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Abstract

We used an ensemble of statistical methods to build a model that predicts kidney transplant

survival and identifies important predictive variables. The proposed model achieved better

performance, measured by Harrell’s concordance index, than the Estimated Post Trans-

plant Survival model used in the kidney allocation system in the U.S., and other models pub-

lished recently in the literature. The model has a five-year concordance index of 0.724 (in

comparison, the concordance index is 0.697 for the Estimated Post Transplant Survival

model, the state of the art currently in use). It combines predictions from random survival for-

ests with a Cox proportional hazards model. The rankings of importance for the model’s vari-

ables differ by transplant recipient age. Better survival predictions could eventually lead to

more efficient allocation of kidneys and improve patient outcomes.

Introduction

In 2013, the Organ Procurement and Transplantation Network (OPTN) adopted a new kidney

allocation system using the Estimated Post Transplant Survival (EPTS) score [1, 2]. Other kid-

ney transplant survival models such as the Recipient Risk Score (RSS) [3] and Life Years from

Transplant (LYFT) [4], have also been proposed by researchers. These techniques use a Cox

proportional hazards model, which estimates the probability of a recipient’s post-transplant

survival over a given time horizon [5]. The Cox proportional hazards model is the most widely

used model for kidney transplant survival estimation [6]. Additional models include a Bayes-

ian Belief Network (BBN) that was used to predict kidney graft failure [7].

We took a different approach, and used an ensemble of methods including random survival

forests constructed from conditional inference trees. Our approach first clusters the data (e.g.,

into cohorts) and then chooses a model that achieves the best performance for each cluster.

The advantage of combining different models to predict kidney transplant survival is that dif-

ferent models may work better than others on different cohorts of the data. We assessed the

predictive accuracy of our proposed model using various metrics, including Harrell’s concor-

dance index (C-index) [8], which is the percentage of patient pairs correctly “ranked” by the

model based on their post-transplant survival duration in a given timeframe. The C-index for

the proposed model is better than that of the EPTS model and other kidney transplant survival
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models proposed recently in the literature [2, 4, 6]. The results of the model applied to kidney

transplant data are presented here, but the approach can be applied to other organs as well.

Data

The dataset was provided by the United Network for Organ Sharing (UNOS) and consists of

recipients who underwent kidney transplant surgery in the U.S. from 1987 to 2014 [9, 10]. The

data includes both living and deceased donors, pediatric and adult recipients, and censored

observations. An observation is censored when it does not record a transplant recipient’s sur-

vival duration after surgery; in these censored observations, the date of the last follow-up is

recorded. All data in this study were fully anonymized prior to access by any of the authors.

More information on the UNOS data and instructions for researchers to request this data can

be found at https://unos.org/data/.

Data preparation

In 2003, the UNOS board of directors instructed the Kidney Allocation Review Subcommittee

to review the kidney allocation system [1]. Hence, we tested the following hypothesis: There is

a statistically significant difference between the survival curves of recipients who underwent a

kidney transplant before and after 2002. A log-rank test and visual inspection of the survival

curves verified the significant difference (Fig 1 and S1 Table found in the supporting informa-

tion) [11]. Moreover, starting in 2012, a new allocation system was proposed that used the

Fig 1. Survival probabilities of different transplant cohorts. The survival probabilities are calculated from the Kaplan-Meier estimate.

https://doi.org/10.1371/journal.pone.0209068.g001
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kidney donor risk index (KDRI) in addition to the EPTS model [12]. Therefore, in the analysis

we used data that includes all kidney transplants performed between January 1, 2002 and

December 31, 2011. Observations after 2012 would not have a 5-year post-transplant window

at the time of this study. 5-year or longer time horizons for kidney transplant survival models

have often been used in the literature [6, 12, 13].

There were 163,199 observations available during the chosen ten-year time period with 487

variables. We removed variables not present in more than 95% of the observations unless they were

identified as important in the previous literature [14–16]. In the latter case we removed variables

not present in more than 80% of the observations. We also removed variables that were recorded

twice, or were known only after the kidney transplant. The resulting data set had 73 variables.

