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Predicting the future of excitation energy transfer in
light-harvesting complex with artificial intelligence-
based quantum dynamics
Arif Ullah 1✉ & Pavlo O. Dral 1✉

Exploring excitation energy transfer (EET) in light-harvesting complexes (LHCs) is essential

for understanding the natural processes and design of highly-efficient photovoltaic devices.

LHCs are open systems, where quantum effects may play a crucial role for almost perfect

utilization of solar energy. Simulation of energy transfer with inclusion of quantum effects can

be done within the framework of dissipative quantum dynamics (QD), which are computa-

tionally expensive. Thus, artificial intelligence (AI) offers itself as a tool for reducing the

computational cost. Here we suggest AI-QD approach using AI to directly predict QD as a

function of time and other parameters such as temperature, reorganization energy, etc.,

completely circumventing the need of recursive step-wise dynamics propagation in contrast

to the traditional QD and alternative, recursive AI-based QD approaches. Our trajectory-

learning AI-QD approach is able to predict the correct asymptotic behavior of QD at infinite

time. We demonstrate AI-QD on seven-sites Fenna–Matthews–Olson (FMO) complex.
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From the birth of life, solar energy has been the driving force
of life. Via the mechanism of photosynthesis, living organ-
isms capture sunlight with the highly sophisticated pigments

in their antenna systems and transfer sunlight energy to the
reaction center (RC) in the form of electron-hole pairs (excitons),
where it is stored as biochemical energy1. The transfer of solar
energy from antenna to RC, which is also known as excitation
energy transfer (EET), in the form of excitons is considered to be
highly efficient with close to unit efficiency2. Understanding this
high efficiency of the natural harvesting systems is very important
because this understanding can be potentially applied in design-
ing very efficient organic solar cells and storage devices3.
Experiments showed that the long-lasting coherence in the effi-
cient natural light-harvesting complexes (LHCs) is preserved by
the surrounding protein environments (scaffold), and this
coherence may be responsible for this high efficiency4,5. The most
well-investigated LHC is Fenna–Matthews–Olsen (FMO) com-
plex, which is found in green sulfur bacteria6. The small size and
simplicity of the FMO complex also make it a testbed of simu-
lation approaches. The FMO complex is a trimer of identical
subunits, where each subunit consists of bacteriochlorophyll
(BChl) molecules (system) attached to their protein
environments7.

Enormous amount of research work has been done on light-
harvesting processes8–13. Taking FMO as an example, it is easy to
see that the system (BChl molecules) is not isolated from the
environment (the protein) and thus, the correct simulation of
FMO should treat it as an open system rather than isolated one.
In addition, many experiments suggest14,15, that quantum effects,
particularly coherence, might play an important role in the light-
harvesting processes and may even be responsible for achieving
the high-end efficiency. Temporal and spatial simulation of EET
with the inclusion of quantum effects can be done within many
frameworks such as classical mapping-based approaches16–18,
perturbative methods19–21, and dissipative quantum dynamics
(QD)22–27 adopted here.

QD simulations can be performed using the hierarchical equations
of motion (HEOM)28 and its many improvements and
extensions8,23,29–31, the quasiadiabatic propagator path integral
(QuAPI)32 and its variant iterative QuAPI (iQuAPI)27, the trajectory-
based stochastic equation of motion (SEOM) approach25,33–39, the
multi-layer multi-configuration time-dependent Hartree (ML-
MCTDH)26 and the local thermalising Lindblad master equation
(LTLME)22. The development of various quantum dissipative
dynamics methods stirs from the fact that each of these methods has
some limitations and hence there is no single universal method that
works in all cases. For instance, HEOM is numerically exact but
comes with a very high computational cost at low temperatures, the
SEOM has no explicit dependence on the temperature but has very
bad convergence at long-time propagation, in the QuAPI approach
all correlation effects are included over a finite time and correlation
effects beyond this time are neglected. Most importantly, all these
traditional QD approaches require step-wise propagation of trajec-
tories and the next step depends on the previous steps, thus, QD
simulation is an iterative, recursive process. Both calculations at each
time step and recursive nature of QD makes it rather computa-
tionally expensive.

