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Abstract
The promise of personalized medicine is that each patient’s treatment can be optimally tailored to their disease. In turn, their 
disease, as well as their response to the treatment, is determined by their genetic makeup and the “environment,” which relates 
to their general health, medical history, personal habits, and surroundings. Developing such optimized treatment strategies is 
an admirable goal and success stories include examples such as switching chemotherapy agents based on a patient’s tumor 
genotype. However, it remains a challenge to apply precision medicine to diseases for which there is no known effective 
treatment. Such diseases require additional research, often using experimentally tractable models. Presumably, models 
that recapitulate as much of the human pathophysiology as possible will be the most predictive. Here we will discuss the 
considerations behind such “precision models.” What sort of precision is required and under what circumstances? How can 
the predictive validity of such models be improved? Ultimately, there is no perfect model, but our continually improving 
ability to genetically engineer a variety of systems allows the generation of more and more precise models. Furthermore, 
our steadily increasing awareness of risk alleles, genetic background effects, multifactorial disease processes, and gene by 
environment interactions also allows increasingly sophisticated models that better reproduce patients’ conditions. In those 
cases where the research has progressed sufficiently far, results from these models appear to often be translating to effective 
treatments for patients.

Validity

It is important to remember that all models are models, and 
their limitations must be considered, as well as their poten-
tial. In evaluating models, three criteria for validity are often 
discussed. These include face validity: essentially, does the 
model look right? Does it exhibit the salient features of the 
condition being modeled? The second is construct validity: 
is the basis for the model sound? Is the condition arising for 
the right reasons? The third is arguably the most important 
for translational and preclinical research. This is predictive 
validity: will the results obtained with the model predict 
outcomes in humans? Predictive validity most often refers 
to drugs or treatments translating from preclinical models to 
clinical trials, but it also applies to more basic research on 
disease mechanisms such as pathophysiological responses, 

and whether these are equivalent in patients and the model 
(Fig. 1).

In genetic models, face validity becomes the phenotype 
and how closely it resembles the human disease. Construct 
validity refers to how similarly the mutation in the model 
recapitulates the genetic state in the patients. Ideally, chang-
ing the same conserved amino acid in a mouse protein that is 
changed in a human disease-associated allele causes a mouse 
phenotype that closely mirrors the human disease. There are 
certainly examples of this, but they may be the exceptions 
and not the rule. The reasons for this run from simple issues 
such as lack of conservation, to more complicated situa-
tions where gene duplications or redundancy may prevent 
a one-to-one recapitulation, to a lack of shared physiology 
or anatomy, which may or may not be known in advance, 
and may or may not be easily decipherable. This does not 
mean that the models cannot produce valuable information. 
To quote the statistician George Box, “Remember that all 
models are wrong; the practical question is how wrong do 
they have to be to not be useful?” (Box and Draper 1987).

In the following review, we will discuss strategies for 
generating models with an eye towards maximizing their 
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predictive validity. However, in many cases, whether that 
has been successful is still unknown. We will also consider 
different measures of face and construct validity, and the 
extent to which their precision in reproducing the human 
condition may impact predictive validity. Due to personal 
bias and familiarity, many of the examples cited will involve 
mouse models of neurological and neuromuscular diseases, 
but the principles should extend to many disorders and many 
model systems, and others will be mentioned throughout.

Monogenic diseases

Monogenic Mendelian diseases are perhaps the most 
straightforward starting point for this discussion. Many 
of the points to be made concerning face validity and 

construct validity as they apply to preclinical studies can 
be made using the example of mouse models of Nieman 
Picks disease type C (NPC), caused by recessive loss-of-
function mutations in the NPC1 gene. Mutations in NPC1 
were identified as the cause of NPC following the cloning 
of a spontaneous mouse mutation with a similar physiologi-
cal and histological phenotype (Carstea et al. 1997; Loftus 
et al. 1997). This immediately gives credibility to the face 
validity of this model, as the mouse phenotype was similar 
enough to the human disease to allow this direct connec-
tion to be made. The NPC1 protein is a 13-transmembrane 
domain transporter that transports cholesterol across intra-
cellular membranes. Loss of NPC1 function in both mice 
and patients leads to cholesterol accumulation in peripheral 
organs such as the spleen and liver, and also in neurons, 
leading to neurodegeneration (OMIM #257220). In mice, 
this neurodegeneration is most notable in cerebellar Purkinje 
cells, both histologically and from an early, overt ataxia. In 
patients, the neurodegeneration is more widespread and fre-
quently seizures are also present, and the absence of seizures 
in the mouse models is a notable fault in their face validity. 
However, seizures may also be an aspect of the phenotype 
that only matters in some contexts. Managing seizures is 
undoubtedly an important part of the clinical care in many 
NPC patients. As such, research asking directly related 
questions such as “does this drug manage seizure activity 
in NPC?” or “will clearing intracellular cholesterol after 
the onset of the disease and neuronal loss also reduce sei-
zure activity?” requires a model that has seizures. However, 
research aimed at addressing the root cause of the disease, 
such as gene therapy approaches to replace NPC1 expres-
sion or strategies to clear cholesterol from cells by bypassing 
NPC1-mediated transport, may proceed very effectively with 
the mouse models as they are, given that relevant patho-
physiological changes appear in relevant tissues, with similar 
outcomes of cholesterol accumulation and cell loss. Why the 
mouse models do not show seizures remains unclear, but 
may reflect a fundamental difference in mouse and human 
physiology or anatomy.

