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Abstract: Future biogas plants must be able to produce biogas according to demand, which requires
proactive feeding management. Therefore, the simulation of biogas production depending on the
substrate supply is assumed. Most simulation models are based on the complex Anaerobic Digestion
Model No. 1 (ADM1). The ADM1 includes a large number of parameters for all biochemical and
physicochemical process steps, which have to be carefully adjusted to represent the conditions of a
respective full-scale biogas plant. Due to a deficiency of reliable measurement technology and process
monitoring, nearly none of these parameters are available for full-scale plants. The present research
investigation shows a simulation model, which is based on the principle of time series analysis and
uses only historical data of biogas formation and solid substrate supply, without differentiation of
individual substrates. The results of an extensive evaluation of the model over 366 simulations with
48-h horizon show a mean absolute percentage error (MAPE) of 14–18%. The evaluation is based on
two different digesters and demonstrated that the model is self-learning and automatically adaptable
to the respective application, independent of the substrate’s composition.

Keywords: demand-orientated; ADM1; self-learning; regression model; forecast; prediction

1. Introduction

Worldwide, it is imperative that the energy supply based on renewable energy re-
sources increases. In Germany, the Renewable Energy Act stipulates that 80% of the gross
electricity supply must be covered by renewable energies by the year 2050 [1]. Due to low
production costs and greenhouse emissions, the future power systems will be characterized
by fluctuating feeds from wind turbines and photovoltaics (PV). Therefore, technologies
to balance the divergence between energy supply and demand are gaining increasing
relevance. Besides the adapted behavior of energy consumers (demand-side management)
and the installation of new electricity storage capacities, a higher importance will be placed
on load-flexible and modular energy production [2]. In this context, bioenergy, especially
biogas plants, can play a crucial role. Compared to biogas plants designed for constant
load, the demand-oriented, load-flexible use of biogas requires significantly larger com-
bined heat and power units (CHP) and corresponding gas storage facilities [3]. However,
on-site gas storages are limited for cost, safety, and licensing reasons [4]. Future biogas
plants must therefore also be able to produce biogas according to demand, which in turn
requires proactive feed management [5]. Such intelligent feeding systems can also reduce
the construction costs of biogas plants, as the required gas storage capacities can be reduced
by up to 65% [6].

Concepts for feeding management require the simulation of biogas production de-
pending on the substrate supply [7]. Most simulation models are based on the complex
Anaerobic Digestion Model No. 1 (ADM1), edited by [8]. Parameters of all biochemical
process steps (hydrolysis, acidogenesis, acetogenesis, methanogenesis) as well as physico-
chemical processes (ion association/dissociation and gas-liquid transfer, etc.) are consid-
ered in this model [9]. According to Gaida et al. [10], the main challenges are a deficiency
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of reliable measurement technology and process monitoring in full-scale plants to provide
the required data for the model parameters. Therefore, Weinrich et al. [5–7] developed
approaches to reduce the complexity of the ADM1, for example by representing the fer-
mentation of carbohydrates, fats, and proteins by simply three reactions. This model works
in summary on a simplified stoichiometry of the model presented by Angelidaki [11,12]
and uses first-order kinetics to simulate the total biogas production of the fermentation
process [7]. A further example of a simplified model is the AMOCO model, described
in [13], which only considered the acidogenic and methanogenic bacterial populations.
Since this can only be used to model the degradation of soluble materials, a first-order
hydrolysis step could be included in order for it to be applicable to the degradation of
particulate materials [14].

Nevertheless, the simplified models still presuppose a number of input parameters,
which primarily include the composition and degradation behavior, respectively, of the
gas formation kinetics of the used substrates. Since nearly none of these parameters are
available for full-scale plants, they are approximated by referring to data from experiments
under laboratory conditions and digestive experiments on ruminants [7].

In full-scale biogas plants, the kinetics of gas formation are mainly influenced by
the following parameters: the substrates used [15,16], the process temperature [17], the
retention time [18], the availability of the micronutrients essential for methanogenic mi-
croorganisms [19], the ammonium nitrogen concentration in the fermentation substrate [20],
and other parameters such as, for example, those described in [21]. To represent the condi-
tions of the respective full-scale plant, all model parameters have to be carefully adjusted
to the actual process state [22].

