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Abstract: Pure organic room-temperature phosphorescence (RTP) materials built upon noncovalent
interactions have attracted much attention because of their high efficiency, long lifetime, and stimulus-
responsive behavior. However, there are limited reports of noncovalent RTP materials because
of the lack of specific design principles and clear mechanisms. Here, we report on a noncovalent
material prepared via facile grinding that can emit fluorescence and RTP emission differing from their
components’ photoluminescent behavior. Exciplex can be formed during the preparation process to
act as the minimum emission unit. We found that H-bonds in the RTP system provide restriction to
nonradiative transition but also enhance energy transformation and energy level degeneracy in the
system. Moreover, water-stimulated photoluminescent ink is produced from the materials to achieve
double-encryption application with good resolution.
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1. Introduction

Pure organic room temperature phosphorescence (RTP) has become an attractive way
to generate long afterglow photoluminescence in the past decade. The phosphorescence
emission of organic molecules is significantly influenced by intersystem crossing (ISC) from
singlet state to triplet state and is impacted by nonradiative transition. Since heavy metal
atoms can effectively promote the ISC process, most organic RTP materials developed
are based on organometallic coordination complex. However, organometallic compounds
with heavy metal coordination center atoms are costly to produce and environmentally
hazardous [1–3]. Pure organic RTP materials are excellent substitutes without the defects
mentioned above [4,5]. Many efforts have been made to facilitate the transition from
organometallic to pure organic RTP materials, including synthesizing molecules capable of
generating long lifetime triplet excitons [6–8], designing new polymer-based and host-guest
organic RTP systems [9–14], and completing the mechanism of pure organic RTP emis-
sion [15,16]. Consequently, pure organic RTP materials now can achieve ultra-long-lifetime,
high phosphorescent quantum yield, good biocompatibility, and stimulus-responsive lumi-
nescence and even make breakthroughs in electroluminescent RTP emission [17–22].

The most common pure organic RTP systems are polymer matrix RTP materials and
crystalline RTP materials [23–25]. In these materials, the phosphorescent molecules are
restricted within a rigid structure, which can mitigate the nonradiative relaxation and
annihilation of triplet excitons. However, the rigid structure also restricts the ability of
phosphors to respond to an external stimulus. Theoretically, the RTP emission of pure
organic molecules can be easily affected by ambient conditions such as oxygen, water, and
temperature. Unfortunately, it is hard for polymer-based and crystalline RTP materials
to utilize this stimuli-responsive behaviour. To make breakthroughs in the development
of stimuli-responsive RTP materials, dynamic and spontaneous noncovalent interactions
are often introduced. Among noncovalent interactions, the H-bond draws increasing
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attention in RTP systems because it endows pure organic RTP materials with the properties
of self-assembly, energy transference, and ambient responsiveness. RTP emission of these
materials can be adjusted by tailoring the H-bonds [26–29].

Carbazole and its derivatives are promising RTP materials in crystalline state and in
polymer matrices. Most of its photoluminescent derivatives possess functional groups
attached to the N atom [30,31]. Our group has reported two carbazole derivatives with func-
tional groups linked to the benzene structure in carbazole and has successfully achieved
efficient RTP emission by doping them in polymer matrices [32,33]. Based on our previ-
ous work, we designed H-bonded double-component RTP materials capable of forming
exciplex to obtain similar fluorescence and phosphorescence emissions. A carbazole deriva-
tive 4,4’-(9H-carbazole-2,7-diyl)dibenzoic acid (DBAc-Cz) with carboxyl groups was syn-
thesized. To construct H-bond based organic RTP materials, a heterocyclic compound
1,5,7-Triazabicyclo [4.4.0]dec-5-ene (TBD) was used [34,35]. The R2NH and R3N groups not
only serve as H-bond supporter but can transfer energy intermolecularly and significantly
affect the photoluminescent properties, allowing for room-temperature phosphorescence.
Based on this design, pure organic noncovalent materials with an emission RTP up to
0.85 s lifetime and with a maximum phosphorescence quantum yield of 11.71% were suc-
cessfully developed. The noncovalent connecting process happened spontaneously when
DBAc-Cz and TBD were ground, which produced exciplex with fluorescence and RTP be-
havior different from the two components. Water-stimulated ink was prepared by utilizing
the properties of H-bonds and was tested on a paper to demonstrate color-changeable
fluorescence and water-erasable RTP emission.