In addition to issues of face validity described above, 
mutations in NPC1 also offer interesting examples of con-
struct validity. The original mouse mutation in Npc1 iden-
tified at NIH and an earlier spontaneous mutation, Spm, 
that was described as a disease model but never cloned 
(Miyawaki et al. 1982) are both truncating mutations that 
appear to be complete null alleles with no detectable pro-
tein produced (Maue et al. 2012). They develop very simi-
lar phenotypes (despite different genetic backgrounds of 
BALB/c and C57BL/6Khl) and fail to complement when 
inter-crossed, as expected. However, only about 20% of 
patients carry null alleles of NPC1, the rest carry a variety 
of point mutations, often in the “I loop” of the protein, a 
domain between transmembrane regions 8 and 9. Patients 

Fig. 1   Model validity. Models can be considered for their face valid-
ity, whether they look right; their construct validity, whether they 
arise through the right mechanism; and their predictive validity, 
whether the results in the model will translate to humans. None of 
these measures of validity are absolutes, all are on a spectrum from 
strong to weak. For preclinical studies, optimizing predictive validity 
is critical, but whether this optimization depends on improving face 
or construct validity depends on context. Ideally, there is solid over-
lap of face, construct, and predictive validity. This is clearly prefer-
able, but perhaps rarely completely attainable. Such overlap creates 
a convincing argument in preclinical studies, which are then less 
likely to face skepticism or questions from concerned parties such 
as regulatory agencies, clinicians, or patients. However, useful infor-
mation can still be obtained when there is overlap only of face and 
predictive validity or construct and predictive validity. For example, 
showing that a candidate therapeutic approach is indeed relevant to 
a human disease requires a model with some degree of face valid-
ity. Similarly, models with strong construct validity can be used to 
show target engagement and other important aspects of a therapeutic 
approach, even if the phenotype being studied is not a perfect match 
to the human condition. Thus, the intended use of the model deter-
mines the relative importance of face validity/shared pathophysiology 
versus construct validity/shared genetic mechanism
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with point mutations tend to have later onset disease with 
milder (though still very severe) symptoms, suggesting 
a partial loss of function. Consistent with this, studies in 
patient lymphocytes determined that mutations in the I loop 
lead to an unstable or mistrafficked NPC1 protein, with lev-
els reduced approximately 85% compared to wild type (Gel-
sthorpe et al. 2008). Importantly, the mutant protein retains 
cholesterol transport activity, suggesting that if levels could 
be increased, for example through “chaperone therapies” 
that improve trafficking through the biosynthetic pathway, 
function could be improved. However, such therapies can-
not be tested in null alleles that produce no protein. Subse-
quently, a new mouse model of NPC was identified in an 
ENU mutagenesis program based on its phenotypes of cho-
lesterol accumulation in the spleen and liver and cerebellar 
ataxia and Purkinje cell loss. Sequencing identified a single 
base change, converting aspartic acid 1005 in the I loop of 
the protein to glycine (D1005G) (Maue et al. 2012). Like the 
patients, these mice have a later onset and milder phenotype 
than the null alleles, but still a very severe disease resulting 
in death at 4–5 months of age. Also like the patients, these 
mice have NPC1 protein levels that are approximately 15% 
those of wild type. Therefore, this new allele is likely a bet-
ter model for partial loss-of-function mutations in NPC1, 
and could enable preclinical studies for approaches such 
as chaperone therapies that would not otherwise be possi-
ble. The amino acid change identified in the mice does not 
reproduce a known human disease allele, but the amino acid 
is conserved, and is only two amino acids away from one 
of the most common human alleles, P1007A. Therefore, in 
terms of construct validity, the D1005G mouse is very good, 
and the additional precision of exactly reproducing a human 
disease-associated mutation may not be necessary, unless 
there were suspected unusual properties in the human allele.

