemia. Traditional insu-
lin therapy assists to control blood glucose level; however, it
has proven ineffective in the long-term. Islet transplantation
therapy is limited due to the availability of pancreatic cells,
cell rejection, use of immunosuppressive drugs, and other
complexities [17, 60]. These limitations could be avoided
through stem cell therapies, owing to their very low immuno-
genic potential, immune-privileged, and immunomodulat-
ing properties [61–66]. Stem cells are also prone to genetic
modification, through which the desired MHC complex
may be introduced to control chance of immune rejections
[67]. Furthermore, MSC has also been reported for their role
in inhibition of T-cell proliferation, development of den-
dritic cells (DCs), and B-cell proliferation [63, 64, 68]. These
reports are indicative of the immunosuppressive role of stem
cells in transplantation therapy; however, more studies are
required to establish their clinical significance.

In recent years, stem cells are emerging as a potential can-
didate for efficacious treatment for T1DM as these cells are
capable to differentiate into mature β-cells in presence of
required signals [12, 69]. The immunomodulation properties
of stem cells can be helpful to control a balance between β-
cell destruction and their regeneration [70]. Mouse ESCs
(mESCs) have been widely studied and reported to promote
the differentiation of insulin-producing cells under induced
conditions to avoid ethical conflicts. ESC controls self-
renewal by regulating the expression of different transcrip-
tion factors such as Oct4, Sox2, and Nanog in presence of
suitable medium [71]; germ cell nuclear factor (GCNF) and
phosphoinositide kinase inhibitors catalyze the differentia-
tion of specific functional cells. The designed media and tran-
scription factors (Pax4 or Pdx-1) are reported for their
potential to generate insulin-secreting cells [71–75]. Human

ESC (hESC) has been demonstrated to differentiate into
functional β-cells in vivo [76]. However, the regulation of dif-
ferentiation, teratoma formation, risk of viral infection,
transplantation rejection, and ethical issues are still major
bottlenecks to utilize it as a potential therapy.

iPSCs are the new alternatives of ESCs to avoid ethical
concerns. iPSCs are mainly somatic cells which are repro-
grammed to pluripotency. Though the traditional method
of generating iPSCs are controversial, the iPSCs developed
by Takahashi and Yamanaka have accelerated their use for
generation of functional cells; in particular, the mouse and
human fibroblasts have already been reprogrammed into
pluripotent cells by using Oct3/4, Sox2, c-MYC/Lin28, and
Nanog/Klf4 transcription factors [77, 78]. Miyazaki et al. also
reprogrammed cancerous cells into induced pluripotent cells
using the same transcription factors [79]. Kim et al. suggested
that somatic cells which express any of the transcription fac-
tors required for induction of pluripotency will reduce the
requirement of complete transcription factors [80]. For insulin
regulation, mouse fibroblast cells have also been induced into
pluripotent stem cells, which were further triggered to differ-
entiate into insulin-producing cells for insulin regulation
[81]. The potential of iPSCs in diabetes treatment is promis-
ing; however, the chances of tumor formation and immune
response to transplantation need to be critically evaluated [70].

Adult stem cells such as hepatic stem cells, bone marrow-
hematopoietic stem cells (BM-HSCs), and mesenchymal
stromal cells (MSCs) derived from the bone marrow and
umbilical cord blood (UCB) and adipose tissue-derived
MSCs (ADSCs) have been explored for their potential to gen-
erate insulin-producing cells. The endodermal nature of pan-
creatic cells makes hepatic stem cells a prospective stem cell
source for therapeutic use. In various studies study, Pdx-1
was used to induce growth of β-cell precursors from hepatic
tissues [69, 72, 82, 83]. Mouse and human hepatic stem cells
were differentiated into insulin-secreting β-like cells and
used to overcome the condition of hyperglycemia [84]. The
application of hepatic stem cells to induce the regeneration
of insulin-producing cells is promising; however, further
extensive research is required to establish the protocols for
clinical application. Since MSCs have the potential to differ-
entiate into pancreatic cells as well as to heal damaged cells,
these have been exploited in treatment of T1DM [85]. BM-
MSCs are also able to promote graft acceptance and reduce
autoimmunity [70, 86–88]. However, BM-MSCs’ potential
for stem cell therapy is limited by lack of standardized
methods, difficulty in in vivo differentiation, and the possibil-
ity of tumor induction [70]. ADSCs are closely similar to the
BMSCs and clinically accepted for their therapeutic potential
due to ease of isolation with abundant cell numbers. The
ADSCs have also been successfully used to counter type 1
diabetes in mice, and its potential to counteract the graft
rejection response enhances the chance of success of T1DM
therapy [70, 89–91].