An additional approach to modeling anaerobic digestion processes is represented by
data-driven models, which use, for example, artificial neural networks. An evaluation of
these modeling techniques is presented in [23]. The present research investigation aims at
a fundamentally different data-driven model for the simulation of biogas production in a
full-scale plant, which is based on the principle of time series analysis. Using this model,
correlations between time series of substrates addition and gas formation are analyzed
and mathematically described. As this new model is based on time series analysis, it is
self-learning and automatically adapts to the respective application, independent of the
digester size and the substrates fed in.

2. Materials and Methods
2.1. Databasis, Experimental Setup

All data used are from a full-scale biogas plant, more precisely the research biogas
plant of the experimental station for agricultural science at the University of Hohenheim.
The plant is operated at the location “Unterer Lindenhof” in Eningen unter Achalm,
southwest Germany. The plant setup consists of two continuous stirred-tank reactors
(digesters), which are covered with insulated concrete, and a secondary digester, fitted
with a double membrane gas storage. Each of the three tanks has a volume of 923 m3.
Digesters operate in the mesophilic range at 43 ± 4 ◦C. On average, 130 m3 h−1 biogas is
produced (year 2018), with approximately 51 vol % methane (CH4) and 49 vol % carbon
dioxide (CO2). The measurement of biogas production is done by a flow meter with an
oscillating measuring method (hot wire sensor, company Esters Elektronik GmbH, type
GD300), and is implemented separately for each digester in the biogas pipe directly at the
digester outflow. The biogas is utilized via CHP-unit with an installed power of 355 kWel.

The supply of solid substrates is achieved via vertical mixer feeding systems, whereby
both digesters have a separate feeding system. Liquid substrates are added by pumps.
The quantity of substrates used is recorded by the weighing cells of the feeding system or
measured via a flow meter. The hydraulic retention time (HRT) amounts to ~120 days in
total. A much more detailed description of the setup of this research biogas plant can be
found in Naegele and Lemmer et al. [24,25].
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The data used, at an hourly resolution, the measured quantities of solid substrate
(via feeding system) given in kg h−1 and the produced biogas quantities under standard
conditions in m3 h−1. In a further investigation, the measured quantities of liquid sub-
strates in kg h−1 from both digesters were taken into account. The evaluation of the
model was performed using two differentiated data sets by considering both digesters as
independent systems.

All measured data are recorded and logged by the central control system of the biogas
plant, and are afterwards collected, consolidated, and made available via a relational
database. As a basis for the research, data from the year 2018 were used. As there were no
research experiments with different feeding concepts this year, the data can be considered
representative for a typical biogas plant operation.

2.2. Development of Process Model

All programming for visualization, modelling, and simulating was done by using the
programming language R [26]. Wherever appropriate, specific packages are referenced in
the following.

2.2.1. Time Series Analysis

The correlations between the time series of substrate supply as the independent
variable and biogas production as the dependent variable has been monitored by using the
cross-correlation function. Thus, it was determined that one series related to past lags of
the other series and could be used as a predictor. This analysis was done by means of the
ccf() function of the stats package by P. Gilbert et al. [27].

2.2.2. Regression Model

The basis of the developed regression model is the linear regression, expressed by the
following Equation (1)

Yi = α + βXi + εi (1)

whereby Yi is the dependent and Xi the independent variable. The intercept is expressed as
α, β is the slope of the line, and εi is the error term. By including liquid manure as a second
independent variable, additional βn were inserted, which are equivalently multiplied by
the Xi-values. As examined by the cross-correlation function, the X-variables influence
the Y-variables with time lag. Accordingly, the formula has to be adjusted with a defined
number of past values of X as explanatory variables (2) [28].

Yt = α + β0Xt + β1Xt−1 + . . . + βkXt−k + εt (2)

The index t declares the point in time and k stands for the lag order. To estimate the
parameters for fitting the best regression, the ordinary least square method (OLS) was used.