The following approaches were used in addressing the issue of missing data: (i) imputation

by predictive mean matching (PMM), and (ii) removing missing data for non-categorical vari-

ables. In approach (ii), we labeled missing data for categorical variables as ‘unknown’ and

removed the non-categorical observations with missing data. Variable selection and all other

analysis was carried out using approach (ii), unless specified otherwise. We cross-validated our

proposed predictive model using both approaches. When cross-validating our final predictive

model with approach (ii), 17% of the data were removed.

Grouping categorical variables. In the data, some of the categorical variables have a large

number of possible values. For example, the variable kidney diagnosis, has 75 different possible

values. To avoid overfitting and large model variance, we used the approach described in S1

Text and illustrated in S2 Table to group different values of the variable together. The values

grouped together have a similar effect on the hazard function, controlling for relevant vari-

ables. Following this approach, we decreased the number of different kidney diagnosis values

from 75 to 8.

Methods

Variable selection

For variable selection, we first used the Breiman-Cutler permutation importance measure for

random survival forests to rank the variables in order of variable importance [17]. Harrell’s

concordance index was used to measure the error rate for assessing the decrease in accuracy

when permuting each predictor variable in the permutation importance calculation.

Recipient age was ranked as the most important variable by permutation importance on the

entire dataset. Hence, we decided to split the data into age-based cohorts and produced two

separate rankings of variables, one ranking for older recipients and one for younger recipients.

This allowed us to build two predictive models for the different cohorts. To find the split value

for recipient age, we built 100 survival decision trees [18, 19], each with one split using only

recipient age. Each decision tree finds the recipient age that gives the best binary split of two

groups based on parameters suggested by Strobl et al. [20]. The average split value for the 100

trees was 48.7 years. Hence, rounding up to 50, we performed variable selection separately for

transplant recipients aged 50 and under (cohort 1), and recipients aged 51 and older (cohort

2). The average 5-year survival probabilities are 93% and 80% for cohorts 1 and 2, respectively,

based on the Kaplan-Meier [21] estimate. Figs 2 and 3 depict the top ten variables for cohorts 1

and 2, respectively, based on random survival forests permutation importance.

We then used a Cox model regularized with the Lasso (L1) penalty to help determine how

many of the top variables to select [22]. We used 10-fold cross-validation to determine the

optimal Lasso penalty. Fig 4 shows the number of nonzero coefficients for different penalty

values for cohort 1. The top row represents the number of non-zero coefficients per different

values of the Lasso penalty. The vertical line L0 corresponds to the optimal penalty, which
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minimizes the Partial Likelihood Deviance (PLD). The line Lσ corresponds to the largest pen-

alty value corresponding to the PLD values within one standard deviation of the minimum

PLD. S1 Fig gives the analogous results for cohort 2. To keep the predictive model simple and

minimize the number of variables, we used the Lσ penalty, which has fewer nonzero coeffi-

cients than using L0.

For each cohort, variables that have nonzero coefficients in the Lasso model and which are

also among the top 20 variables chosen by permutation importance are included in the predic-

tive model. Table 1 lists the final selections of variables for each cohort. S3 Table provides a

description of the variables we used in our proposed predictive survival model. S4 Table gives

the mean values from the data for numeric variables and the percentages of observations for

each category for categorical variables.

Predictive models

For cohort 1, we built a random survival forest model with conditional inference trees as base

learners [18, 19]. We grew a forest with 800 trees and four randomly selected variables

Fig 2. Variable importance for recipients ages 50 and under based on Breiman-Cutler permutation importance.

https://doi.org/10.1371/journal.pone.0209068.g002
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considered for each split. Random forest parameters suggested by Strobl et al. [20] were used

with a slight modification. We restricted a tree split to occur only if the splitting test statistic

exceeded 0.3, instead of guaranteeing the inclusion of all splits. In testing, we found that this

allowed the use of smaller trees with the same predictive performance measured by Harrell’s

concordance index.

For cohort 2, the Cox proportional hazards model achieved a better concordance index

than using random survival forests (0.664 vs. 0.655 based on 10 cross-validation samples of

80% training data and 20% out-of-sample data). Hence for cohort 2, we fit a Cox proportional

hazards model. S5 Table shows the coefficients for the Cox model when it was trained on

100,000 observations.