A straightforward knockout mouse may or may not be 
an accurate model of a human disease, even if the disease 
is caused through a recessive loss-of-function mechanism. 
The mutations in mouse Npc1 noted above were all iden-
tified based on phenotype; they were not engineered into 
the mouse genome. In that regard, their face validity may 
not be a surprise, but this success using phenotype driven 
approaches is not limited to Npc1 and similarly valid dis-
ease models have been identified for muscular dystrophies 
(Lama2, Chkb), congenital myasthenic syndrome (Agrn), 
and peripheral neuropathies (Gars), to name just a few exam-
ples (Achilli et al. 2009; Antonellis et al. 2003; Bogdanik 
and Burgess 2011; Huze et al. 2009; Mitsuhashi et al. 2011; 
Seburn et al. 2006; Sher et al. 2006; Sunada et al. 1994; Xu 
et al. 1994). Since NPC results from severe loss-of-function 
mutations, engineered alleles such as conditional knockouts 
have also been successful in recapitulating the disease, and 
have been useful in studies separating the contributions 
of peripheral organs versus the central nervous system to 

the disease progression (Elrick et al. 2010). However, in 
other examples such as Agrn, a complete loss of function in 
mice results in neonatal lethality, with a complete failure of 
neuromuscular junction development (Burgess et al. 1999; 
Gautam et al. 1996). Human cases of congenital myasthenic 
syndrome caused by AGRN mutations are likely partial 
loss of function, and complete null alleles are unlikely to 
survive (Huze et al. 2009; Maselli et al. 2011). Mice with 
partial loss-of-function alleles do provide a disease model 
(Bogdanik and Burgess 2011). So, in cases such as AGRN-
associated congenital myasthenic syndrome, some degree of 
precision and construct validity is needed, at least advancing 
beyond the simple approach of making a knockout to create 
a disease model, although the knockout phenotype does sol-
idly implicate the Agrn gene in the process of neuromuscular 
junction formation.

Studies of IGHMBP2 also reveal interesting issues 
regarding face and construct validity. The spontaneous neu-
romuscular degeneration (Nmd) mutation in mice causes 
early-onset motor neuron disease, and recessive mutations 
in Ighmbp2 were identified as the cause (Cox et al. 1998). 
This finding led to the identification of human IGHMBP2 
mutations as the cause of Spinal Muscular Atrophy with 
Respiratory Distress (SMARD1) in humans (Grohmann 
et al. 2001). Interestingly, the mouse is a partial loss-of-func-
tion allele, whereas in humans, a range of alleles including 
likely nulls lead to disease. The mice have been used in pre-
clinical gene therapy studies, which indicate that restoring 
Ighmbp2 expression early in disease is efficacious (Nizzardo 
et al. 2015). However, studies in mice using tissue specific 
transgenic rescue indicate that if the motor neuron disease 
is corrected, the mice instead succumb to a dilated cardio-
myopathy on a similar time course (Maddatu et al. 2004). 
This then raises important issues for human therapies: is 
rescuing motor neurons sufficient? Or do peripheral tissues 
such as the heart also need to be targeted? Here, determining 
the face validity of the mouse model with its cardiac issues 
may be very important, but this is currently an untested issue 
in patients.

However, not all monogenic diseases are straightforward 
to model. Two examples with varying complexity are con-
sidered below. First, Charcot-Marie-Tooth disease type IA 
(CMT1A) is a demyelinating neuropathy, and by far the most 
common form of CMT, representing nearly 57% of all cases, 
despite over 80 genes being implicated in CMT (DiVincenzo 
et al. 2014; Timmerman et al. 2014). The reason for this high 
frequency is the high rate of spontaneous mutation in the 
human genome in the region of Chromosome 17p12 (Lupski 
et al. 1991; Raeymaekers et al. 1991). A repeat sequence 
separated by 1.4 megabases is the underlying cause, and 
unequal crossover at the repeats leads to either duplication or 
deletion of the intervening sequence. This interval contains 
the Peripheral Myelin Protein 22 (PMP22) gene, encoding a 
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protein required for peripheral myelin formation whose stoi-
chiometry is critical (Lupski et al. 1992; Patel et al. 1992). 
Heterozygosity for PMP22 results in hereditary neuropathy 
with pressure palsies (HNPP), whereas duplication of the 
gene on one chromosome leads to classic CMT1A, a similar, 
but clinically distinct disorder. HNPP is readily modeled 
in mice by loss-of-function mutations in the Pmp22 gene 
(Suter et al. 1992). Indeed, the characterization of spontane-
ous Trembler alleles led to the identification of PMP22 as 
a key dosage sensitive gene for myelination. However, the 
duplication seen in CMT1A does not occur spontaneously in 
mice, because the flanking repeats are not conserved. None-
theless, modeling the overexpression of PMP22 associated 
with CMT1A is relatively straightforward through transgenic 
approaches (Huxley et al. 1996; Sereda et al. 1996). Fur-
thermore, the human gene sequence can be introduced to 
improve construct validity for preclinical testing of geneti-
cally based therapies, and the use of large genomic frag-
ments such as BACs and YACs provides endogenous regu-
latory elements to control expression pattern and splicing. 
Transgene copy number can influence expression levels, but 
examining multiple founder lines allows this to be titered to 
improve face validity (Verhamme et al. 2011). This approach 
has been used in both mice and rats to produce very good 
disease models, which in turn have been used in very prom-
ising preclinical studies, in which antisense oligonucleotides 
were used to reduce PMP22 levels and successfully treat the 
disease in both rat and mouse models (Zhao et al. 2018). 
This preclinical study is an excellent example of using mul-
tiple models, including a model expressing the human gene, 
and while still untested in humans, the consistency of the 
results in multiple animal models bodes well for predictive 
validity.

