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This study determined whether the kinematics of lower limb trajectories during walking
could be extrapolated using long short-term memory (LSTM) neural networks. It was
hypothesised that LSTM auto encoders could reliably forecast multiple time-step
trajectories of the lower limb kinematics, specifically linear acceleration (LA) and angular
velocity (AV). Using 3D motion capture, lower limb position–time coordinates were
sampled (100 Hz) from six male participants (age 22 ± 2 years, height 1.77 ± 0.02 m,
body mass 82 ± 4 kg) who walked for 10 min at 5 km/h on a 0% gradient motor-
driven treadmill. These data were fed into an LSTM model with a sliding window of four
kinematic variables with 25 samples or time steps: LA and AV for thigh and shank. The
LSTM was tested to forecast five samples (i.e., time steps) of the four kinematic input
variables. To attain generalisation, the model was trained on a dataset of 2,665 strides
from five participants and evaluated on a test set of 1 stride from a sixth participant. The
LSTM model learned the lower limb kinematic trajectories using the training samples
and tested for generalisation across participants. The forecasting horizon suggested
higher model reliability in predicting earlier future trajectories. The mean absolute error
(MAE) was evaluated on each variable across the single tested stride, and for the five-
sample forecast, it obtained 0.047 m/s2 thigh LA, 0.047 m/s2 shank LA, 0.028 deg/s
thigh AV and 0.024 deg/s shank AV. All predicted trajectories were highly correlated
with the measured trajectories, with correlation coefficients greater than 0.98. The
motion prediction model may have a wide range of applications, such as mitigating the
risk of falls or balance loss and improving the human–machine interface for wearable
assistive devices.

Keywords: LSTM, neural networks, machine learning, forecasting, gait, walking

INTRODUCTION

An increasingly useful application of machine learning (ML) is in predicting features of human
actions. If it can be shown that algorithm inputs related to actual movement mechanics can predict
a limb or limb segment’s future trajectory, a range of apparently intractable problems in movement
science could be solved. One such problem is how to anticipate movement characteristics that can
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predict the risk of tripping, slipping or balance loss. Previous
work has investigated balance control using wearable sensors to
estimate the body’s centre of mass (CoM) trajectory (Fuschillo
et al., 2012). The Internet of things (IoT) has also created
a new paradigm of algorithms and systems to predict and
subsequently apply interventions to prevent falls (Rubenstein,
2006; Tao and Yun, 2017; Nait Aicha et al., 2018). Perhaps the
most valuable motion-prediction application is in the design and
control of wearable assistive devices, such as prostheses, bionics
and exoskeletons, in which smart algorithms can ensure safer,
more efficient integration of the assistive device with the user’s
natural limb and body motion (Lee et al., 2017; Rupal et al., 2017).

Previous computational methods have investigated motion
trajectory prediction, using position-time inputs and their
derivatives (velocity and acceleration). Lower limb trajectory
prediction has been implemented in rehabilitation robotics
(Duschau-Wicke et al., 2009). Using inverse dynamics, Wang
et al. (2011) designed a model for foot trajectory generation using
a predefined pelvic trajectory and line fitting 10 data points from
a single gait cycle. Also using inverse dynamics, Ren et al. (2007)
predicted all segment motions and ground reaction forces from
the average forward velocity gait, double stance duration and gait
cycle period. Another technique was implemented in the Lower
Extremity Powered Exoskeleton (LOPES) device to emulate the
trajectories from a healthy limb to the impaired limb (Vallery
et al., 2008). Prediction of the lower limb joint angles future
trajectory that effectively leads to foot events timing was also
investigated in the works of Aertbeliën and De Schutter (2014)
and Tanghe et al. (2019) using probabilistic principal component
analysis (PPCA).

Recent methods implemented ML algorithms such as artificial
neural networks (ANNs) to identify subject gait trajectories
to recognise neurological as well as pathological gait patterns
(Alaqtash et al., 2011; Horst et al., 2019). Artificial neural
networks were also used to improve user intention detection in
wearable assistive devices (Jung et al., 2015; Islam and Hsiao-
Wecksler, 2016; Moon et al., 2019; Trigili et al., 2019). A variation
of ANNs called generalised regression neural networks (GRNNs)
was found to be capable of predicting lower limb joint angles (hip,
knee and ankle) from the linear acceleration (LA) and angular
velocity (AV) of foot and shank segments (Findlow et al., 2008),
or from subject gait and anthropomorphic parameters (Luu et al.,
2014). Recurrent neural networks (RNNs) and convolutional
neural networks (CNNs), which are classes of ANNs, were able
to classify human motions and activities (Murad and Pyun, 2017;
Han et al., 2019).

Long short-term memory (LSTM) neural networks are a
subclass of RNNs, and they have proven success in modelling
a wide range of sequence problems, including human activity
recognition (Ordóñez and Roggen, 2016), gait diagnosis (Zhao
et al., 2018), falls prediction (Nait Aicha et al., 2018) and
gait event detection (Kidziński et al., 2019). Long short-term
memory autoencoder is an architecture of LSTM that has been
implemented in an array of applications such as language
translation (Ding et al., 2018) and in forecasting of video frames
(Srivastava et al., 2015), weather (Gangopadhyay et al., 2018;
Reddy et al., 2018; Poornima and Pushpalatha, 2019), traffic

flow (Park et al., 2018; Wei et al., 2019) and stock prices
(Li et al., 2018).

