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In this study, we investigated the stereospecificity of hydride transfer from

NADH to flavin mononucleotide (FMN) in reactions catalyzed by the

FMN-dependent NADH-indigo reductase expressed by thermophilic Bacil-

lus smithii. We performed 1H-NMR spectroscopy using deuterium-labeled

NADH (4R-2H-NADH) and molecular docking simulations to reveal that

the pro-S hydrogen at the C4 position of the nicotinamide moiety in

NADH was specifically transferred to the flavin-N5 atom of FNM. Alto-

gether, our findings may aid in the improvement of the indigo dyeing

(Aizome) process.

Indigo reductase expressed by Bacillus sp. AO1 is a fla-

vin mononucleotide (FMN)-dependent NADH-

azoreductase (EC 1.7.1.6) that catalyzes the reductive

cleavage of azo groups (R–N=N–R) in aromatic azo

compounds and the reduction of indigo compounds

(lacking an azo group) [1]. Three-dimensional structural

information and enzymological characteristics of azore-

ductases from several microbial species have already

been reported [2–7]. However, the structure of the NAD

(H)-azoreductase complex and the mechanism of trans-

fer of hydrogen from NADH are unknown. Although

the crystal structure of Bacillus sp. B29 azoreductase

with Cibacron blue as one of the substrates has been

reported, the mechanism of NADP binding to the active

site cannot be elucidated in that structure [7]. Generally,

NAD(P)H-dependent dehydrogenases show either pro-

R or pro-S stereospecificity for hydrogen transfer from

the C4 position of the nicotinamide moiety in NAD(P)

H [8,9]. The difference in mechanism of the hydride

transfer is known to result in distinct differences in the

structure and function of NAD(P)H-dependent enzyme

groups [10]. The stereospecificity of azoreductases dur-

ing electron transfer between NADH and FMN is rela-

tively unknown, except for that of FMN-dependent

NAD(P)H-quinone oxidoreductase [11].

Recently, we reported the crystal structure of ther-

mostable FMN-dependent indigo reductase expressed

by Bacillus smithii DSM 4216T, which catalyzes the

reduction of indigo carmine (water-soluble indigo) and

azo compounds [12]. We also determined the

structure-based stabilization and substrate recognition

mechanism of this enzyme [12]. Although we used co-
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crystallization and soaking methods for the structural

analysis of the indigo reductase expressed by B. smithii

and NAD(H) complex, we do not know the complex

structures of the enzyme with NAD+, NADH, and

NAD+ analogs. In this study, we examined the struc-

ture of NAD+ bound to the B. smithii indigo reductase

by using a molecular docking simulation method, and

the stereospecificity of hydride transfer from NADH

to FMN using 1H-NMR spectroscopy, with 4R-2H-

NADH as a cofactor. To our knowledge, this is the

first study to elucidate the molecular mechanism of the

catalytic reaction of indigo reductase. Determining the

stereospecificity of the hydrogen transfer and the struc-

tural basis for the catalytic reaction that mediate ther-

mostable indigo reductase may provide useful

information for the improvement of the indigo dyeing

(Aizome) process.

Materials and methods

Estimating the stereospecificity of indigo

reductase during hydride transfer from NADH to

FMN

4R-2H-NADH was prepared as described previously

[13], with a slight modification. Briefly, 5 mL of the

reaction mixture containing 4% deuterated ethanol-d6
(CD3CD2OD; Tokyo Chemical Industry, Tokyo,

Japan) was incubated with 225 U of alcohol dehydro-

genase (A-stereospecific; pro-R specific) from Saccha-

romyces cerevisiae (Oriental Yeast, Tokyo, Japan) and

150 lmol of NAD+ prepared in 5 mL of 100 mM

NH4HCO3 buffer (pH 7.8) for 20 min at 37 °C. The
formation of 4R-2H-NADH was validated by monitoring

the increase in absorbance of the reaction mixture at

340 nm (Shimadzu UVmini-1240 spectrophotometer,

Kyoto, Japan). The mixture was then passed through a

centrifugal filter (Amicon Ultra 3000 NMWL; Millipore,

Billerica, MA, USA) to remove the residual alcohol dehy-

drogenase. The filtrate was diluted fivefold with Milli-Q

water and injected into a Toyopearl GigaCap DEAE-

650M column (bed volume: 6 mL, Tosoh, Yamaguchi,

Japan). 4R-2H-NADH was then eluted using a linear gra-

dient of 0–200 mM NH4HCO3 buffer (pH 7.8, total

200 mL). Fractions containing 4R-2H-NADH that

showed a high absorbance at 340 nm (A260/A340 ≤ 2.3)

were collected and lyophilized (yield: 6.5 mg of 4R-2H-

NADH).