The second example of a more complex model of a mono-
genic disorder has proven to have good predictive validity in 
early-stage clinical trials in patients. These models are for 
Spinal Muscular Atrophy (SMA), a severe, early-onset motor 
neuron disease that is the leading genetic cause of death in 
infants with a carrier frequency of 1 in 54 and affecting 1 

in 11,000 live births (Pearn 1978; Sugarman et al. 2012). 
SMA is caused by recessive mutations in the SMN1 gene, 
whereas knockout of Smn1 in mice is embryonic lethal, indi-
cating its importance for development, but not producing a 
useful disease model (Lefebvre et al. 1995; Schrank et al. 
1997). The increased severity in mice is because the human 
genome has a recent duplication event, creating a second 
linked locus, SMN2 (Fig. 2). To further complicate things, 
the SMN2 duplication creates variable copy numbers of the 
SMN2 gene (Butchbach 2016), but the copies are not fully 
functional, owing to a point mutation that leads to skip-
ping of exon seven in approximately 90% of the transcripts 
(Monani et al. 1999). The severity of SMA correlates with 
the copy number and expression levels of SMN2, with higher 
copy number producing a less severe disease (Lefebvre et al. 
1997). All patients lack a functional SMN1 gene.

The strategy to model this disease, therefore, involves cre-
ating loss-of-function mutations in mouse Smn1, while also 
transgenically expressing SMN2. This strategy has been gen-
erally successful, though the models tend to be quite aggres-
sive, modeling the more severe end of the phenotypic spec-
trum of SMA. These models have produced useful results 
in defining the very early window for intervention in SMA 
(Lutz et al. 2011), and for studies using gene therapy vectors 
to replace SMN1 (Foust et al. 2010). Indeed, even a model 
in pigs where a virally delivered RNAi knocks down endog-
enous Smn1 was sufficient to cause a motor neuron disease. 
This model was then used to demonstrate that AAV9 deliv-
ery of human SMN1, which is not a target of the RNAi, was 
sufficient to rescue this disease (Duque et al. 2015). How-
ever, an alternative to restoring SMN1 expression with gene 
replacement vectors is to enhance the splicing and therefore 
functional transcript levels of SMN2. Testing such strategies 
requires precise construct validity, introducing the human 
SMN2 locus as a genomic transgene (as opposed to a cDNA, 
for example). Models using such constructs have been used 
to test both pharmacological methods and antisense oligonu-
cleotides (ASOs) to block binding of a splice inhibitor and 
improve the inclusion of exon seven of SMN2 (Hua et al. 

Fig. 2   The SMN locus on human Chromosome 5. Virtually all 
cases of SMA result from a loss of function in SMN1. However, 
the inverted duplication harboring SMN2 determines the severity of 
the disease. The SMN2 gene is present with variable copy number 
(between zero and eight), and all copies carry a C > T transition that 
reduces splicing efficiency and skips exon 7 in ~ 90% of transcripts, 

leading to low levels of full-length protein. The duplication creating 
the SMN2 gene is specific to humans, but its presence is critical to 
creating models that survive and have a phenotype that resembles 
SMA, and for testing approaches aimed at correcting its splicing and 
increasing the levels of full-length transcript
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2010; Ratni et al. 2018). These various approaches are now 
in clinical trials, with promising outcomes that support the 
predictive validity of the animal models (Finkel et al. 2017; 
Mendell et al. 2017; Mercuri et al. 2018), and nusinersen, 
the ASO promoting SMN2 splicing, was recently approved 
by the US Food and Drug Administration and the European 
Medicines Agency as the first treatment for SMA.