Alleviating the computational cost of QD became a target of a
series of studies applying artificial intelligence (AI)40–46, inspired
by advances in application of AI employing machine learning
(ML) algorithms in computational chemistry and chemical
physics47,48. AI was also applied to investigate EET in a dimer
system44 and the FMO complex40. Saving of computational cost
by AI in above studies is impressive, however, one of the studies40

only focused on predicting energy transfer times and transfer
efficiencies rather than temporal and spatial evolution, while

other related studies44–46 adopted basically the same recursive
nature of QD trajectory propagation.

The recursive nature of the previous AI-based QD makes it
prone to error accumulation. In recursive simulations, previously
predicted values are used as an input to predict the next value.
Thus, the prediction error at each time-step will accumulate,
which results in deterioration of accuracy. In addition, the
recursive nature of predictions does not allow us to make a
prediction for any arbitrary time without predicting values before
that. Finally, a short-time trajectory is needed as the seed to be
generated with traditional approaches such as HEOM and then
provided as an input to AI model to make prediction for the next
time step and ultimately propagate the long-time dynamics. Thus,
even when having AI model, we still need to spend valuable
computational time to generate the short-time trajectory with the
traditional approaches.

Here, we suggest an AI-QD approach to directly predict QD
with AI as a function of time and other parameters such as
temperature, reorganization energy, etc., completely circumvent-
ing the need of recursive step-wise dynamics propagation in
contrast to the traditional QD and alternative, recursive AI-based
QD approaches. Our AI-QD approach is able to predict QD at
infinite time with correct asymptotic behavior and can be viewed
as trajectory learning, which does not need any short-time tra-
jectory as an input, eradicates the need of traditional approaches
to generate the seed, and alleviates the problem of error accu-
mulation. We demonstrate the applicability of AI-QD on seven-
sites Fenna–Matthews–Olson (FMO) complex and show how AI-
QD can be used for massive, infinite-time QD simulations and
provide insights into the desired range of parameters and more
efficient paths followed by the transfer of excitation energy.

Results
Reference quantum dynamics of the FMO complex. We employ
the Frenkel exciton Hamiltonian49 to study EET dynamics in the
FMO complex:

H ¼ Hs þHenv þHs�env þHreorg; ð1Þ
with all Hamiltonian terms given below

Hs ¼ ∑
n

i
ij iϵi ih j þ ∑

n

i;j¼1;i≠j
ij iJ ij j

� ��; ð2Þ

Henv ¼ ∑
n

i¼1
∑
k¼1

1
2
P2
k;i þ

1
2
ω2
k;iQ

2
k;i

� �
; ð3Þ

Hs�env ¼ � ∑
n

i¼1
∑
k¼1

ij ick;iQk;i ih j; ð4Þ

Hreorg ¼ ∑
n

i¼1
ij iλi ih j; ð5Þ

where Hs, Henv, Hs-env, and Hreorg denote system (BChl mole-
cules) Hamiltonian, Hamiltonian of protein-environment,
system-environment interaction Hamiltonian and the reorgani-
zation term, respectively. In Eq. (1), n is the number of sites (BChl
molecules), ϵi is the energy of the ith site and Jij is the inter-site
coupling between sites i and j. Pk,i, Qk,i, and ωk,i are, respectively,
momentum, coordinate, and frequency of environment mode k
associated with site i. In Hs-env, each site is connected to its own
environment. The ck,i is the strength of coupling between site i
and mode k of its environment. The reorganization term Hreorg

can be seen as a counter term that emerges from the interaction
of the sites with the environment8,49,50. It is added to stop further
renormalization of the site energy ϵi by the environment. In the
reorganization term Hreorg, λi is the reorganization energy cor-
responding to site i51,
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λi ¼
1
π

Z 1

0

JiðωÞ
ω

dω; ð6Þ

where Ji(ω) is spectral density of the environment corresponding
to site i. As shown by Nalbach and Thorwart52, the effects of the
discrete molecular modes on the population dynamics are largely
irrelevant. As a result, it is acceptable to use continuous envir-
onment spectral density such as Drude–Lorentz spectral density

JenvðωÞ ¼ 2λ
ωγ

ω2 þ γ2
; ð7Þ

where γ and λ denote the characteristic frequency (bath relaxa-
tion rate) and the reorganization energy, respectively.

In general terms, the EET dynamics in the FMO complex can
be described by Liouville–von Neumann equation

d
dt

ρðtÞ ¼ i
_

H; ρðtÞ� �
; ð8Þ

where ρ is the density matrix. Because of the many-body effects,
direct propagation of Eq. (8) is not straightforward. Different
approaches are developed to simplify and propagate Eq. (8) and
interested readers are advised to look into the corresponding
references25,30,32,53.