2. Results and Discussion

The chemical structure of DBAc-Cz and TBD is presented in Figure 1a and the synthe-
sis route of DBAc-Cz is shown in Scheme S1. The conjugate structure of carbazole offers
DBAc-Cz photoluminescent features, and the symmetrical carboxyl groups are designed
for H-bond interaction (Figure 1a). DBAc-Cz is a photoluminescent molecule under UV
radiation, while TBD almost has no photoluminescent emission (Figure 1b). In addition,
both molecules have no phosphorescence at room temperature. To construct noncovalent
RTP materials, DBAc-Cz and TBD were processed by the facile grinding method. Two
molecules in powder state were thoroughly ground, and the resulting powder showed
fluorescence and RTP emission varying significantly from the two ingredients (Figure 1b).
Four mixtures with different molar ratio of DBAc-Cz and TBD were prepared and charac-
terized, including DBAc-Cz:TBD = 1:500 (noted as DT500), DBAc-Cz:TBD = 1:100 (noted as
DT100), DBAc-Cz:TBD = 1:50 (noted as DT50), and DBAc-Cz:TBD = 1:20 (noted as DT20).
These materials exhibited bright fluorescent and phosphorescence emission with up to 6 s
macroscopic RTP afterglow (Figure 1c).

Encouraged by these results, detailed photoluminescence (PL) characterization was
carried out to systematically study the materials. DBAc-Cz showed a blue fluorescence
emission peak around 461 nm, while TBD showed almost no emission at all according
to the black curve (Figure 2a). At room temperature, DBAc-Cz and TBD had no phos-
phorescence emission. DBAc-Cz showed phosphorescence emission at 77 K with two
peaks around 528 nm and 572 nm (Figure 2a). Interestingly, when DBAc-Cz and TBD were
ground thoroughly to produce a powder mixture noted as DT, photoluminescence emission
changed greatly. The Commission Internationale de L’Eclairage (CIE) chromaticity coordi-
nate of DBAc-Cz’s fluorescence emission was calculated to be (0.2296, 0.2755). As shown
in Figure 2b, the fluorescence emission peaks of DT500, DT100, DT50, and DT20 were
observed at 507 nm, 511 nm, 519 nm, and 525 nm, respectively. The CIE chromaticity coor-
dinates for the DTs were calculated to be (0.2571, 0.4287), (0.2789, 0.4326), (0.2965, 0.4523),
and (0.3089, 0.4565), respectively. The DTs’ fluorescence emissions were close to each other
and distinctly differed from that of DBAc-Cz (Figure 2b and Figure S1). In addition, DTs
showed RTP emissions, with maximum emission wavelengths around 529 nm (DT500),
537 nm (DT100), 533 nm (DT50), and 539 nm (DT20). The differences in the maximum
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emission wavelengths between fluorescence and RTP were 22 nm (DT500), 26 nm (DT100),
14 nm (DT50), and 16 nm (DT500) (Table 1 and Figure S2). Neither TBD nor DBAc-Cz
showed RTP emission. TBD is not a photoluminescent molecule, and DBAc-Cz’s 77 K
characteristic phosphorescence emission with double peaks and the waveform is different
from DT’s RTP emission (Figure 2c). The variation in the photoluminescent features also
exists on the molecule our group synthesised of 4,4’-(9H-carbazole-2,7-diyl)diphenol (noted
as DPOl-Cz) when ground with TBD (Scheme S1). DPOl-Cz‘s chemical structure is close to
DBAc-Cz only with the hydroxy groups replaced by carboxyl groups. DPOl-Cz showed
almost no photoluminescent emission under 365 nm UV radiation. When DPOl-Cz was
ground together with TBD in the same way to produce DTs, the mixture exhibited emission
around 483 nm (Figure S3).