5. Stem Cell Therapy in T2DM

Insulin resistance and a decrease in insulin production
are the characteristics of T2DM. Conventional treatment
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approach includes using external insulin and use of oral
antidiabetic drugs [92]. However, the regular use of in vitro
insulin makes T2DM patients insulin resistant and contem-
porary therapy does not address this complication [93].
Transplantation of islet cells was once considered as a prom-
ising therapeutic approach; however, this approach is not
common due to lack of donors, ethical conflict, and risk of
immunogenicity. Regeneration and multipotent potential of
stem cells make it an integral candidate for cell-based ther-
apy. Stem cells such as BMSCs, ADSCs, ESCs, and iPSCs
are able to differentiate into insulin-producing cells resulting
in an increase in insulin level in patients under defined con-
ditions and well-established procedures [94, 95]. Intrapan-
creatic autologous stem cell injection under hyperbaric
oxygen condition regulates glycemic condition and insulin
level [96]. Similar results were also reported when autologous
bone marrow-derived stem cells were intra-arterially injected
[97]. MSCs have improved islet function and controlled insu-
lin resistance in T2DM. Various trials are under clinical
phase I and II, however, only a few of them are based on ran-
dom and placebo-controlled [92]. Moreover, the establish-
ment of the exact pathway in stem cell-based treatment of
T2DM still needs to be well established.

6. Stem Cells in Diabetic Complications

Diabetes not only disrupts the blood glucose regulations
but also alters the metabolism in long run if poorly man-
aged. As a result, micro- and macrovascular complications
occur [98–100]. The microvascular complications arise due
to impairment in small blood vessels under chronic hyper-
glycemic milieu. Some of these complications are diabetic
retinopathy, neuropathy, and nephropathy, whereas the
macrovascular complication is caused by damage to arteries
leading to cardiovascular disease (CVD), coronary artery dis-
ease (CAD), peripheral arterial disease, myocardial infarction
(MI), and stroke. Diabetes-associated disorders like osteopo-
rosis, osteoarthritis, foot ulcers, and diabetic cardiomyopa-
thy are some other secondary complications [101–104].
Regeneration and differentiation capability of stem cells
make it possible to explore their therapeutic potential to treat
and control diabetic complications. Specifically, the multipo-
tent stem cells such as MSCs/HSCs, progenitor stem cells,
tissue-specific stem cells, and pluripotent stem cells (ESCs
and iPSCs) are considered to counter the diabetes-associated
disorders [98, 100]. Therefore, the selection of the suitable
source of stem cells is critical to ensure the differentiation
of stem cells into both endothelial and perivascular cells to
repair diabetic complications [105]. In the further sections,
we have discussed the role of stem cell therapy in several
diabetic complications.

7. Microvascular Diabetic Complication and
Stem Cells

7.1. Stem Cells and Diabetic Retinopathy. Abnormal ocular
vascularity and retinal lesions lead to the development of
blindness in retinopathy. The diabetic retinopathy (DR) is
more prevalent in T1DM patients; however, it is hard to