We use the local thermalising Lindblad master equation
(LTLME)22 to propagate the reference QD trajectories for the
reduced density matrix of the system (see Supplementary
Methods), where we adopt Adolphs and Renger’s Hamiltonian
for seven sites per subunit54 (see “Methods”). The LTLME is a
coherent and complete positive trace-preserving approach, but
may not be as accurate as HEOM or SEOM approaches because
of approximations used in LTLME derivation22,55, but here it is
not the concern of our proof-of-concept paper.

Parameters-based non-recursive training framework. In our
parameters-based non-recursive AI-QD, we train ML model as a
function of a parameter space D (used as the input to ML model)
which depends on the system of interest and on the data from a
limited number of QD trajectories. For the FMO complex, our
parameter space D consists of information of sites: λ, γ, and T. In
addition, time also becomes a part of the input of our AI-QD

model. In order to treat infinite time, instead of time, we intro-
duce time-function f ðtÞ 2 D, which normalizes time and for
t→∞ becomes f(t)= 1. Such normalization, however, can
effectively only discern data within rather short time-region, thus,
instead of a single time-function, we introduce the set of redun-
dant time-functions f kðtÞ

� 	
for different regions in very long-

time propagation (see “Methods”). The remaining input of our
model is information about the initial excitation m ¼ fm1;m2g ¼
f0; 1g 2 D (with 0 corresponding to initial excitation on site-1
and 1 corresponding to site-6) and labels n ¼
fn1; n2; n3; ¼ ; n7g ¼ f1; 2; 3; ¼ ; 7g 2 D corresponding to the
seven rows in the reduced density matrix. We train convolutional
neural network (CNN) taking all above input elements
fm; n; γ; λ; T; ffkðtÞgg 2 D on rows of the reduced density matrix
which include exciton population ρnn(t) and coherence (off-
diagonal) terms ρnq, n≠q (target values to learn or output of the
trained model) (see Fig. 1 and “Methods” for details, such as
CNN architecture and normalization of input elements).

Our training trajectories generated with the reference LTLME-
QD approach are chosen by farthest-point sampling from the
three-dimensional space of the following parameters: reorganiza-
tion energy λ= {λ1, λ2, λ3,…, λi}, the characteristic frequency
γ= {γ1, γ2, γ3,…, γj} and temperature T= {T1, T2, T3,…, Tl} (see
“Methods”).

We should also decide up to what time-length tM we should
run reference LTLME-QD trajectories. Based on the prior
knowledge that populations plateau in asymptotic limit, for each
trajectory we choose a different time-length tM using a vanishing
gradient scheme, where tM is chosen such that the gradient of
population G is close to zero (see “Methods”). Using the
vanishing gradient scheme to find different tM for each trajectory
allows us to sample more data from the training trajectories,
which are hard-to-learn, while avoiding redundant sampling from
trajectories, which are easy-to-learn. This also removes arbitrari-
ness in choosing fixed tM parameter as was done in previous
studies using the recursive AI-QD scheme44,46.

Application to EET dynamics in FMO complex. As an appli-
cation of our approach, we predict EET dynamics in the FMO
complex with seven sites per subunit for parameters of the test set
trajectories none of which used in training. Site-1 (BChl molecule
1) and site-6 (BChl molecule 6) are most likely to get initially
excited as they are close to the photosynthetic antenna complex
called chlorosome6, we thus present results for both cases. For
predictions, we just provide the parameters of the test trajectories
(characteristic frequency, reorganization energy, temperature) as
an input and predict the evolution of EET. Figure 2 shows the
evolution of excitation energy in all seven sites for both cases. In
Fig. 2, we show EET for both short and long time periods,
demonstrating that AI-QD is able to capture the coherent EET
(aka quantum beating or modulation of amplitudes) of short-time
dynamics and also can predict the asymptotic limit. Figure 3
shows the prominent off-diagonal terms (aka coherence) of the
reduced density matrix for Fig. 2. Table 1 shows mean absolute
error (MAE) and root mean square error (RMSE) averaged over
600 trajectories. As AI-QD is non-recursive (non-iterative),
without any trajectory propagation, we can directly predict the
asymptotic behavior. Our AI-QD performs well in all cases (from
weak coherence to strong coherence, from Markovian to non-
Markovian, from adiabatic to nonadiabatic situations) as can be
observed for selected trajectories shown in Supplementary Fig. 1
with corresponding errors reported in Supplementary Table 1.
From Supplementary Table 1, we observe that our AI-QD
approach is comparatively more accurate in strongly coherent
cases (large value of γ and small values of λ and T) which can be