Based on the photoluminescence characterization results, it was concluded that the
changed fluorescence emission and the RTP emission of DTs were not due to DBAc-Cz or
TBD but from another unit inside the DTs. Therefore, UV-vis spectroscopy was used to fur-
ther investigate the DTs. All the samples were dissolved in dichloromethane (DCM) for the
test. TBD’s characteristic absorption peak was around 292 nm, which vanished in DT100′s,
DT50′s, and DT20′s absorption spectra. The spectra of these three DTs showed absorption
waveforms different from DBAc-Cz except the absorption peak around 236 nm (Figure 2d).
The absorption spectrum of DT500 showed a peak around 292 nm, which was also observed
for TBD. This indicated that microscale DBAc-Cz in the DTs resulted in significant changes
in the UV-vis absorption features, reflecting the energy changes between DBAc-Cz and
TBD within the DTs. The differences in UV-vis absorption spectra and PL/phosphorescence
spectra (Figure 2b–d) between DTs and two starting components suggested that a newly
formed unit existed in DTs was responsible for the RTP behavior.
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Figure 1. (a) Chemical structure of DBAc-Cz and TBD and the formation of exciplex between the
two molecules by H-bonds. (b) Photographs of DBAc-Cz, TBD, DT and excited DBAc-Cz with UV
irradiation (F-fluorescence). (c) Photographs of excited DTs after removal of UV irradiation. Note: all
the UV irradiation is at 365 nm.
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Figure 2. Photoluminescence characterization and UV-vis absorption spectra. (a) Steady-state PL
spectra (solid line) of TBD and DBAc-Cz, phosphorescence spectra (delay 50 ms) at 77 K (dash line)
of DBAc-Cz. (b) Normalized steady-state PL spectra of DT500, DT100, DT50, DT20, and DBAc-Cz.
A continuous xenon lamp was used as the excitation light source. (c) Normalized phosphorescence
spectra at room temperature (RTP) for DT500, DT100, DT50, DT20 and phosphorescence spectra
at 77 K for DBAc-Cz. A pulse xenon lamp was used as the excitation light source. (d) Normalized
UV-vis absorption spectra of TBD, DBAc-Cz, DT500, DT100, DT50 and DT20 in dichloromethane
(DCM) solution.

Table 1. Photophysical properties of the components and DT.

Sample Emf(max) (nm) Emp(max) (nm) τRTP(s)
Difference of
Emp(max) and
Emf(max) (nm)

DBAc-Cz 461 528/572 (77 k) / 67/111

DBAc-Cz (PVA) * 414 519 0.52 105

TBD / / / /

DT500 507 529 0.79 22

DT100 511 537 0.81 26

DT50 519 533 0.84 14

DT20 525 539 0.85 16
* DBAc-Cz (PVA) means PVA film doped with DBAc-Cz, excitation wavelength: 365 nm.
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Double emission (fluorescence and RTP) photoluminescent materials with close flu-
orescence and RTP maximum emission wavelength could be obtained after TBD and
DBAc-Cz were simply ground together. In addition to this feature, DTs showed excellent
RTP emission lifetime with a phosphorescence quantum yield of up to 11.71% (DT500).
DT500, DT100, DT50, and DT20 exhibited RTP with lifetime of 0.79 s, 0.84 s, 0.81 s, and
0.85 s, respectively. (Figure 3a–d). Although the fitting curves for determining the lifetime
of DTs were similar, the visual afterglows of DTs differed from each other. It was found
that the mole ratio caused differences in RTP afterglow and influenced the emission in-
tensity. DT50 showed the strongest photoluminescence or fluorescence intensity, while
DT500 exhibited the finest RTP emission intensity and afterglow among four materials
(Figures 1c and 3e,f).
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Figure 3. Room temperature phosphorescence decay curve and lifetime (a) DT500, (b) DT100, (c) DT50
and (d) DT20. (e) Steady-state PL spectra of DTs measured using the same device parameters and
ambient conditions. (f) Phosphorescence spectra of DTs measured using the same device parameters
and ambient condition.