In the proposed predictive model, we use the combination of random survival forests for

cohort 1, and the Cox model for cohort 2. We evaluated the performance of the proposed

model compared to other models by two metrics using cross-validation: (i) Harrell’s concor-

dance index, and (ii) the integrated Brier score [23]. In addition to comparing the performance

of our model to the reported performance of the EPTS model [2], we evaluated the EPTS

model on the same data that we used for our model. We used PMM for missing data because

Fig 3. Variable importance for recipients ages 51 and older based on Breiman-Cutler permutation importance.

https://doi.org/10.1371/journal.pone.0209068.g003
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Fig 4. Cox lasso variable selection for recipients ages 50 and under. The top row represents the number of non-zero coefficients per Lasso penalty value, lambda.

The vertical line L0 corresponds to the optimal penalty, which minimizes the PLD. The line Lσ corresponds to the largest penalty value corresponding to the PLD

values within one standard deviation of the minimum PLD.

https://doi.org/10.1371/journal.pone.0209068.g004

Table 1. Variables in the proposed predictive model.

Cohort 1: Ages 50 and Under Cohort 2: Ages 51 and Older

AGE AGE

COLD_ISCH_KI AGE_DON

CREAT_TRR ANY_DIAL

DEATH_MECH_DON COD_CAD_DON

DIAB COLD_ISCH_KI

DIAG_KI CREAT_TRR

ETHCAT DEATH_MECH_DON

FUNC_STAT_TRR DIAB

HCV_SEROSTATUS DIAG_KI

HIST_DIABETES_DON DRUGTRT_COPD

HIST_HYPERTENS_DON ETHCAT

MED_COND_TRR FUNC_STAT_TRR

PAYMENTSOURCE_AT_TRANSPLANT HCV_SEROSTATUS

REGION HIST_HYPERTENS_DON

A description of each variable is given in S3 Table.

https://doi.org/10.1371/journal.pone.0209068.t001
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the EPTS model does not allow for variable inputs to be unknown. We validated our proposed

model in multiple ways, using PMM imputation and without imputation.

Our methodology for building the proposed predictive model is described by the following

high-level summary:

1. Identify important predictive variables by performing variable selection techniques such as

Lasso or permutation importance.

2. Test the performance of multiple predictive models on the data using the variables identi-

fied in step 1. Use cross-validation and metrics such as the concordance index to evaluate

the performance.

3. Determine the best binary split in the data using methods such as decision trees.

4. Repeat steps 1–3 for both subsets of the data a specified number of times. The final model

consists of combining the predictions from the models that perform best on the different

subsets of the data.

Results

Table 2 shows the 5-year Harrell’s concordance index and the integrated Brier score for the

prosed model using 10 random samples of 80,000 training observations and 20,000 out-of-

sample observations. It also reports the performance of a number of other models from the

recent literature. Harrell’s 5-year concordance index for our proposed model is 0.724 versus

0.69 reported for the EPTS model [2] and 0.697 for the EPTS model applied to the data used

for this study. The concordance index of the proposed model is 0.717 when we remove the

donor variables and include only the recipient variables. This provides a more direct compari-

son to the EPTS model since the EPTS model does not use donor variables. The performance

of the proposed model was nearly the same when we also validated it using PMM imputation

as opposed to validation without imputation.

Table 2. Performance of the proposed predictive model compared to other models.

Model 5-Year C-index 5-Year Integrated Brier Score

LYFT Reported [4] 0.680 Not Reported

EPTS Reported [2] 0.69 Not Reported

EPTS Using the Same Cross-Validation Data as the Proposed

Model

0.697 Not Calculated

Li et al. [6] Reported 0.700 Not Reported

Cox Model for Both Cohorts� 0.706 0.063

Random Forests for Both Cohorts� 0.718 0.062

Proposed Model without Donor Variables�� 0.717 0.060

Proposed Model 0.724 0.061

Proposed Model using PMM Imputation 0.724 0.060

Performance from 10 random samples of 80,000 training observations and 20,000 out-of-sample observations for all

models except those marked ‘Reported’, where the metrics shown were provided in the literature for their respective

models.

�These two predictive models used the variable selection techniques we used for each cohort separately but instead

applied to all the data.