differentiate its incidence between T1DM and T2DM [106,
107]. DR is classed as either nonproliferative diabetic reti-
nopathy (NPDR) or as proliferative diabetic retinopathy
(PDR) [108]. Microvascular alterations cause retinal ische-
mia in NPDR, whereas PDR is caused by disruption of the
ocular vitreous cavity due to the generation of abnormal
blood cells leading to blindness [106, 109, 110]. Contempo-
rary therapies such as vitrectomy and laser photocoagulation
do not address the root cause of the disease [111]. Thus,
stem cells seem as the most effective long-term treatment
option for DR. In previous studies, MSCs and HSCs have
been reported for their potential to differentiate into ocular
cells to repair retinal damages [104]. In a seminal study in a
rat model, it has been evidenced that MSCs are capable
enough to mitigate and recover the loss of visual impairments
[112, 113]. Scalinci et al. found that neuroprotective growth
factors such as brain-derived neurotrophic factor (BDNF),
ciliary-derived neurotrophic factor (CTNF), nerve growth
factor (NGF), glial-derived neurotrophic factor (GDNF),
and basic fibroblast growth factor (bFGF) were significantly
increased in DR rata injected with hMSCs [114]. However,
inferior homing capacity of intravitreally administered MSCs
and increased level of vascular endothelial growth factor
(VEGF), a factor responsible for vascular lesion, were found.
In another study, atorvastatin, a reductase inhibitor enzyme,
had also reduced VEGF when MSCs were injected and hyp-
oxic condition was maintained subsequently [115]. Siqueira
et al. also demonstrated that BM-HSCs led to an improved
visual activity [116]. Further, in animal models, the injected
EPCs derived from murine BMSCs and hUCB promoted
neovascularization and ameliorated DR [117–119].

7.2. Stem Cell in Diabetic Neuropathy. Diabetic neuropathy
(DN) is one of the most prevalent complications among
T1DM and T2DM patients, which may lead to foot ulcers
and limb amputation [120]. DN becomes more chronic with
an increase in the level of hyperglycemia and with the passage
of time [121, 122]. Microvascular factors, metabolic regula-
tions, unregulated glucose level, increased glycated hemoglo-
bin level, oxidative and nitrosative stress, and reduced blood
flow rate (due to the accumulation of ROS) are some factors
which are attributed to the incidence of DN [121, 123]. ROS
and reactive nitrogen species reduce blood flow leading to
microvascular ischemia, which finally disrupts the function
of the nerve [124]. Prolonged hyperglycemia also promotes
the production of AGEs which after binding to RAGEs trig-
ger an inflammatory response and enhance oxidative stress,
leading to degeneration of Schwann cells. These cells not only
insulate neuron but also regulate nerve regeneration, and any
oxidation-mediated loss in their function promotes DN
among diabetic patients [124, 125].

To develop an efficient therapy against DN, the treatment
procedure should address both neurotrophic and angiogenic
requirements simultaneously. Considering these require-
ments, stem cells seem viable and efficient, as they are capable
to synthesize neurotrophic, angiogenic, and other essential
factors required for regeneration of neuronal and vascular
cells. The multilineage potential and adherent nature of
MSCs cells helps it to secrete factors which are essential for
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neurotrophic and angiogenic effects. Different studies have
revealed that MSCs improved DN symptoms in streptozoto-
cin- (STZ-) induced diabetic rats. Though this treatment,
VEGF and fibroblast growth factor-2 (FGF2) were increased
and the capillary number to muscle fiber ratio in soleus
muscles and sural nerve morphometry were improved
[126]. In a multiple intravenous MSC treatment in STZ-
induced T2DM rats, a controlled hyperglycemia with
enhanced serum insulin and C-peptide was found at 9
weeks [127]. Motor and sensory nerve function restored
in BMSC-treated STZ-induced diabetic rat [128]. Nerve
regeneration has also been demonstrated with combined
treatment of human MSCs and poly (3-hydroxybutyrate-
co-3-hydroxyhexanoate) in Sprague-Dawley albino rats
[129]. These animal-based studies strongly indicate that
MSCs should have essential elements to address DN compli-
cations. However, lack of established clinical procedures, risk
of tumor formation, and lack of understanding of clear
mechanism are posing challenges to MSCs’ candidacy as a
therapeutic agent for DN [120].