While the grinding method provided an easy way to prepare these RTP materials,
the DTs were not homogeneous, so specific structures of the newly formed units inside
them were difficult to analyze. This can be observed in the photographs obtained with the
fluorescence microscope (Figure 4g). The morphology of the DT powder presented TBD-
like small crystals. In DT, amorphous DBAc-Cz powder was considered to be surrounded
by TBD. The majority of crystal-like DT powder showed bright emission regardless the
changed ratio of DBAc-Cz and TBD. Still, a small quantity of non-photoluminescent TBD
not contacted with DBAc-Cz could be observed in DT (marked by a white ellipse). It
was hard to define how the DBAc-Cz were surrounded and connected with TBD to form
units inside DT with the distinct fluorescent and phosphorescent properties. Therefore,
characterizations of noncovalent interaction and energy level were performed to explain
these units. Firstly, FT-IR spectra were measured to test the intermolecular H-bond between
DBAc-Cz and TBD [36,37]. Theoretically, the two carboxyl groups of DBAc-Cz and the
R2NH and R3N groups of TBD can form intermolecular H-bond. As shown in Figure 4a, the
IR spectra of DT showed a wide peak around 2640–2770 cm−1 compared with that of DBAc-
Cz and TBD. The sharp peaks around 1655 cm−1 of DT were attributed the shifted peak of
TBD around 1640 cm−1. These two phenomena indicated the existence of intermolecular H-
bond between DBAc-Cz and TBD, which reduced the distance between the two molecules
and was the prerequisite for forming exciplex. To further demonstrate the formation of
exciplex in DT, UV-vis diffuse reflection experiment was performed. The UV-vis diffuse
reflection spectra of DT were very similar to that of DBAc-Cz and contained the featured
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double peak of TBD around 220–265 nm, but the absorption peaks over 300 nm were found
to be wider (Figure 4b). Tauc plots were utilized to calculate the energy level from ground
state to S1 state using the UV-vis diffuse reflection data of these samples (Figure 4c,d).
DBAc-Cz’s and TBD’s band gaps were also evaluated by theoretical calculation (Scheme S2)
to fit the Tauc plot’s results (2.86 eV and 4.55 eV). The bandgaps of DT100, DT50, and DT20
(2.59 eV, 2.46 eV, and 2.25 eV, respectively) were lower than that of DBAc-Cz, while the
bandgap of DT500 (2.98 eV) was slightly higher than that of DBAc-Cz. If there is no exciplex
formation, the bandgaps of DT100, DT50, and DT20 should be higher than that of DBAc-Cz
due to the presence of TBD. This indicated that exciplex was formed in DT along with the
degeneracy of energy levels. Exciplex generated a smaller S1 state energy level than both
DBAc-Cz and TBD, and therefore, DT showed distinct fluorescence peaks in powder state
(Figure 2b) and exhibited different emission peaks around 505–515 nm in DCM compared
to the DBAc-Cz solution (Figure 4e). These emission peaks were considered from the
exciplex within DT. As for the unusual large bandgaps of DT500, it was attributed to the
high TBD content which had a large intrinsic bandgap of 4.55 eV (Figure 4c).
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Figure 4. (a) FT-IR spectra and (b) UV-vis diffuse reflection spectra of DBAc-Cz, TBD, DT500, DT100,
DT50, DT20 (DT2: DBAc-Cz/TBD = 1/2 mole ratio). Tauc plots and the calculated band gaps
of (c) DBAc-Cz, TBD and (d) DT. (e) Steady-PL spectra of DT solution in DCM (0.01 g/mL). (f) Steady-
PL spectra of different density (0.01 g/mL, 0.005 g/mL, 0.001 g/mL, 0.0002 g/mL) of DT50 solution
in DCM. (g) Photographs of TBD, DBAc-Cz and DT (excited by 405 nm UV), non-photoluminescent
particles were marked by white ellipse.