��Donor variables that were removed were: AGE_DON, COD_CAD_DON, COLD_ISCH_KI,

DEATH_MECH_DON, HIST_DIABETES_DON, and HIST_HYPERTENS_DON.

https://doi.org/10.1371/journal.pone.0209068.t002
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Figs 5 and 6 illustrate the behavior of our proposed model trained using a random sample

of 100,000 observations and validated on 25,000 out-of-sample observations. The solid lines

represent the survival predictions and the dotted lines depict the observed Kaplan-Meier esti-

mates for the out-of-sample observations. We also illustrate the model’s survival predictions

for different values of its variables, holding the remaining variables constant, in S2 Fig (also see

S6 and S7 Tables). S8 and S9 Tables present results on the performance of our proposed model

at different numbers of days after transplantation and on different categories respectively. S10

Table gives results for additional tests on the performance of our proposed model and the

EPTS model on data without pediatric recipients and living donors. S11 Table shows the per-

formance of the proposed model compared to the EPTS model on the general population for

each cross-validation sample.

Discussion

The current kidney allocation system, adopted in 2013, matches the best 20% of kidneys as

determined by the KDRI, to the top 20% of potential recipients with the highest predicted

transplant survival probabilities, estimated by the EPTS model [12]. Improving the predictive

performance of kidney transplant survival models can help the kidney allocation system more

accurately rank potential recipients based on estimates of post-transplant survival. Table 2

shows that our proposed model has a higher concordance index than the EPTS model and

other models recently published in the literature, such as the LYFT model and the flexible

Fig 5. Predicted survival of the proposed model. Trained on 100,000 observations and validated on 25,000 out-of-sample observations. The survival curves are

separated into 5 groups based on the predicted 5-year survival in the out-of-sample data.

https://doi.org/10.1371/journal.pone.0209068.g005
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parametric model proposed by Li et al. [6]. Hence, when considering a random pair of candi-

dates and determining which candidate in the pair has a higher post-transplant survival proba-

bility (in a given time frame, e.g., 5 years), our model will result in more correct pair rankings

than the EPTS model, and has the potential to significantly improve the matching of organs to

recipients. We also found that by using a model that combines different predictive models and

variables for different age groups, we achieved better performance than by using the same

model and variables for both cohorts.

A comparison of kidney transplant survival models over time shows a concordance index

of 0.68 in 2009 for the LYFT model (Wolfe et al., 2009), a concordance index of 0.69 in 2013

for the EPTS model currently used in the kidney allocation system (Clayton et al., 2014), and

an index of 0.70 in 2016 from Li et al. (2016). A gain in the index of 0.01 can have a dramatic

impact considering that these models are used in the U.S. kidney allocation system, which is

responsible for allocating tens of thousands of kidneys per year. Our model yields an improve-

ment in the concordance index of 0.03 over the EPTS model when tested on the same data,

which can have a significant impact on ranking kidney waitlist patients by their post-trans-

plant survival more accurately.

Unlike the EPTS model, the proposed model has the flexibility to take into account charac-

teristics of donors; hence, it can help predict which donor-recipient matching can result in the

Fig 6. Predicted survival of the proposed model for a ‘typical’ kidney transplant recipient. Trained on 100,000 observations and validated on 25,000 out-of-sample

observations. In the out-of-sample data, an observation is considered ‘typical’ if the values are within one standard deviation of the mean for recipient age, donor age,

and cold ischemia time, and the most common values from the data for recipient diabetes, recipient dialysis status, recipient medical condition, and donor hypertension

status.

https://doi.org/10.1371/journal.pone.0209068.g006
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highest post-transplant survival, among several choices. The proposed model can also be used

without the donor variables, and still result in a better concordance index than the EPTS

model. This can be useful in estimating the survival of transplant recipients before the donor

information is known, such as when determining recipient priority in the allocation system.

Our findings suggest that there may be a benefit for building separate models for different

cohorts of patients (in this case cohorts separated by recipient age). For example, the variable

region, was in the top ten ranked variables for cohort 1 but not for cohort 2. Hence, the impact

of region on post-transplant survival is higher for cohort 1 than cohort 2.

The proposed model uses machine learning methods, and although it does not result in a

simple equation to predict transplant survival, such methods are straightforward to apply. Fur-

ther, the proposed model uses 18 different predictive variables versus 4 used by EPTS. While

the model complexity could be viewed as a limitation, with the increasing power of computer

tools, the model can easily be implemented in practice.
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