7.3. Stem Cells in Diabetic Nephropathy. Diabetic nephropa-
thy (DNP) is responsible for high mortality and a major con-
tributor in end-stage chronic renal disease [130, 131].
Podocytes, the matrix molecule-synthesizing elements in
the glomerular basement membrane, are injured and lost in
DNP, leading to proteinuria and fibrosis and finally to renal
failure. The regeneration capacities of podocytes are limited
when injured, and it will adversely affect the glomerular
barrier, further aggravating proteinuria [132]. Proteinuria
promotes the dysfunction of proximal tubular epithelial cells
(PTECs) by increasing fibrosis and tubulointerstitial inflam-
mation, resulting in decreased renal activity [133]. Increase
in immune cells in the interstitium is a characteristic
feature of DNP [131]. Prolong hyperglycemia, AGEs, and
glycated albumin enhance the inflammatory and fibrotic
properties of PTECs [134]. AGEs also activate the renin-
angiotensin system (RAS), triggering the secretion of ROS
thereby increasing the formation of cytokine and growth
factors [135]. In an important study, an enhanced DNP
symptom in mice was revealed through an increased level
of carboxymethyl-lysine (CML) an advanced glycation end
product [136]. However, the ESCs, under the presence of
required growth factors, including retinoic acid, activin A,
BMP-2, BMP-7, and FGF-7, can be differentiated into renal
cells [137, 138]. Various studies have also successfully dif-
ferentiated iPSCs into renal cells to improvise the DNP
characteristics [139, 140]. MSCs have also been introduced
into an STZ-induced diabetic rat to repair renal damage
and regenerate insulin-secreting cells [141, 142], whereas
the stromal cell-derived factor (SDF-1) promoted homing
of MSCs when released in the kidneys [143]. Nagaishi
et al. demonstrated that BM-MSCs inhibited the proinflam-
matory cytokine, TGF-β1, and fibrosis in tubular intersti-
tium They further revealed exosome-assisted antiapoptotic
effect in tight junction structures of tubular interstitial cells
indicating improved DNP [130]. The MSCs also exerted
regenerative and protective effects in DNP by improvement
in fibrosis and glomerulosclerosis, possibly via reducing the

loss of podocytes and increased the secretion of BMP-7 [144].
BM-MSC treatment has regulated the serum level of insulin,
hemeoxygenase-1, AGEs, and glucose with recovery in renal
function [145]. Overall, the role of MSCs in the treatment of
DNP is prospective, however, it is limited due to previously
discussed hurdles.

8. Stem Cells in Macrovascular and
Other Complications

DM patients are prone to atherosclerosis in large arteries
finally developing macrovascular complication in the artery.
Prolong hyperglycemia and atherosclerosis enhance the risk
of myocardial infarction, artery disease, and stroke [98,
146]. CD 133 and CD34 are potent markers of cardiovascular
diseases (CVD), and reduction in EPCs is used as an indica-
tor of peripheral artery disease (PAD) [147–149]. Vascular
stem cells (VSCs) are capable to differentiate EPCs and are
a potential target for treatment of diabetic macrovascular
complications. Vascular progenitor cell isolated from human
vascular smooth muscle cells under proper condition was
able to grow into vascular networks [150]. In a report, Keats
and Khan proposed a hypothesis to develop vascular network
from CD133+ VSC due to its ability to differentiate into
EPCs and MPCs [105]. Further, the interaction between
AGEs and RAGEs plays a critical role in the development
of macroangiopathy and macrovascular complications [105].

8.1. Stem Cells in Diabetic Cardiomyopathy. Diabetic car-
diomyopathy (DCM) is mainly developed due to cellular
apoptosis. DCM reduces tissue-specific stem cells, intensifies
fibrosis, and decreases perfusion in the capillaries [151, 152].
This complication is characterized by the reduced activity of
metalloproteases-2 (MMP-2), high collagen in specific tissue,
and upregulated activity of apoptotic factor MMP-9 [98].
However, MSCs have also been implicated in regenerating
myocardial cells for restoring normal function of the heart.
Specifically, administration of BM-MSCs has shown to
improve diabetic myocardium in the T1DM rat by reduc-
ing collagen level and activity of MMP-9 [153]. Other
stem cells such as ESCs, iPSCs, and cardiac stem cells
had also been explored to recover myocardial infarction
in animal models [154–156].