For the present approach, the function dynlm() from the R package dynlm was used [29].
It employs operators to compute a lagged version of the time series in order to determine
the regression model according to Equation (2).

2.2.3. Simulating and Evaluation

The simulation was performed using the regression model with input data of solid sub-
strates feeding, for which the biogas production has to be simulated, and the corresponding
lagged values.

With regard to a precise simulation of the future biogas production, the model settings
had to be determined optimally. Therefore, the model was identified for (1) a suitable number
of historical data (training period). Considering the model parameters with (2) a suitable
number of lags, simulations can be performed over (3) a defined simulation horizon.
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(1) In order to consider the most current process conditions, the training period for the
model should not be too long. This ensures a simulation period with approximately
the same conditions as the period of prediction of the model parameters. Therefore,
the numbers of 200, 500, and 800 h were evaluated.

(2) For the identification of an appropriate number of lags, it is decisive to determine
in which time period the significant changes in biogas production after feeding are
apparent. As described in Mauky et al. [6], feeding grass and maize silage released
62% of the total biogas production in the first 12 h after feeding. For the substrates
sugar beet and crop, it is even 72%. Accordingly, the model was evaluated with a
small number of 48 lags, and additionally, 72 and 96 lags.

(3) A horizon of 48 h was initially defined for the simulation. In further studies, this
horizon was extended. This enabled an investigation of how the simulation quality
changes the further into the future the simulation is made.

For all possible combinations of the model parameters training period, lags, and
simulation horizon, the simulation model was running for every day of the year 2018 and
the quality of the simulations was calculated. In total, 366 simulations were performed for
each evaluation. In addition, this evaluation process was performed for the time series of
digester one and digester two.

2.3. Quality of Simulation Model

The evaluation of simulation quality was carried out by using different accuracy
parameters: the mean absolute percentage error (MAPE), the mean absolute error (MAE),
and the root mean squared error (RMSE).

The MAPE is defined as follows (3):

MAPE =
1
E

E

∑
t=1

∣∣∣∣ zt − zs
t

zt

∣∣∣∣× 100% (3)

The MAE was additionally applied (4):

MAE =
1
E

E

∑
t=1
|zt − zs

t | (4)

The third selected accuracy parameter, the RMSE, is defined as follows (5):

RMSE =

√√√√ 1
E

E

∑
t=1

(zt − zs
t)

2 (5)

In Equations (3)–(5), E denotes the number of observations, zs
t is the simulated value,

and zt corresponds to the observed value.
For the present approach, the accuracy parameters are calculated using the R functions

mape(), mae(), and rmse() from the R package metrics [30].

3. Results and Discussion
3.1. Results of Time Series Analysis

A first insight into solid substrate feeding and biogas production for digester one and
digester two is presented in Figure 1, using data from 2018 in hourly resolution.

Digester one (Figure 1, top) was supplied with solid substrate that contained 21%
solid dung, 39% maize silage, 34% grass silage, 2% whole crop silage, and 4% sugar beets.
On average, 5995.34 ± 2097.37 kg of solid substrates were fed daily. Related to hourly
resolution, a total of 13 feedings include a weight of more than 2000 kg h−1. The resulting
biogas production was 70.25± 18.63 m3 h−1 with a total range between 2.26 m3 h−1 (except
value 0) and 163.89 m3 h−1.
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Digester two (Figure 1, bottom) was similarly fed with solid substrate containing 22%
solid dung, 37% maize silage, 39% grass silage, and 2% whole crop silage, but no sugar
beet. Here, the daily solid substrate input was 6565.23 ± 3397.46 kg d−1. Furthermore, the
feedings show more irregularities, because altogether 28 times feeding over 2000 kg h−1 was
registered. The mean biogas production is comparable with a value of 61.66 ± 29.71 m3 h−1.
The range of biogas production is also similar, with values between 1.02 m3 h−1 (except
value 0) and 160.20 m3 h−1.
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Figure 1. Solid substrate supply and biogas production from digester one (top) and digester two (bottom) in 2018 in
hourly resolution.

The listed amounts of the various substrates show the average values for 2018. For
each feeding, the composition fluctuated, depending on the availability of the substrates.
For example, in regular operations, when more solid dung is available in the winter months,
less maize and grass silage are used.