Fig. 1 Preparation of training data using parameters in AI-QD training
framework. Here fkðtÞ

� 	
is a set of time-functions based on the logistic

function fkðtÞ ¼ 1=ð1þ 15 � expð�ðtþ ckÞÞÞ where ck= 5k−1.0 and
k∈ {0, 1, 2,…, 99} (see “Methods”). Other parameters are
t= {t0, t1, t2,…, tM}, λ= {λ1, λ2, λ3,…, λi}, γ= {γ1, γ2, γ3,…, γj}, and
T= {T1, T2, T3,…, Tl}. In addition, labels n= {n1, n2, n3,…, n7} are used for
corresponding rows in the density matrix and labels for sites with possible
initial excitation are m= {m1,m2}. As the off-diagonal elements ρnq, n≠q are
complex, we separate the real and imaginary parts.
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seen as a consequence of the vanishing gradient scheme which
may favor these challenging cases due to a larger number of
training points sampled from such trajectories. AI-QD approach
can even extrapolate to a good degree as its error for the test
trajectories propagated with parameters outside the training
parameter space is of a similar order of magnitude to the test
trajectories propagated with parameters inside the training

parameter space (interpolation) as shown in Supplementary Fig. 2
and Supplementary Table 2.

It was shown8,56,57 that the transfer of excitation energy in the
seven-sites FMO complex follows mainly two paths, i.e., site-
1→ site-2→ site-3↔ site-4 and site-6→ site-5, site-7, site-
4→ site-3, here the ↔ shows that the excitation energy
equilibrates between site-3 and site-4 after site-3 is populated
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Fig. 2 Population of the seven sites in the FMO complex as a function of time. In a, b, the initial excitation is considered on site-1 and other parameters
are γ= 175, λ= 70, T= 70. In c, d, the initial excitation is on site-6 and other parameters are γ= 75, λ= 100, T= 130. a and c show a part of the population
up to 2.5 ps, while the population changes beyond 2.5 ps are shown in (b) and (d), from which it is clearly seen that the population plateaus after a few
picoseconds. The off-diagonal terms or coherences are shown in Fig. 3. The results of AI-QD are compared to the results of LTLME-QD (dots). n is the site
label. γ and λ are in the units of cm−1, while T is in the units of K.

Fig. 3 Electronic coherence as a function of time. a and b, respectively, show the real and imaginary parts of the prominent off-diagonal terms for Fig. 2a,
b, where γ= 175, λ= 70, T= 70 with the initial excitation on site-1. c and d, respectively, show the real and imaginary part of the prominent off-diagonal
terms for Fig. 2c, d, where γ= 75, λ= 100, T= 130 with the initial excitation on site-6. The results of AI-QD are compared to the results of LTLME-QD
(dots). γ and λ are in units of cm−1, while T is in the units of K.
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(see Fig. 3). Among the seven sites, the sites 1 and 6 are close to
the baseplate protein, while the sites 3 and 4 are near to the target
RC complex54,58. It has been proposed that the quantum
coherence allows the FMO complex to quickly sample several
routes (paths) in search of site-35. In Fig. 4, we show the
population of site-3 at t= 0.5 ps (500 fs) as a function of γ, λ, and
T. From Fig. 4a, we observe that at room temperature T= 300,
the ETT to site-3 or, in other words, to RC complex gets slow as
the characteristic frequency γ increases. In contrast, the ETT to
site-3 increases with the increase in reorganization energy λ as
shown in Fig. 4b. Similar trend can be observed with the increase
in temperature T as can be seen in Fig. 4c.