Complex diseases

As described above, models of diseases with promising 
predictive validity can be generated, even when the human 
genetic basis is not readily present in the model organism. 
The precise modeling of complex diseases presents a differ-
ent challenge, specifically that the underlying genetic basis 
of the disorder is usually not fully understood in humans, and 
gene by environment interactions are also often involved. 
Alzheimer’s disease (AD) offers one example of this chal-
lenge. Though some cases are caused by highly penetrant 
mutations in amyloid precursor protein (APP) or the prese-
nilins (PSEN1 and PSEN2), components of the enzymatic 
secretase complex that processes APP to the beta-amyloid 
peptide, most AD cases are “sporadic” (Alzheimer’s Disease 
Collaborative 1995; Goate et al. 1991; Lendon et al. 1997; 
Levy-Lahad et al. 1995; Rogaev et al. 1995). Risk alleles, 
most notably of APOE4, have also been identified (Corder 
et al. 1993). However, introducing these alleles into the 
mouse genome, even as overexpressed versions of the human 
disease-associated mutations, has not fully recapitulated 
the full scope of Alzheimer’s disease pathology, including 
memory and cognitive deficits, extracellular beta-amyloid 
plaques, intracellular neurofibrillary tangles of Tau, and neu-
ronal cell loss in brain regions such as the cortex and hip-
pocampus. The attempted solution to this is to stack together 
the monogenic variants that lead to Alzheimer’s disease into 
a single model. Such a model is the 5X familial Alzheimer’s 
disease mouse (5XFAD), which carries three disease-asso-
ciated variants in APP and two disease-associated variants 
found in PSEN1 (Oakley et al. 2006). These mice develop 
early amyloid accumulation, show synaptic and neuronal 
loss, and have cognitive deficits, but their genotype is a con-
glomerate, and does not represent the genome of any one AD 
patient. Models such as 5XFAD may be useful for studies of 
the cell biology of plaque formation or the contribution of 
factors such as neuro-inflammation to neural pathological 
and cognitive changes, but to date the predictive validity of 
AD models has been generally poor.

More sophisticated approaches may be necessary to 
produce more valid AD models. One consideration is the 
genetic background of the mice. Introducing genetic vari-
ability beyond the standard C57BL/6 strain background 
may create a more permissive and predictive genetic 

environment. Recent studies suggest that C57BL/6 is in fact 
a fairly resistant strain for both cognitive problems and his-
topathological phenotypes in the face of the 5XFAD muta-
tions. Introducing DBA/2J alleles through crosses to recom-
binant inbred BXD lines created a range of phenotypes, and 
has the potential to identify interacting loci that affect the 
outcome (Neuner et al. 2018). Thus, more complex genetics 
beyond simply introducing the disease-associated variants 
may be necessary.

In addition to introducing genetic risk factors, environ-
mental risk factors may also influence the validity of models. 
Such factors include environmental enrichment, diet, and 
exercise, all of which have been shown to alter AD pheno-
types in mice (Graham et al. 2016; Jankowsky et al. 2005). 
For example, transgenic mice expressing Alzheimer’s-
associated APP and PSEN1 transgenes performed better in 
cognitive tasks when housed in an enriched environment 
than when housed under standard conditions. Paradoxically, 
however, the amyloid plaque load was actually increased by 
environmental enrichment (Jankowsky et al. 2003, 2005). 
Thus, housing conditions influence both the behavioral and 
neuropathological phenotypes in these mice, albeit in appar-
ently opposite directions.

Ultimately, the extent to which rodents will serve as 
good preclinical AD models remains to be determined, and 
additional preclinical validation between mouse studies and 
clinical trials may be needed. The application of CRISPR/
Cas9 genome editing to non-human primates such as mar-
mosets or mouse lemurs that are also relatively tractable as 
laboratory models may provide a final preclinical validation. 
Importantly, the mouse lemur naturally develops an AD-like 
neurodegeneration, possibly indicating that it will indeed 
provide a valid model of AD (Izpisua Belmonte et al. 2015).

Alzheimer’s is one example of a more complex, multifac-
torial disease that involves a few known driver loci, many 
genetic risk loci with varying levels of contribution, and 
generally poorly defined environmental and lifestyle factors. 
A somewhat different example is found in autoimmune dis-
eases such as type I diabetes (T1D). The human risk alleles 
associated with T1D generally identify the major histocom-
patibility complex (MHC), and mouse models that sponta-
neously develop diabetes, such as the non-obese diabetic 
mouse (NOD), have many risk loci for T1D, but again the 
MHC on chromosome 17 is the strongest association. How-
ever, the mouse MHC, termed “H2,” differs significantly 
from the human equivalent HLA gene complex. A solution 
is to generate “humanized” mouse models by systemati-
cally deleting the mouse MHC genes and replacing them by 
transgenic copies of the human variants of interest with-
out concern about competition with the endogenous mouse 
sequences (Racine et al. 2018). Within the MHC, particular 
unusual class II variants contribute to T1D by mediating 
autoreactive CD4 T-cell responses. However, in the right 
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genetic context, particular MHC class I molecules, including 
some common variants, mediate autoreactive CD8 T-cell 
responses. These CD8 T-cell responses are essential to 
T1D development in NOD mice, and also likely in humans. 
Since pancreatic ß-cells express MHC class I, but not class 
II molecules, autoreactive CD8 T-cells are likely the ultimate 
mediators of T1D development. Thus, a potential T1D inter-
vention may be to find a way to block the development or 
functional activation of MHC class I-restricted ß-cell auto-
reactive CD8 T-cells. To provide models for testing such 
possible T1D interventions, CRISPR/Cas9 technology was 
utilized to directly ablate the classical murine MHC class I 
molecules normally expressed by NOD mice (Kd and Db), 
which were then replaced with the human disease-associated 
HLA-A2.1 or -B39 variants (designated NOD-cMHCI−/−-A2 
and NOD-cMHCI−/−-B39 mice) (Fig. 3). HLA-A2 or -B39 
expression restores T1D susceptibility to otherwise com-
pletely disease-free murine MHC class I-deficient NOD 
mice (Schloss et al. 2018). The NOD-cMHCI−/−-A2 and 
NOD-cMHCI−/−-B39 strains are now being used to test 
whether diabetogenic CD8 T-cell responses can be attenu-
ated. These HLA haplotypes are of pathological significance 
to a preponderance (> 60%) of human patients.