Besides, MSCs also induce myogenesis and angiogenesis
by releasing various angiogenic, mitogenic, and antiapopto-
tic factors, including vascular endothelial growth factor
(VEGF), insulin-like growth factor-1 (IGF-1), adrenome-
dullin (AM), and hepatocyte growth factor (HGF) [20].
This was demonstrated using a rat model of DCM [20],
wherein intravenously administered rat BM-MSCs improved
cardiac function via differentiating into cardiomyocytes and
improved myogenesis and angiogenesis. In addition, the
activity of MMP-2 was significantly increased, while MMP-
9 increased, which led to enhanced myocardial arteriolar
density and reduced collagen volume. MSCs also pro-
moted the secretion of Bcl-2, hypoxia-related HOM-1,
HSP-20, stromal cell-derived growth factor, and VEGF
under hypoxic condition and stimulated neovasculariza-
tion and restored myocardial function [157–159]. Notably,
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the site of injection and cell load has also been considered
as determinants for improvement in myocardial infarction
during MSC therapy [160].

8.2. Stem Cells in Diabetic Bone. T1DM and T2DM both
interfere with normal osteogenic pathways, resulting in ele-
vated risk of bone fractures and reduced ability of fracture
healing. Bone-associated complications, affecting osteoblasts
and osteoclasts, are mainly attributed to increased levels of
AGEs, inflammation, and ROS [161]. AGEs not only block
the osteoblastic differentiation and formation of mineral-
ized matrix but also promote apoptosis of osteoblast, leading
to impaired bone formation [162, 163]. Interaction between
blood vessels and bone cells promotes regeneration and
repair of the bone, which is disrupted in a hyperglycemic
microenvironment, thereby hindering the repair of bone
fracture [164]. Increase in secretion of TNF-α, IFN-γ-induc-
ible protein 10 (IP-10), IL-1β, IL-6, and high-sensitivity
C-reactive protein (hsCRP) was also reported after bone
fracture in T2DM patients [165]. Current grafting proce-
dures for treatments are limited due to rejection, difficulty
in integration, long-term relief, and cost [166]. To overcome
these challenges, the tissue engineering approaches have been
used in MSCs are considered as leading therapeutic candi-
dates [164]. MSCs are capable to differentiate into osteoblasts
and also secrete factors such as VEGF and BMP-4 to promote
bone cell regeneration [167, 168]. Studies have also used
immortalized BMSCs in osteoarthritic recovery [169]. These
studies showed the potential of MSC therapy in bone-
associated disorders. However, further studies are still
needed to establish a definite role of MSCs in the treat-
ment of these disorders. Furthermore, the role of pluripo-
tent and other adult stem cells in regeneration and repair
of bone is also needed to be extensively explored.

8.3. Stem Cells in Wound Healing. Persistent and long-term
hyperglycemia disrupts the wound healing capacity of
T1DM and T2DM patients leading to chronic wound [170]
and increases the risk of opportunistic infections. This
chronic condition is developed due to impaired angiogenesis,
uncontrolled release of growth factors, and incoherence in
the accumulation of collagen matrix [98]. The increased rate
of apoptosis of EPC and their numbers among DM patients
have already been observed [171]. Additionally, the high level
of inflammatory cytokines like TNF-α, CRP, and IL-8 are
also found to be associated with poor wound healing capac-
ity. Other factors related to collagen metabolism such as ker-
atinocyte growth factor (KGF), transforming growth factor β
(TGF-β), epidermal growth factor (EGF), platelet-derived
growth factor (PDGF), and VEGF are also associated with
chronic diabetic wound [172]. However, studies have dem-
onstrated that both the MSCs and EPCs were recruited at
the injury site and exerted the healing effect [98]. In a study,
the iPSCs showed wound healing in diabetic patients by
increasing the level of proangiogenic factors and controlled
the activity of protein kinase C delta (PKC-δ) [173]. Another
study demonstrated increased collagen accumulation in dia-
betic fascial wounds of rats, when treated with BM-MSCs
which have been ascribed to the secretome of growth factors