In order to find the optimum parameters for the fastest transfer of
excitation energy, we have calculated population of site-3 at 0.5 ps
for a massive set of ca. 0.57 million possible combinations (site-
1+ site-6) of the γ, λ, T with the search space γ= 25, 30, 35,…, 245,
λ= 10, 15, 20,…, 345 and T= 25, 30, 35,…, 345. We report the
fastest EET of 0.761 to site-3 for path-2 with γ= 30, λ= 310,
T= 25, while for path-1 for the same parameters EET is 0.626. From
Figs. 2, 4 and from the optimum parameters, we notice that
following path-1, i.e., site-1→ site-2→ site-3↔ site-4, the EET
shows more coherence and is slow compared to excitation transfer
following path-2, i.e., site-6→ site-5, site-7, site-4→ site-3. From Eq.
(9) (“Methods”), energy of the site-1 (12,410 cm−1) is lower than the
baseplate, which has been reported to be 12,500 cm−1 59,60. This
allows a quick transfer of the excitation energy to site-1 from the
baseplate. However, the energy of site-2 (12,530 cm−1) is higher
than site-1 and also than site-3 (12,210 cm−1), which on the one
hand stops backward transfer from site-3, but on the other hand
creates a local minimum on site-1. Despite the local minimum on
site-1, the excitation energy is not trapped because of the quantum
coherent wave-like motion between site-1 and site-2. Following
path-2, the energy of site-6 (12,630 cm−1) is higher than the energy
of baseplate. To stop backward transfer of excitation energy from
site-6 to baseplate, site-6 should quickly transfer excitation energy to
other sites such as site-5, site-7, and site-4. This quick transfer from
site-6 to site-5, site-7, and site-4 is only possible by the strong

coupling of site-6 to site-5 and site-7, which in return are strongly
coupled to site-4.

Discussion
In this work, we have presented a non-recursive (non-iterative)
AI-QD approach for blazingly fast prediction of quantum
dynamics, as predictions can be made for any time step up to
asymptotic limit completely circumventing the need of recursive
trajectory propagation. This can be used, as we demonstrated
here, for massive quantum dynamics simulations, for example, in
search for the best conditions required for efficient energy
transfer in designed photovoltaic devices. Just to put things into
perspective, our AI-QD approach can predict the entire 2.5 ps
trajectory within ca. 2 min on a single core of Intel(R) Core(TM)
i7-10700 CPUs @ 2.90 GHz, independent of the reference method
used for generating training trajectories, while the same propa-
gation with the traditional recursive approaches such as HEOM
would take hours, and the cost would exponentially increase for
low temperatures. The high cost of accurate approaches such as
HEOM was also a reason why we used a much faster LTLME for
this proof-of-concept study to extensively test our approach
(propagation of an entire trajectory takes only 3 min with LTLME
on a single CPU of the above computer architecture). It is worth
emphasizing that AI-QD is embarrassingly parallel and the cal-
culations can be further significantly sped up by using multiple
CPUs or GPUs, because predictions with AI-QD for different
time steps are independent of each other and different segments
of trajectories can be distributed for independent calculations on
many threads.

We demonstrated the feasibility of AI-QD approach on an
example of the FMO complex, but this approach is general
enough to be used for any other complex after retraining. It
remains to be seen how well the AI-QD approach can be
extended to describe several LHCs at the same time—a topic of
our ongoing research. One could use the LHC Hamiltonian ele-
ments as a representation of LHC complexes and an early
encouraging study42 has shown that by using Hamiltonian ele-
ments as input of an ML model, one can successfully describe
scalar properties (energy transfer times and transfer efficiencies)
for different Hamiltonians. However, open question remains how
successful would be such an approach to learn dynamics and in
addition, how to circumvent different dimensionalities of
Hamiltonians of different complexes.

Methods
Training data. In the seven-sites FMO complex (apo-FMO), where seven BChl
molecules (seven sites) exist per subunit, the inter-subunit interaction is very small
and each subunit can be considered relatively isolated61. Here we adopt Adolphs

Table 1 Mean absolute error (MAE) and root mean square
error (RMSE) averaged over 600 test trajectories
propagated up to 1 ns.

Diagonal terms Off-diagonal terms

Error ρnn Rfρmn;n≠mg Ifρmn;n≠mg
MAE 1.3 × 10−3 5.1 × 10−4 2.4 × 10−4

RMSE 2.1 × 10−3 8.1 × 10−4 3.6 × 10−4

Rfρmn;n≠mg and Ifρmn;n≠mg represent the real and imaginary part of the off-diagonal terms,
respectively.
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Fig. 4 The evolution of site-3 population at t= 0.5 ps. Plots are shown as a function of (a) characteristic frequency of the environment γ (b)
reorganization energy λ, and c temperature T. The blue line corresponds to the case with initial excition on site-1 while the red line is for the case with initial
excition on site-6. γ and λ are in the units of cm−1 while T is in the units of K.
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and Renger’s Hamiltonian for seven sites per subunit54