A significant negative correlation between solid substrate feed and biogas production
was determined by cross-correlation, thus confirming the requirement to use the values of
the solid substrate feed as a predictor of biogas production.

3.2. Regression Model and Simulating

Results of the evaluation regarding suitable settings for length of training dataset,
number of lags for the model, as well as length of simulation horizon are summarized in
Table 1. The evaluation was carried out over a total of 19,764 simulations by running the
simulations every 24 h in 2018 and comparing them with real data.

The comparison suggests that the best results for simulating the biogas production of
both digesters are achieved with a training period of 500 observations and 48 lags. These
model settings indicate the best values for most accuracy parameters. For 366 simulations
with a horizon of 48 h each, average MAPEs of 18.13% (digester one) and 13.87% (digester
two) could be determined. Similarly, the values for RMSE and MAE are approximately
10 m3 h−1. Compared to an average biogas production of ~70 m3 h−1 (digester one) and
~60 m3 h−1 (digester two) with standard deviations of ~19 m3 h−1 and even ~30 m3 h−1,
the values for RMSE and MAE are implied to be within reasonable limits. It must be
mentioned that the MAE for digester two is slightly lower when using 72 lags. In general,
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only very small differences in the evaluation results can be recognized, which suggests that
in some cases the consideration of more than 48 lags could be useful.

Table 1. Evaluation of model settings (H: horizon; T: training; L: lag) using the accuracy parameters MAPE [%], RMSE
[m3 h−1], and MAE [m3 h−1] for the time series from digester one (D1) and digester two (D2). Each combination shows the
mean value of 366 individual simulations.

MAPE [%] MAPE [%] MAPE [%] RMSE [m3 h−1] RMSE [m3 h−1] RMSE [m3 h−1] MAE [m3 h−1] MAE [m3 h−1] MAE [m3 h−1]

H: 48 H: 96 H: 144 H: 48 H: 96 H: 144 H: 48 H: 96 H: 144

T: 200 D1: 22.27 D1: 23.37 D1: 24.55 D1: 14.37 D1: 15.92 D1: 17.15 D1: 11.88 D1: 12.71 D1: 13.44
L: 48 D2: 14.05 D2: 14.78 D2: 15.23 D2: 10.50 D2: 11.36 D2: 11.87 D2: 8.98 D2: 9.53 D2: 9.85
T: 200 D1: 26.20 D1: 27.91 D1: 29.22 D1: 17.31 D1: 19.28 D1: 20.72 D1: 14.35 D1: 15.50 D1: 16.32
L: 72 D2: 15.44 D2: 16.55 D2: 16.96 D2: 11.59 D2: 12.69 D2: 13.22 D2: 9.9 D2: 10.60 D2: 10.94
T: 200 D1: 30.79 D1: 32.78 D1: 34.46 D1: 20.55 D1: 23.14 D1: 24.98 D1: 17.03 D1: 18.59 D1: 19.62
L: 96 D2: 17.09 D2: 18.43 D2: 18.68 D2: 12.79 D2: 14.02 D2: 14.49 D2: 10.80 D2: 11.59 D2: 11.91
T: 500 D1: 18.13 D1: 18.92 D1: 19.57 D1: 11.48 D1: 12.40 D1: 13.25 D1: 9.77 D1: 10.28 D1: 10.84
L: 48 D2: 13.87 D2: 14.35 D2: 14.71 D2: 10.07 D2: 10.67 D2: 11.13 D2: 8.85 D2: 9.22 D2: 9.52
T: 500 D1: 19.08 D1: 20.01 D1: 20.68 D1: 12.06 D1: 13.09 D1: 13.95 D1: 10.24 D1: 10.87 D1: 11.44
L: 72 D2: 13.88 D2: 14.37 D2: 14.64 D2: 10.09 D2: 10.71 D2: 11.13 D2: 8.81 D2: 9.19 D2: 9.46
T: 500 D1: 19.98 D1: 20.88 D1: 21.40 D1: 22.77 D1: 13.80 D1: 14.59 D1: 10.81 D1: 11.44 D1: 11.93
L: 96 D2: 14.04 D2: 14.48 D2: 14.74 D2: 10.38 D2: 11.02 D2: 11.46 D2: 9.03 D2: 9.42 D2: 9.70
T: 800 D1: 19.24 D1: 19.51 D1: 19.98 D1: 11.67 D1: 12.51 D1: 13.31 D1: 10.06 D1: 10.58 D1: 11.13
L: 48 D2: 14.77 D2: 15.05 D2: 15.26 D2: 10.77 D2: 11.46 D2: 12.02 D2: 9.64 D2: 10.06 D2: 10.46
T: 800 D1: 19.78 D1: 20.20 D1: 20.88 D1: 12.01 D1: 12.99 D1: 13.92 D1: 10.34 D1: 10.98 D1: 11.64
L: 72 D2: 14.72 D2: 15.08 D2: 15.19 D2: 10.64 D2: 11.39 D2: 11.91 D2: 9.47 D2: 9.94 D2: 10.30
T: 800 D1: 20.50 D1: 20.84 D1: 21.47 D1: 12.43 D1: 13.44 D1: 14.36 D1: 10.64 D1: 11.31 D1: 11.96
L: 96 D2: 14.77 D2: 15.12 D2: 15.26 D2: 10.77 D2: 11.55 D2: 12.09 D2: 9.57 D2: 10.06 D2: 10.44