In addition to replacing mouse loci with pathogenic 
human variants, there are several alternative strategies for 
incorporating the patient genome into the model. The first is 
xenografting: taking patient-derived tissue and implanting 

it into an animal model such as a mouse (Walsh et al. 2017). 
This is been most successfully used in cancer studies, but 
has been applied to other disease areas as well. While this 
approach obviously captures the patient’s genetics, it poses 
some challenges in terms of environment. Tumors, for exam-
ple, are often engrafted into the flank, and not their original 
site, potentially impacting stromal interactions and vascu-
larization. Furthermore, to prevent immune rejection of the 
foreign tissue, engraftment is done in an immune-compro-
mised mouse. However, the role of the immune system in 
cancer is an ever-increasing field of research that is omitted 
from such models unless more complicated xenografting 
to introduce a human immune system is also undertaken. 
Comprehensively discussing the strengths and weaknesses 
of xenografting approaches and immune-compromised host 
strains of mice is beyond the scope of this review, but host 
strains are discussed in detail in the accompanying review 
article by Shultz et al. (2019). Additional considerations on 
the validity and use of these models are discussed in other 
references (Landgraf et al. 2018; Shultz et al. 2012; Walsh 
et al. 2017; Williams 2018).

The second strategy for capturing the patient genetics is 
to simply use the patient’s cells as the model. This approach 
has gained considerable traction in the recent past thanks 
to cellular reprogramming to create induced pluripotent 
stem (IPS) cells (Takahashi and Yamanaka 2006). These 
cells can be differentiated into many different cell types, 

Fig. 3   “Humanized” mice for type I diabetes research carry human 
major histocompatibility complex (MHC) alleles. a Schematic of the 
regions encoding MHC genes: HLA in humans (top) and H2 in mice 
(bottom). Class I MHC genes are depicted in purple, class II genes 
in green; human genes are stippled. b In “humanized” NOD mice, 
H2.K and H2.D have been genetically ablated (black “x” plus light-

ning bolt). NOD mice naturally harbor mutations (red “x”) in H2.E 
and H2.L, and thus H2.A (class II) is the only functional MHC gene 
remaining in the H2 locus. Human HLA alleles (class I; HLA.-A2.1 
or HLA-.B39) are replaced as a transgene to restore T1D susceptibil-
ity to otherwise T1D-resistant, class I-deficient mice
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thus removing the restriction of simply studying the primary 
isolated cells or immortalized lines derived from them. In 
cases where a human-specific gene or a complex rearrange-
ment leads to disease, it may be difficult or even impossible 
to recreate the genetic abnormality in a model organism. 
For example, a segmental duplication on human chromo-
some 15q13-14 leads to a fusion the CHRNA7 and FAM7A 
genes and is associated with schizophrenia (Riley et al. 
2002). Studying neurons derived from patient IPS cells pro-
vides an experimental system that captures this complicated 
genetic rearrangement. Advances in culture methods, includ-
ing 3D culture models and organoids that allow cell–cell 
interactions, should improve the validity of these experi-
mental systems even further. However, limitations remain. 
Namely, the phenotype of interest needs to manifest in cul-
ture. This is likely to occur for inborn errors of metabolism, 
cellular phenotypes such as lysosomal storage disorders, or 
conditions for which there are well-validated and predictive 
biomarkers that can be monitored in vitro. However, in the 
extreme, a disease such as autism, which is defined entirely 
based on patient behavior, will not be tractable in an IPS cell 
model. A second limitation is that the cells remain relatively 
immature in culture. This is often cited as a challenge for 
modeling neurological disorders. Neurons markedly change 
their excitability, complement of receptors and channels, 
and conductivity during development and with age. This 
immaturity may present the largest challenge for modeling 
age-dependent neurodegenerative diseases. In contrast, dis-
eases such as epilepsy that often have a stronger develop-
mental component may be amenable to cell-based modeling. 
Indeed, multi-electrode array studies reveal increased excit-
ability in the network properties of IPS cell cultures over 
the course of their differentiation to striatal neurons. This is 
related to their expression of KCNQ channels, and antiepi-
leptic drugs reverse these properties (Telezhkin et al. 2018). 
In principle, similar approaches could be used in IPS neuron 
cultures from epileptic patients. This would create a drug 
testing and screening platform (see for example Stacey et al. 
2018). Furthermore, the IPS cell cultures can be compared to 
primary neurons isolated from precision animal models, and 
drugs that are successful in vitro can then be tested in vivo. 
In such a complementary approach, the advantages of IPS 
cells including assessing target engagement in a human 
setting and the potential for screening compounds with at 
least moderate throughput can be combined with an in vivo 
model. This can confirm that a cellular phenotype, such as 
reducing multi-electrode array hyper-excitability, translates 
to a clinically relevant phenotype of interest, such as pre-
venting seizures (Epi 2015; Grainger et al. 2018; Tidball 
and Parent 2016).