Hs ¼

12410 �87:7 5:5 �5:9 6:7 �13:7 �9:9

�87:7 12530 30:8 8:2 0:7 11:8 4:3

5:5 30:8 12210 �53:5 �2:2 �9:6 6:0

�5:9 8:2 �53:5 12320 �70:7 �17:0 �63:6

6:7 0:7 �2:2 �70:7 12480 81:1 �1:3

�13:7 11:8 �9:6 �17:0 81:1 12630 39:7

�9:9 4:3 6:0 �63:3 �1:3 39:7 12440

2
666666666664

3
777777777775

; ð9Þ

where energies are given in cm−1. Each site is coupled to its own environment
characterized by the Drude–Lorentz spectral density given by Eq. (7). Not long ago,
an eighth BChl molecule (site-8) has been discovered11, however, as has been
mentioned by Jia et al.62, the role of the eighth BChl molecule (site-8) in the
transfer of excitation energy in the FMO complex is negligible.

Trajectories for the reduced density matrix have been generated with the local
thermalising Lindblad master equation (LTLME)22 (see Supplementary Methods)
implemented in quantum_HEOM package63 with QuTip64 in the back-end with all
the possible combinations of the following parameters: λ= {10, 40, 70, 100, 130, 160,
190, 220, 250, 280, 310} cm−1, γ= {25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275,
300} cm−1 and T= {30, 50, 70, 90, 110, 130, 150, 170, 190, 210, 230, 250, 270, 290,
310} K. We consider that all these combinations of parameters make a part of
a parameter space D. The time-step used for propagation is 5 fs and the trajectory is
propagated up to tM= 1 ns (106 fs). With the possibility of initial excitation on site-1
and site-6, we generate 1980 trajectories for each excitation case.

Data preparation. With all the possible combinations of the parameters λ, γ, T
(belonging to D), we have 3960 total number of trajectories Ntraj (1980 (site-1)+ 1980
(site-6), all these trajectories correspond to their respective combination of parameters
in parameter spaceD). Using farthest-point sampling65 in the three-dimensional space
of λ, γ, and T, we choose 1000 trajectories as our training space TS (500 (site-1)+ 500
(site-6), ca. 25% of space D)), 200 trajectories as the validation set VS (ca. 5% of space
D)) and the rest of trajectories, we keep as the test set STP (set of test points, ca. 70% of
space D). For each trajectory, we choose a different time-length tM using a vanishing
gradient scheme. In this scheme, we take the gradient G of the population of each site
(ρnn, n= 1, 2, 3,…, 7) for 10 consecutive time-steps and if all of them remain less than
the threshold value of Gth= 1 × 10−10, we choose our tM. We find tM for all seven sites
and then choose the maximum value among them, thus we keep a single value of
asymptotic limit (tM) for all seven-sites. By analyzing the gradients, we find the region
of the trajectory, where the change in population of the site is very small. By knowing
that, we keep the time-length of our trajectory tM up to that region, because beyond tM
the change in population is very small, and ML is able to predict it. As the asymptotic
limit for each trajectory is different, we have different values of tM for each trajectory.
In our training, we have included t→∞, corresponding to the asymptotic behavior at
long-time. Using the strategy of different tM for each trajectory allows us to include
more sampling in our training set from hard-to-learn trajectories, while avoiding
redundant sampling from easy-to-learn trajectories. For training, sampling is done
with different training time-steps Δttrain in different regions of the trajectory. We
sample our training points from 0 ps–1 ps, 1 ps–1.5 ps, 1.5 ps–2.5 ps, 2.5 ps–5 ps,
5 ps–25 ps, 25 ps–50 ps, 50 ps–250 ps, 250 ps–tM regions with Δttrain= 5, 10, 25, 50,
100, 200, 500, 1000 fs, respectively. The number of training points depends on the
number of trajectories Ntraj chosen for training, training time-step Δttrain and time-
length of trajectories tM, which in turn depends on Gth.

Training architecture. We use convolutional neural network (CNN) architecture,
because the importance of convolutional layers is much explored for image ana-
lysis, where these layers extract important features such as edges, textures, objects,

and scenes. When it comes to time-series data, we are using convolutional layers in
the hope to extract some important features from the data (such as the time
influence). After learning those features, when we provide a test trajectory, the
trained ML model will look for those features in that test trajectory66. Though we
have used the CNN model, other neural network architectures such as long short-
term memory (LSTM) is also an option. LSTM is considered to be more suitable
for extracting long-time temporal dependencies in contrast to convolutional neural
networks (CNNs) which are more local. However, CNNs are easy to train and in
many studies, they have outperformed LSTM for future forecasting67,68.