Additionally, the simulation model is capable of producing simulations even over
long horizons of 144 h, because the accuracy parameters show only a slight increase with a
longer simulation horizon.

As an example, the following Figure 2 shows the simulation results using a training
period of 500 observations and 48 lags for digester two.

Figure 2. A total of 183 individual simulations, using a training period of 500 observations and 48 lags with a 48 h horizon,
of biogas production for digester two, in hourly resolution, with a time window from January to December 2018. The
simulated values are shown in blue, while the measured data are overlaid in black for comparison.

As can be recognized in Figure 2, the simulation model is able to forecast large
fluctuations in biogas production, such as those seen at the end of May 2018, with a change
between 75 m3 h−1 within one day. Otherwise, as seen in November, this abrupt increase
in biogas production is only reflected by the model with a slight delay. In this respect,
small deviations between simulation and real values may occur. Positively noticeable
is the fact that zero values of the biogas production around the month of October are
represented truthfully.
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In well-known models such as the ADM1, changes in biogas production are predicted
by processing various parameters and process steps of digestion. However, the applied
model is able to self-learn by evaluating the relationship between the time series of the
substrate supply and biogas production. Due to the recurring analysis of the most recent
process data, gradual shifts in feed composition are automatically considered and can be
accurately represented.

As the model always takes the individual data of a biogas plant, with the historic
biogas production and feeding taken into account, the methodology is highly adaptive to
a wide range of full-scale plants with their very own characteristics in terms of substrate
feeding and conversion efficiency. For the presented approach, only minor or no adaptions
of the methodology need to be taken into account to simulate the biogas production of
other full-scale plants.

Nevertheless, further investigations and experiments regarding process failures and
strong changes in feed composition would be useful to fully evaluate the extent of the
reactivity of the approach. In summary, the developed model shows itself to be a very
useful tool to simulate biogas production. Compared to existing simulation models, based
on ADM1, only a minimum of input parameters are necessary, which can be supplied
by conventional and generally implemented measurement technology. In addition to the
availability of the data, it is guaranteed that data originates exclusively from the respective
plant operation, and no additional assumptions based on laboratory tests are necessary.
The requirements for future research projects in this area, defined by Gaida et al. [10],
which include robust models in successful use in full-scale plants that are not dependent on
extensive online measurement equipment and the ability to handle feeding of differentiated
substrates, seems to be fulfilled with the present model.

The evaluation of the developed model also emphasized the reproducibility of the
results and the adaptability to more systems by the large number of simulations (366 each),
the high resolution (hourly), and the observation of two different examples of full-scale
digesters (digester one and digester two).