such as TGF-β, KGF, EGF, PDGF, and VEGF, essential to
healing efficacy [174]. These factors also improve cell adhe-
sion and promote an increase in secretion of chemokines at
wound site [157, 158]. In various previous studies on animal
models, MSC therapy has already been evidenced with an
improved wound healing, for which different mechanisms
have been explained [104, 174–177].

9. Combinatorial and Coculture Approaches in
Stem Cell-Based Therapy of Diabetes and
Its Complications

Therapeutic potency of stem cells is still in developmental
phase for diabetic treatment, and the interactive effect of
other chemical molecules on stem cell-based therapy is
needed to be widely screened to improve their efficacy
and safety. The pathological state such as diabetic wound
healing have limited therapeutic options; however, a thera-
peutic combinational approach using ADSCs and exendin-4
(Ex-4) significantly improved the wound healing than single-
ton treatment in diabetic mice [178]. This effect was exhib-
ited through proliferation and migration of endothelial cells
and keratinocytes. Another combinatorial effect of MSCs
and obestatin significantly improved the pancreatic damage
in the T2DM rat model [179]. This was achieved through
obestatin-mediated promotion of proliferation of active β-
cells or islet-like cell clusters in vitro. Similarly, a study dem-
onstrated the cumulative therapeutic effect of icariin and
MSCs towards diabetes-induced erectile dysfunction, where
icariin enhanced the therapeutic potential of ADSCs through
its antioxidative and antiapoptotic activities [180]. In an
interesting study, murine ESCs differentiated rapidly into
pancreatic β-cells by using activin A, all-trans retinoic acid
and some other factors such as Matrigel [181]. These differ-
entiated cells were able to control the blood glucose level
in vivo in the diabetic murine model; however, tumor forma-
tion in the kidney limited the use of transplanted cells.
Besides, the impaired endothelial progenitor cell (EPC) hom-
ing reduce the wound healing ability in the diabetic microen-
vironment, which is associated with reduced expression of
stromal cell-derived factor-1α (SDF-1α). However, the hom-
ing of EPCs can be improved at wound site under hyperoxia
and via administration of SDF-1α [182]. In a clinical study,
the synergistic administration of hyperbaric oxygen and
intrapancreatic autologous stem cell was effective in control-
ling the metabolic level of insulin in T2DM patients [96]. It
has also been shown that the preconditioning of the stem cell
might improve the efficacy of cell-based therapy. MSCs har-
vested from diabetic mice were preconditioned in presence
of insulin-like growth factor-1 (IGF-1) and fibroblast growth
factor-2 (FGF-2) in medium and were further acclimatized
under hypoxia and high glucose condition. After implan-
tation of conditioned MSCs, the improvement in heart
condition of diabetic mice was observed, indicating stem
cell-based strategies to treat diabetic heart failure [183].

Recently, coculture techniques have also been used to
improvise the efficacy of stem cells through enhancing their
differentiation potential. In a study, the ESCs were cocultured
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with hepatocytes and induced to differentiate into endoder-
mal cells, which were further induced to differentiate into
pancreatic islet cells in presence of Matrigel and retinoid
[184]. Another experimental study showed that differenti-
ated islet cell clusters from human Wharton’s jelly-derived
mesenchymal stem cells in the presence of rat pancreatic cells
could suppress blood glucose level [185]. Cotransplantation
of kidney-derived MSCs with islets in diabetic mice has
also remodelled islet organization and vascularization and
reduced hyperglycemia [186]. Similarly, a seminal study
pointed out that the viability of isolated islet was improved,
when cocultured with collagen mixed hydrogel (collagen type
I, collagen type III, and laminin) [187]. It is of note that the
coculture system is used not only in improving therapeutic
efficacy of stem cells but also to contemplate the pathogenesis
of diabetes. In a conclusive study, a coculture system of
BMSCs and macrophage helped to understand that associa-
tion between local inflammation and immune response pro-
motes diabetic periodontitis, particularly by upregulating the
expression of chemokine (C-C motif) ligand 2 (CCL2) and
TNF-α in periodontal tissues [188].