The stereospecificity of hydride transfer from NADH to

FMN by the B. smithii indigo reductase was analyzed by 1H-

NMR spectroscopy using 4R deuterium NADH. The expres-

sion and purification of recombinant FMN-bound indigo

reductase were carried out as previously described [12].

To determine the stereospecificity of hydrogen transfer

from NADH catalyzed by the indigo reductase, a reaction

mixture (1.0 mL) containing 5.5 mg of FMN-bound

B. smithii indigo reductase and 2 mg of 4R-2H-NADH in

2 mM Tris–HCl buffer (pH 8.0) was incubated for 1 h at

25 °C. Thereafter, the reaction mixture was passed through

a centrifugal filter (Amicon Ultra 3000 NMWL; Millipore)

to remove the enzyme and stop the reaction. When NADH

was added to the FMN-bound yellowish indigo reductase

solution, FMN was rapidly reduced to FMNH2 and the

solution became colorless. When FMNH2 was rapidly oxi-

dized, the solution turned yellowish again. The filtrate was

then lyophilized twice using 99.9% D2O (Sigma-Aldrich,

St. Louis, MO, USA) [14]. As a control experiment, we

used unlabeled NADH instead of deuterium-labeled

NADH. All samples examined by 1H-NMR spectroscopy

were dissolved in 0.6 mL of 99.9% D2O. Spectroscopic

analysis was carried out using a Bruker Avance III

500 MHz spectrometer, with D2O (4.7 p.p.m.) as the refer-

ence. The data were processed using TOPSPIN 3.6.2 software

(Bruker, Bremen, Germany).
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Fig. 1. 1H-NMR spectra of the C4 position on the nicotinamide ring

of NADH. (A) Standard unlabeled NADH. (B) 4R-2H-NADH

produced from deuterated ethanol-d6 (CD3CD2OD) and NAD+ using

pro-R stereospecific alcohol dehydrogenase. The arrows indicate

the positions of the pro-S and pro-R proton signals.
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Docking simulation

Molecular docking simulations and binding energy calcula-

tions were performed using the AUTODOCK VINA program

[15]. AUTODOCK VINA can produce a maximum of nine bind-

ing modes in each docking run. The hydrogen-containing

model structure of FMN bound to the indigo reductase

dimer (chain B and C) of B. smithii and the molecular

structure (PDBQT file format) of NAD+ were created using

AutoDock tools. The area used to calculate docking was as

follows: center x = �27.53, center y = 17.18, center

z = 76.24, size x = 16.78, size y = 15.35, and size

z = 19.40 �A, for indigo reductase (PDB entry 6JXN).

Molecular graphics were created using PYMOL ver. 2.3.4

(https://pymol.org/2/).

Results and Discussion

Stereospecificity of hydrogen transfer from

NADH to FMN

The two diastereotopic pro-R and pro-S hydrogen

atoms at the C4 position of the nicotinamide ring of

NADH were detected at 2.70 and 2.54 p.p.m. in the
1H-NMR spectrum (Fig. 1A). However, in the 1H-