Patient-derived IPS cells are attractive for completely 
capturing the patient genome, but are also slow and 
expensive to generate through reprogramming, may carry 

somatic passenger mutations, and may have intrinsic vari-
ability derivation-to-derivation and differentiation-to-dif-
ferentiation. Perhaps most practically, for rare diseases, 
identifying and obtaining consent from patients may be 
limiting. CRISPR/Cas9 genome editing offers an oppor-
tunity to engineer variants of interest into existing, well-
characterized cell lines. This can be efficient within the 
usual limits of CRISPR/Cas9. For instance, gene inacti-
vation and introduction of single-nucleotide changes 
and indels can be quite efficient, and even homozygous 
changes can be introduced. However, larger chromosomal 
rearrangements are likely to be more problematic and less 
efficient. Ideally, the variant of interest could be intro-
duced into multiple starting cell lines to control for the 
particulars of any one cell line and to allow subsequent 
studies in a variety of genetic backgrounds.

The predictive validity of cell-based models is hard to 
determine, as the approach is relatively new and examples 
that have gone to clinical trials are limited. Toxicological 
and pharmacokinetic/pharmacodynamic studies can be 
performed in wild-type animals. However, testing efficacy 
requires a phenotype that can be corrected, and in some 
cases, this has only been experimentally tractable and attain-
able with a cell-based system. It may present a challenge for 
regulatory agencies to accept efficacy data based only on 
in vitro studies.

Perhaps the greatest challenges for model validity involve 
systems in which the anatomy is not conserved. An exam-
ple of this is macular degeneration, a leading cause of age-
dependent blindness that results from the degeneration of the 
central retina containing the cone photoreceptors used for 
high acuity vision. The underlying cause of macular degen-
eration is often dystrophy of the retinal pigment epithelium 
that immediately surrounds the photoreceptors, providing 
trophic support and phagocytosis of shed outer segments. 
The macula is a primate-specific anatomical specialization, 
but the relationship of photoreceptors and pigment epithe-
lium is conserved in many vertebrates, including mice. Other 
mammals, such as dogs, have a cone-rich, fovea-like region 
of the retina termed the area centralis, which may be a sur-
rogate for the macula in humans (Guziewicz et al. 2017; 
Miyadera et al. 2012). Similarly, mutations in CTNNA1 that 
cause butterfly retinopathy in humans, a condition lead-
ing to macular dystrophy, cause regional degeneration of 
photoreceptors in mice (Saksens et al. 2016). These results 
suggest that domains of the mouse retina may be similarly 
specialized, though this remains controversial. Nonetheless, 
the general cell biology of the retinal pigment epithelium 
(RPE) is conserved, including tight junctions and adherens 
junctions in the epithelial sheet, and mutations in compo-
nents of these junctions, such as Crumbs (CRB1), lead to 
RPE dystrophy in both mice and humans (den Hollander 
et al. 2004; Mehalow et al. 2003).
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In this regard, RPE dystrophy in mice may be a “phe-
nolog” of various retinal degenerative conditions in humans, 
including macular degeneration. A phenolog refers to pre-
cisely this situation, in which conserved cell biology leads 
to relevant phenotypes in model organisms, but these phe-
notypes lack strong face validity because the anatomical 
differences preclude an exact recapitulation of the human 
condition (Robinson and Webber 2014).

Precisely how precise?