We use 1000 trajectories as our training set TS and 200 trajectories as the
validation set VS. After preparation of the input following Fig. 1, we build a CNN
architecture and optimize it with hyperopt library69. The optimization was carried
out only on 300 training trajectories from the training set TS. After optimization,
our training architecture consists of two one-dimensional (1D) hidden
convolutional layers, one maximum pooling layer, one flatten layer, three fully
connected hidden dense layers and one output dense layer. The convolutional
layers extract time-dependent correlations from a moving window, while
maximum pooling layer pulls out the important information and decreases the size
of the feature map which leads to reducing the computational cost. The flatten
layer converts the output from the maximum pooling layer into 1D format as the
fully connected dense layers, which are the traditional neural networks, can only
work with 1D data. We train our CNN architecture using Keras software package70

with the TensorFlow in the backend71. Activation function, number of filters,
kernel size and number of neurons for the respective convolutional and dense
layers are given in Table 2. In our study, we train a single CNN model and with ca.
3.2 million training points and 900 epochs, training takes ca. 42 h on 32 Intel(R)
Xeon(R) Gold 6226R CPUs @ 2.90 GHz. The optimized learning rate is 1 × 10−3

with adoptive mean optimizer and the batch size is 512. Using mean squared error
function as a loss, we report 1.86 × 10−7 as the validation loss. The mean absolute
error (MAE) and root mean square error (RMSE) averaged over 600 randomly
chosen trajectories from the set of test trajectories STP (which were not part of the
training process) are given in Table 1.

Input normalization and redundant time-functions. As we have multiple input ele-
ments, we need to normalize them all. In normalized input, we have
λ ¼ fλ1; λ2; λ3; ¼ ; λjg=λmax, γ ¼ fγ1; γ2; γ3; ¼ ; γkg=γmax, and
T ¼ fT1;T2;T3; ¼ ;Tlg=Tmax, where λmax, γmax, and Tmax represent the maximum
values of λ, γ, and T, respectively. We divide n= {n1, n2, n3,…, n7}= {1, 2, 3,…, 7}
(labels corresponding to the seven rows in the reduced density matrix) by 10 to
normalize their values, i.e., the input elements corresponding to the rows in the
reduced density matrix are {0.1, 0.2, 0.3,…, 0.7}. Labels for sites with possible initial
excitation are m= {0, 1}, which, respectively, represent initial excitation on site-1 and
site-6. The input time is represented by a set of redundant time-functions f iðtÞ

� 	
, each

of which is logistic function f(t) normalizing time. We use a set of 100 logistic functions
f kðtÞ ¼ 1=ð1þ 15 � expð�ðt þ ckÞÞÞ, where ck= 5k−1.0 and k∈ {0, 1, 2,…, 99}, i.e.,
each logistic function has the same shape and designed to cover the correspond-
ing ≈ 5 ps region and is shifted with respect to the next logistic function by 5 ps, as
shown in Supplementary Fig. 3. The infinity limit is given by all redundant time-
functions set to one.

Data availability
Data can be re-generated using the script provided at https://github.com/Arif-PhyChem/
AIQD_FMO.

Code availability
The code is available at https://github.com/Arif-PhyChem/AIQD_FMO.

Table 2 Summary of the optimized neural network architecture with layers, output shape (OS), number of parameters (NP),
activation function (AF), number of filters (NF), kernel size (KS), and number of neurons (NN).

Layers (type) OS NP AF NF KS NN

First hidden convolutional layer (1D) (None, 103, 90) 360 relu 90 3 ×
Second hidden convolutional layer (1D) (None, 103, 70) 18,970 relu 70 3 ×
Maximum pooling layer (None, 51, 70) 0 × × × ×
Flatten layer (None, 3570) 0 × × × ×
First hidden dense layer (None, 512) 1,828,352 relu × × 512
Second hidden dense layer (None, 512) 262,656 relu × × 512
Third hidden dense layer (None, 512) 262,656 relu × × 512
Dense output layer (None, 13) 6669 Linear × × 13

Total parameters: 2,379,663; trainable parameters: 2,379,663; non-trainable parameters: 0.
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