10. Gene Editing in Stem Cell for Treatment of
Diabetes and Its Complications

Recent developments in gene targeting, editing, and delivery
have made it feasible to develop an effective and long-term
therapy for the treatment of genetic disorders. Adult stem
cells, such as HSCs and MSCs are considered as promising
candidates for exploiting gene modification techniques in
cell-based regenerative therapy [189–191]. Vectors derived
from retroviruses and adenoviruses are most commonly used
to transfer the genes in stem cells; however, the chances of
random integration might be deleterious. The other limiting
factor associated with gene editing is no retaining of the
edited gene by stem cells during their ex vivo proliferation.
To overcome the limitations of viral vectors genetic control
elements such as scaffold attachment region (SAR) and
chicken beta-globin locus are added into the vectors to
effectively control the gene expression in stem cells [192].
In diabetic mice, the transplanted BM-MSC expressing
pancreatic duodenal homeobox 1 (Pdx1) gene differentiated
into insulin-releasing β-cell and controlled the glucose level
[193]. Similarly, a seminal study showed that the transfected
MSCs with vascular endothelial growth factor (VEGF) gene
improved the erectile dysfunction in diabetic rats [194].
Though this stem cell-mediated gene therapy demonstrated
successful results in rats, it possesses a few limitations as it
was carried out only in the T1DM animal model and used
adenovirus vector is not considered as a robust gene expres-
sion system. In a recent interesting study, the genetically
modified human urine-derived stem cells with FGF2 gene
significantly improved ED in T2DM SD-rat model [195].

Recent gene editing techniques such as zinc-finger
nucleases (ZFNs), transcription activator-like effector nucle-
ases (TALENs), and the clustered regularly interspaced
short palindromic repeats-associated Cas protein system
(CRISPR/Cas) seems promising to understand the role of
specific genes in beta cell development and to manipulate

the stem cell differentiation into insulin-producing cells
[196]. The CRISPR/Cas9 system is currently favoured due
to its modularity, flexibility, specificity, reduced toxicity, ease
of designing target single-guide RNA (sgRNA) and reduced
side effects. Gene-editing techniques have clearly established
the role of transcription factor, neurogenin 3 in development
of endocrine cells of pancreas, and demonstrated that even
low expression of this factor is sufficient to promote the stem
cell differentiation into insulin-producing beta cells [197].
Further, the CRISPR/Cas9 mediated deletion of CDKAL1,
KCNJ11, and KCNQ1 genes in hESCs disrupted the regu-
lated production of insulin in differentiated beta cells.
These recent studies imply that human pluripotent stem
cells can be exploited as an effective model to understand
molecular development of insulin-producing pancreatic beta
cells [196]. Furthermore, the clear understanding of genetic
regulation will help in developing and controlling the differ-
entiation of functional beta cells. Notably, gene editing in
stem cells also help to escape immune response during trans-
plantation of differentiated cells. This was evidenced in a
study in which complete knock out of human leukocyte anti-
gens (HLAs) class-I through disrupting beta 2-microglobulin
(β2m) in hESCs maintained the cellular pluripotency level
with significantly reduced immunogenicity [198].

11. Conclusions

The diabetic complications are the most prominent reason
for high mortality among diabetic patients; therefore, due
to proven repair and regeneration potential, the cell-based
therapies, including pluripotent and multipotent adult
stem cells are currently being considered. This therapeutic
approach will not only be helpful to overcome the limitations
of contemporary therapy but also provide a long-term cure
for diabetes and its complications. However, extensive
studies are needed to establish standard procedures for stem
cell treatment in diabetic complications.
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