NMR spectrum of 4R-2H-NADH, the doublet signal

at 2.70 p.p.m. disappeared (Fig. 1B) [16]. We deter-

mined the stereospecificity of the hydrogen transfer

from NADH to FMN catalyzed by the B. smithii

indigo reductase using 4R-2H-NADH. When 4R-2H-

NADH was oxidized by the indigo reductase, a dou-

blet signal from the C4 proton of NAD+ at around

8.73 p.p.m. was not observed in the 1H-NMR spec-

trum (Fig. 2A). This indicates that the 4R-2H of

NADH remained in NAD+, and the 4S-1H was

removed and transferred to FMN. When NADH was

used instead of 2H-labeled NADH as the control, a

resonance signal at around 8.73 p.p.m., reflecting the

C4 proton of NAD+, was observed in the 1H-NMR

spectrum (Fig. 2B). Additionally, we confirmed a

change in multiplicity of the signal of the H5 proton

in the nicotinamide ring. These results indicate that

B. smithii indigo reductase exhibits pro-S specificity

(B-type stereospecificity) for hydrogen transfer from

NADH.
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Fig. 2. Position of the 1H-NMR spectra for

NAD+ produced by the Bacillus smithii

indigo reductase with (A) 4R-2H-NADH and

(B) unlabeled NADH. Labelled peaks are

relative to the protons of the pyridine ring.

Signals at 8.05 and 8.32 p.p.m.

correspond to the protons of the

adenosine moiety.
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Possible NAD+ and FMN binding structure of

B. smithii indigo reductase

We performed molecular docking simulation using the

AutoDock Vina program and modeled the NAD+

molecule at the active site of B. smithii indigo reduc-

tase (Fig. 3). The calculated binding energy between

FMN-bound indigo reductase and NAD+ was

�7.2 kcal�mol�1. In our molecular docking simulation

model, the oxygen atom in the amide group of the

nicotinamide ring formed a hydrogen bond with a

water molecule (3.4 �A). The nicotinamide ribose inter-

acted with the side chain of Tyr127 (2.4 �A), which has

been previously suggested to be the binding residue of

indigo reductase substrate, and the O2 atom of the fla-

vin ring (3.3 �A) in FMN. The phosphate group of

NAD+ interacted with the side chains of Asn187 (3.0–
3.4 �A). Further, the adenine ribose formed hydrogen

bonds with the OH groups of the ribityl chain (2.7–
2.9 �A), the oxygen in the main chain of Gln16 (3.1 �A),

and the phosphate group of FMN (2.8–3.2 �A). The

N7 atom of the adenine ring was observed to interact

with a water molecule (2.7 �A). Moreover, the adenine

ring of NAD+ was covered by hydrophobic residues,

such as Ile52, Phe57, and Trp60. As shown in Fig. 3,

the pro-S hydrogen (si-face) located at the C4 position

of the nicotinamide moiety of NAD+ was oriented

toward the flavin-N5 atom of FMN (3.6 �A). In addi-

tion, the glycosidic bond between the nicotinamide

ring of NAD+ and its associated ribose moiety

appeared in the syn conformation.
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Fig. 3. Molecular docking simulation predicted using the NAD+-FMN binding model of Bacillus smithii indigo reductase plotted with the wall-

eyed stereo view. Residues that interact with NAD+ are labeled; gray: adjacent subunit. NAD+ (magenta) and FMN (yellow) are shown as

stick models, water molecules (cyan) are shown as sphere models, and the network of hydrogen bonds is represented by black dotted

lines. The C4 atom of the pyridine ring (a hydride acceptor site) and the si- and re-faces are labeled. Oxygen, nitrogen, and phosphorus

atoms are shown in red, blue, and orange, respectively. The values of binding energy (Score; kcal�mol�1) calculated by molecular docking

simulations are shown in the table.
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Generally, pro-S-specific enzymes are known to bind

to NAD+ in the syn conformation and pro-R-specific

enzymes in the anti conformation [8]. These results

also support that B. smithii indigo reductase belongs

to the group of pro-S-specific hydride transfer (B-type

stereospecificity) enzymes. Another example of a stere-

ospecificity of the hydride transfer between NADH

and FMN is exhibited by the S. cerevisiae FMN-

dependent NAD(P)H-quinone oxidoreductase, which

is reported to exhibit pro-S-specific stereospecificity

that is the same as that exhibited by B. smithii indigo

reductase [11]. In conclusion, to our knowledge, we

are the first to report the stereospecificity of the

hydride transfer of NADH in a reaction catalyzed by

indigo reductase and provide the 3D structure of

NAD+-FMN-bound indigo reductase.
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