There is no simple answer to how much face validity or 
construct validity is needed in precision animal models 
to ensure adequate predictive validity. As the preceding 
examples illustrate, this ultimately depends on the specific 
question being addressed. If one wants to test seizure sup-
pression, the model needs to produce seizures, though the 
precise mutation may not matter. If one wants to test molecu-
lar chaperones, the mutation and protein product need to be 
accurate, but the phenotype may be less critical. Politically, 
the greater the concordance with the human condition in 
both face validity and construct validity, the easier the task 
of convincing regulatory agencies, clinicians, and patients 
of the relevance of the preclinical studies. For actual pre-
clinical research such as drug studies, shared pathophysi-
ological mechanisms at the cellular and molecular level may 
be the most important. Amelioration of the phenotype then 
represents in vivo target engagement and correction of the 
pathophysiology, even if the phenotype does not perfectly 
match the disease. However, demonstrating that the drug 
target is indeed relevant to the disease in question requires 
some degree of face validity. For genetic conditions, this is 
particularly true if the drug is targeting a downstream step 
to circumvent the mutation or if a compensatory pathway is 
being targeted and the therapy is not directly trying to bolster 
the activity of the mutated gene product.

For gene therapy approaches, the target is almost always 
the mutated gene itself. For gene replacement approaches to 
restore expression in the face of a loss-of-function mutation, 
construct validity may be minimally important in terms of 
the precise genetic lesion (i.e., amino acid change, site of 
truncation) provided the genetic mechanism is accurately 
reproduced. In other cases, simply restoring expression of 
the wild-type gene may not be optimal or even useful. For 
example, CMTX is caused by mutations in GJB1, encoding 
the hexameric gap junction protein Connexin32 (Bergoffen 
et al. 1993). The demyelinating neuropathy of null alleles is 
reproduced by knocking out the mouse Gjb1 gene, and lenti-
viral delivery of wild-type Gjb1 to Schwann cells is effi-
cacious in treating the demyelinating neuropathy in mouse 
models (Kagiava et al. 2016; Nelles et al. 1996). However, 
some point mutations in GJB1 create dominant-negative 

alleles which lead to mistrafficking of hexamers containing 
a mutant subunit (Jeng et al. 2006; Kyriakoudi et al. 2017). 
In the presence of these alleles, the expression of wild-type 
GJB1 may be ineffective, as it is not trafficked to the cell 
membrane. Instead it may actually contribute additional ER 
stress and be deleterious. In such cases, a solid understand-
ing of the genetic mechanism and cell biology is needed, 
and multiple models may be required to capture the range 
of pathophysiology associated with multiple alleles within 
a single human gene.

Newer approaches in gene therapy such as the use of 
CRISPR to target gain-of-function alleles such as repeat 
expansions are likely to require very precise construct valid-
ity to move beyond proof-of-concept studies and into actual 
preclinical tests. One proposed approach is to develop and 
validate a series of very specific guide RNAs to common 
single-nucleotide polymorphisms in relevant regions of the 
human genome, such as sequences surrounding exon one 
of the Huntington’s gene, which harbors pathogenic CAG 
expansions (Monteys et al. 2017). Phased genome sequenc-
ing of Huntington’s patients would then determine which of 
these guides would mediate the excision of the expansion, 
while leaving the healthy allele on the other chromosome 
intact. Testing such an approach in vitro could be accom-
plished using patient cells. However, demonstrating that 
relevant cell types can be targeted with adequate efficiency 
in vivo will require models in which the human genome 
sequence is precisely reproduced, essentially perfect con-
struct validity. Whether in vivo models will be needed for 
every variant to be targeted is an interesting consideration. 
Hopefully, in vitro assays can be used to show efficacy and 
specificity for most guide RNAs, and in vivo efficiency can 
be demonstrated for a representative handful, and extrapo-
lated to the rest, but again, this is relatively uncharted terri-
tory for regulatory agencies.

Summary

The unprecedented ability to manipulate eukaryotic genomes 
has created an opportunity to more precisely model a wide 
variety of human genetic conditions. However, it remains a 
challenge to model every disease-associated variant, and is 
likely unnecessary for most preclinical applications. Provided 
the pathophysiology is reproduced at the molecular level 
and that the genetic mechanism is reproduced either through 
genome editing and engineering or through serendipitous 
spontaneous or induced mutations, the model can be con-
sidered to have good construct validity. For many preclinical 
studies, this may be more important than precise face validity, 
which in some cases, such as macular degeneration, may be 
effectively unattainable. However, even for monogenic dis-
eases, capturing the spectrum of genetic mechanisms may 
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require multiple models reproducing different pathogenic 
alleles (Fig. 4). Predictive validity, the ultimate goal of pre-
clinical work, may be further enhanced by testing therapies 
in diverse genetic backgrounds that more closely reflect the 
outbred human population and, therefore, may better capture 
the breadth of pathophysiology seen in patients. This may be 
particularly true in more complex diseases, where other risk 
loci in the genetic background may contribute to the disease 
or to the response to treatment. Weighing where the precision 
is needed in developing these models depends on the context 
of their future applications, and even models that do not per-
fectly reproduce the human condition may not be so wrong as 
to not be useful.
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