When DT were solved in DCM, the H-bonds were broken, and the intermolecular
distance between DBAc-Cz and TBD became larger. Some exciplex separated and resulted
in the reappearance of the DBAc-Cz’s characteristic fluorescence peak in the DT DCM
solution. For example, the intensity of the exciplex’s emission peaks of DT50 in DCM re-
duced with the decreasing concentration. When the concentration dropped to 0.0002 g/mL,
the emission of the DT50 solution was identical to the blue-shifted DBAc-Cz solution’s
emission because the intermolecular distance was too large to form exciplex (Figure 4f). The
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same phenomenon was also observed in the steady-state PL spectra for the DT500, DT100,
and DT20 DCM solution, which also indicated the formation of exciplex in DT (Figure S4).

When DBAc-Cz and TBD were ground together, intermolecular H-bonds formed
between the two compounds, and exciplex self-assembled. The exciplex can be regarded as
the minimum emission unit in DT, which explained why DBAc-Cz’s emission characteristic
peak did not appear in the emission spectra of DT. The H-bonds not only acted as the
requirement of the formation of exciplex but restricted the vibration and rotation of DBAc-
Cz and TBD, limiting the nonradiative transition of triplet excitons. DBAc-Cz itself has the
potential to emit phosphorescence. PVA film embedded with DBAc-Cz can emit RTP for a
visible afterglow of about 7s (Figure S5), which confirmed DBAc-Cz’s ability to generate
triplet excitons. When TBD is excited, the p-π conjugate structure with three N atoms is
more likely to generate triplet excitons because the N atoms with lone pair of electrons
conduce to spin-coupling and ISC process. TBD’s large energy bandgap of HOMO to
LUMO makes it possible to transfer energy to the exciplex through Dexter excitation
transfer. Favorable triplet exciton generation and limitative nonradiative relaxation led the
exciplex to beam efficient RTP with long lifetime and afterglow.

Enabled by the H-bond interaction within the exciplex, water-stimulated double
emission ink was developed. The main composition of paper is cellulose abounding with
hydroxy groups. It can serve as a H-bond matrix of DT. To realize the water-stimulated
photoluminescent ink, a filter paper with 0.01 g/mL DT50 DCM solution (noted as DT ink)
was submerged in water and then dried at room temperature. The resulting paper emitted
fluorescence and RTP under 365 nm UV radiation (Figure 5b,c). The DT50-treated paper
was found to be the most efficient fluorescence and RTP material among all the tested DT.
After the DT-ink-treated paper was tried, the H-bonds of exciplex attached to paper were
affected, resulting in the alteration of fluorescence emission and the disappearance of the
RTP emission (Figure 5a–c). To demonstrate the capability of the developed technology,
specific patterns were written and displayed via DT ink and water on a filter paper. The
characters “USTB” were written on DT-treated paper with a pen using water as the ink.
Under daylight, no character could be seen on the sample. However, under UV light, the
USTB on the sample emitted different colors of fluorescence and emitted little RTP emission
when the UV lamp was off (Figure 5d). The water-written area of the sample showed
distinct fluorescent and phosphorescent behavior but showed no difference under daylight.
Because the “USTB” characters were invisible under daylight but clearly visible under
365 nm UV light and after the removal of UV light, the encryption and decryption of the
characters were successfully achieved. The developed DT ink showed great potential in
photoluminescent double-encryption applications.
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Figure 5. (a) Schematic illustration of DT embedded in paper (cellulose) and after water-processed.
(b) Graphs of samples under 365 nm UV lamp. DT ink infiltrated paper (1), DT ink infiltrated paper
with a drop of water on it and then dried (2), DT ink infiltrated paper soaked with water and then
dried (3). (c) Steady-PL spectra of DT ink infiltrated paper, DT ink & water infiltrated paper and
phosphorescence spectra of DT ink disposed filter paper (F: fluorescence, RTP: room temperature
phosphorescence). (d) DT ink infiltrated paper was written with water to achieve word encryption.
Graphs of the sample under daylight, under and after the removal of 365 nm UV light.