Going deeper into details of the model parameters allows further results of the present
research investigation . Figure 3 shows the boxplots of model coefficients from 366 simula-
tions with training periods of 500 observations and 48 lags. The based time series include
data from digester two.

Figure 3. Boxplots of model coefficients β from the simulations of digester two with 500 training-observations and 48 lags.



Microorganisms 2021, 9, 324 8 of 10

Figure 3 illustrates the calculated coefficients as an indication of the time-dependent
development of biogas production in relation to the solid substrate supply. For the purpose
at hand, it could be concluded that the impact on biogas production is greatest during the
first 20 h after feeding solid substrates. This emphasizes the fact that considering a larger
number of lags does not improve the results of the present model.

Further, the mapping of the median of the coefficients, visualised in Figure 3 by the
red line, could indicate the course of the gas formation rate of the feeding substrates. By
calculating the area under the curve, an average biogas production of 0.101 m3 kg−1 within
48 h was determined. In alignment with the substrates composition used and related
average biogas yields, listed in Amon et al. [15], the calculated biogas production seems
rather low. It could be assumed that one reason is the fact that only 48 h are considered and
consequently less than the total gas formation potential is represented. Furthermore, it can
be postulated that a residual amount of biogas is included in the model parameter intercept.
Nevertheless, this evaluation could be a promising way to assess the gas formation kinetics
of substrates used in full-scale plants.

A further investigation of this circumstance demonstrates the consideration of an
additional regressor as a predictor on the simulation results. Besides feeding solid sub-
strates, the dosage of liquid substrates (liquid manure) was also considered. Despite this
specification of the fed substrates, the results indicated a poorer quality of the simulation.
The evaluation of 366 simulations with training periods of 500 observations and 48 lags
for both the solid and liquid substrates resulted in a higher MAPE of 14.92% for digester
two. For comparison, the MAPE for simulations without the additional consideration of
liquid manure as a second regressor is 13.87%. (cf. Table 1). Figure 4 illustrates calculated
coefficients of the regressor “liquid manure” from the model.

Figure 4. Boxplot with coefficients β of liquid substrate (liquid manure) feeding from simulation of digester two with 500
observations and 48 lags.

The coefficients fluctuate around zero along all lags. In most cases, the values even
fall below zero. This is due to the fact that the calculation of the coefficients depends on
the intercept. The intercept is basically not interpretable, unless there is no feeding, then
it can be assumed that the intercept represents the mean biogas production. Negative
coefficients, as partly shown in Figure 4, indicate a higher value of the intercept, for example
due to extensive feedings in the past. In addition, the supply of liquid manure in this
digester proceeds at almost constant intervals and equal amounts, which could be also
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an explanation of the visualised coefficients. The resulting biogas production should be
nearly unchanged; hence, it is not reflected in higher coefficients, but presumably included
in the intercept.

The analysis of the coefficients allows for the conclusion that the feeding of liquid
manure as an additional regressor has no added benefit for the simulation of biogas
production in this case. It would be interesting to conduct further studies on full-scale
liquid manure-based biogas plants or converting different dosages of liquid manure for the
comparison of the results.

4. Conclusions

The results show a fundamentally different model for the simulation of biogas pro-
duction in a full-scale plant. Using time series analysis, a simulation model could be
developed, which would work exclusively with historical data of biogas production and
data on the amount of fed solid substrates. This offers the advantage that all necessary
data can be provided via standardized measuring technology of a full-scale biogas plant.
The evaluation of the model on two digesters has shown the resistance and adaptability of
the model to different operating conditions. This allows for its application with nearly all
full-scale plants. The quality of the simulation results achieves a mean MAPE of well below
20% in an extensive analysis of 366 simulations. The MAE and RMSE are in good range,
with mean values of about 10 m3 h−1 at a mean production of about 70 and 60 m3 h−1,
respectively. Remarkably, simulation quality worsened when considering liquid manure as
a second regressor in the model. Once again, the simplicity and practicability of the model
is underlined, as it delivers very good results with a minimum of model parameters.

In an additional investigation, it could be shown that the simulation horizon extends
beyond 48 h. The simulation model is capable of producing high-quality simulations up to
at least 144 h.
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