3. Materials and Methods
3.1. General Information

All the solvents are purchased from Aldrich and Peking Reagent and used without
any further purification. 2,7-dibromo-9H-carbazole, 4-(methoxycarbonyl)phenylboronic
acid, 1,5,7-Triazabicyclo [4.4.0]dec-5-ene (TBD) and Palladium(II)acetate (Pd(O2CCH3)2) are
purchased from Leyan company. Sodium hydroxide (NaOH), sodium sulfate anhydrous
(Na2CO3), sodium sulphate anhydrous (Na2SO4) and hydrochloric acid 38wt% (HCl) are
purchased from Macklin.

1. H NMR spectra are obtained on Bruker Avance 400 MHz NMR spectrometers using
chloroform-d (CDCl3) and dimethyl sulfoxide-d6 (C2D6SO) as solvent and tetramethylsi-
lane (TMS) as the internal standard. High-resolution mass spectra (HRMS) are obtained
on Micromass GCT-MS instrument operating in Matrix-Assisted Laser Desorption Ioniza-
tion (MALDI) mode and time of flight (TOF) mass detector. Ultraviolet-visible (UV-vis)
absorption spectra are measured by V-570 UV/VIS/NIR spectrophotometer at room tem-
perature. UV-vis diffuse reflectance spectra are measured using Hitachi model UH4150
UV-vis-NIR spectrophotometer. Photoluminescence spectra (excitation/emission spectra,
delayed spectra, decay curve and quantum yield are measured by FLS920 and FLS1000
Photoluminescence Spectrometer at room temperature. Infrared spectra are measured by
Perkin Elmer LR-64912C FT-IR spectrometer.

3.2. Synthesis of 4,4’-(9H-Carbazole-2,7-diyl)Dibenzoic Acid (DBAc-Cz)

0.360 g (2 mmol) of 4-(methoxycarbonyl)phenylboronic acid and 0.325 g (1 mmol) of
2,7-dibromo-9H-carbazole were mixed with 50 mL ethanol (EtOH) and 50 mL of 0.2 M
Na2CO3 solution in round-bottom flask. The solution was deoxidized by ultrasound in
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argon gas atmosphere. Then, 50 mg of Pd(O2CCH3)2 was added into solution as the catalyst
of this Suzuki-Miyaura coupling reaction. The mixture was stirred for 24 h in 363k (90 ◦C)
under an argon atmosphere. The product was extracted into dichloromethane (DCM) from
reaction solution and was purified by column chromatography (ethyl acetate/petroleum
ether) to obtain the intermediate product (DBzMe-Cz). 0.40 g DBzMe-Cz was hydrolyzed in
50 mL dioxane and 30 mL 1 M NaOH solution for 8 h in 373k (100 ◦C) while refluxing. HCl
(aq) was added to reaction solution until the pH turned to 1–2 to supersaturate DBAc-Cz as
brown floccules. The sediment was centrifuged and washed with deionized water for three
times. Then, the sediment was dried in vacuum at 333 k (60 ◦C) to obtain DBAc-Cz.

DBAc-Cz: 1H NMR (400 MHz, DMSO-d6) δ 12.98 (s, 2H), 11.39 (s, 1H), 8.23 (d,
J = 8.2 Hz, 1H), 8.16 (d, J = 7.9 Hz, 1H), 8.06 (d, J = 7.7 Hz, 4H), 7.90 (d, J = 9.1 Hz, 4H),
7.80 (s, 1H), 7.53 (t, J = 7.8 Hz, 3H), 7.41 (t, J = 7.7 Hz, 1H), 7.18 (dd, J = 10.6, 4.8 Hz,
1H) (Figure S6).

HRMS (MALDI-TOF, m/z): calcd for C26H17NO4, 407.43, found: 407.03.

3.3. Synthesis of 4,4’-(9H-Carbazole-2,7-diyl)Diphenol (DPOl-Cz)

Synthesis route of DPOl-Cz is similar as the route of DBAc-Cz. 0.276 g (2 mmol) of
4-hydroxyphenylboronic acid and 0.325 g (1 mmol) of 2,7-dibromo-9H-carbazole were
mixed with 50 mL ethanol (EtOH) and 50 mL of 0.2 M Na2CO3 solution in round-bottom
flask. The solution was deoxidized by ultrasound in argon gas atmosphere. Then, 50 mg
of Pd(O2CCH3)2 was added into solution as the catalyst of this Suzuki-Miyaura coupling
reaction. The mixture was stirred for 24 h in 363k (90 ◦C) under argon gas atmosphere.
HCl (aq) was added to reaction solution to neutralize Na2CO3 till pH turned to 5–6. The
product was extracted into dichloromethane (DCM) from reaction solution then evaporated
the solvent under reduced pressure and dried the crude product. 0.40 g crude product was
dissolved in 40 mL dioxane and 20 mL 1 M NaOH solution. HCl (aq) was added to the
solution until the pH turned to 1–2 to supersaturate DPOl-Cz as black-brown floccules. The
sediment was centrifuged and washed with deionized water and dioxane (10:1 volume
ratio) for three times. The sediment was dried in vacuum at 333 k (60 ◦C) to obtain DPOl-Cz.

DPOl-Cz: 1H NMR (500 MHz, DMSO-d6) δ 11.23 (s, 1H), 9.52 (s, 2H), 8.11 (s, 1H),
8.10 (s, 1H), 7.61 (d, J = 1.6 Hz, 2H), 7.58 (d, J = 2.1 Hz, 2H), 7.57 (d, J = 2.1 Hz, 2H),
7.39 (d, J = 1.6 Hz, 1H), 7.37 (d, J = 1.6 Hz, 1H), 6.90 (d, J = 2.0 Hz, 2H), 6.88 (d, J = 2.2 Hz,
2H) (Figure S7).

HRMS (MALDI-TOF, m/z): calcd for C24H17NO2, 351.41; found: 351.16.

3.4. Preparation of DT

TBD was purified by recrystallization in THF. 0.1395 g TBD and 0.0008 g/0.0040 g/
0.0080 g/0.0202 g DBAc-Cz was placed into a agate mortal. Ground the two kinds of powder
with force thoroughly for 2 min to produce canary yellow powder of DT500/DT100/
DT50/DT20.

4. Conclusions

In summary, a new carbazole derivative DBAc-Cz was synthesized and was combined
with TBD to produce H-bond photoluminescent materials (DT) using a simple grinding
method. DBAc-Cz and TBD were linked by H-bonds to form exciplex within DT so
the fluorescence and phosphorescence behavior changed significantly. The prepared DT
exhibited efficient RTP emission with a 0.85 s lifetime and a quantum yield of 11.71%.
The minimal difference between fluorescence and RTP emission wavelength of DT is only
14 nm (DT50). This work provides insights into the development of stimulus-responsive
exciplex RTP materials. Water-stimulated DT ink with double emission was developed,
showing potential application in the writing and printing encryption field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1, Scheme S1: Synthetic procedures for DBAc-Cz and DPOl-Cz; Scheme S2:

https://www.mdpi.com/xxx/s1
https://www.mdpi.com/xxx/s1
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Theoretical calculation results for DBAc-Cz and DPOl-Cz; Figure S1: The Commission Internationale
de L’Eclairage (CIE) chromaticity coordinate graph of DBAc-Cz and DTs fluorescence emission;
Figure S2: The comparison of steady-state PL spectra (blue line) and phosphorescence spectra (red
line) of DTs; Figure S3: PL spectra of DPOl-Cz and the ground mixture of DPOl-Cz and TBD; Figure S4:
Fluorescence spectra of DCM solution of DT20, DT100, and DT500 at different density; Figure S5:
Luminescence photographs of PVA film doped with DBAc-Cz; Figure S6: 1H NMR spectrum of
DBAc-Cz in DMSO-d6; Figure S7. 1H NMR spectrum of DPOl-Cz in DMSO-d6.
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