Given the potential of lower limb trajectory prediction,
no previous work was found that utilised ML techniques to
predict future lower limb trajectories using simulated inertial
measurement data, which could have a profound impact on
human movement science. Simulated measurement data such
as the kinematics output from inertial measurement units
(IMUs; i.e., LA and AV) offer the opportunity to transcend a
predictive model outside the laboratory settings. The aim of this
work was to determine whether the kinematics of lower limb
trajectories during walking could be reliably extrapolated using
LSTM autoencoder neural networks. It was hypothesised that
an LSTM autoencoder could reliably forecast multiple time-step
trajectories of the lower limb kinematics.

MATERIALS AND METHODS

Collection Protocol
Ethics approval was granted by the Department of Defence
and Veterans’ Affairs Human Research Ethics Committee
and Victoria University Human Research Ethics Committee
(Protocol 852-17). All participants signed a consent form and
volunteered freely to participate. Walking data were obtained
from six male participants (22 ± 2 years old, 1.77 ± 0.02 m in
height, 82 ± 4 kg in mass) who walked for 10 min at 5 km/h on
a 0% gradient treadmill. A set of 25 retroreflective markers were
attached to each participant in the form of clusters (Findlow et al.,
2008). Each cluster comprised a group of individual markers that
represent a single body segment (e.g., shank). That included left
and right foot (three markers), left shank (four markers), right
shank (five markers), left thigh (three markers), right thigh (four
markers) and pelvis (three markers). The 3D position of each
cluster was tracked using a 14-camera motion analysis system
(Vicon Bonita, Version 2.8.2) at 150 Hz. Virtual markers were
also established to calibrate the position and orientation of the
lower body skeletal system (Garofolini, 2019). Three-dimensional
ground reaction force and moment data were collected from
a force-plate instrumented treadmill (Advanced Mechanical
Technology, Inc., Watertown, MA, United States) at 1,500 Hz.

Dataset Processing
Recorded 3D positional and force data were processed using
Visual 3D (C-motion, Inc, Version 6) to obtain LA and AV. In
Visual 3D (Figure 1), the data were firstly filtered using a low-
pass digital filter with a 15-Hz cut-off frequency and normalised
to mean 0 and standard deviation 1 using standard scores (z-
scores), preserving the original data properties. Secondly, raw
AV was obtained as the derivative of Euler/Cardan angles (C-
motion, 2015), and the raw LA was generated by the double
derivative of segment linear displacement using built-in pipeline
commands (Hibbeler, 2007). These data (LA and AV) simulated
the kinematic outputs from body-mounted IMUs widely used
in wearable assistive devices, monitoring lower limb kinematics
(Santhiranayagam et al., 2011; Lai et al., 2012), controlling
powered actuators (Lee et al., 2017) and recognising human
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FIGURE 1 | Components (x,y,z) definition and markers setup. Grey balls are
retroreflective markers. Turquoise balls are virtual markers.

actions (Van Laerhoven and Cakmakci, 2000; Jimenez-Fabian
and Verlinden, 2012; Koller et al., 2016).

As shown in Figure 1, the main direction of movements
included the translation along the Y-axis (i.e., LA) and the
rotation along the X-axis (i.e., AV), which were used for LSTM
prediction, resulting in four predictor variables: (i) Y1 thigh LA,
(ii) Y2 shank LA, (iii) X3 thigh AV and (iv) X4 shank AV. The
thigh segment was defined as the reference frame to the shank,
and the shank segment was defined as the reference frame to the
thigh (Figure 2).

Dataset Description
The data were divided into training and testing sets. The training
set comprised 2,665 strides from five participants that included
four kinematic feature variables (Y1, Y2, X3, X4) (N-columns)
and 453,060 samples or time steps (M-rows) for each variable.
To attain generalisation, a testing set was used that comprised
of a single stride from the sixth participant with the four feature
variables and 170 samples for each variable.

Time Series Transformation to a
Supervised Learning Problem
The inputs to the LSTM were four parallel feature variables and
the outputs were the successive four parallel feature variables.
Prior to feeding into the LSTM model, the MxN training and
testing datasets were transformed to a 3D dataset using a sliding
window technique (Banos et al., 2014). The sliding window
comprised of an input window, an output window and a sliding
size. The input window consists of M samples and N features,
so as the output window. The input window is the input data to
the LSTM model, and the output window is the future prediction
output from the LSTM model. The sliding size is how much of M
samples that both the input and the output windows are sliding
forward with (see Figure 3). The sliding size (M samples) was
always equal to the output size.

Recurrent Neural Networks
While multiple layer perceptrons (MLPs) consider all inputs
as independent, RNNs are designed to work with time series
data (Ordóñez and Roggen, 2016). RNNs are a class of ANN
architecture designed specifically to model sequence problems
and exploit the temporal correlations between input data samples
(Elman, 1990; Murad and Pyun, 2017). It contains feedback
connections between each of its units, which enables the network
to relate all the previous inputs to its outputs (Figure 4).

The forward pass equations from the inputs to the outputs of
the RNN are given as follows.

For the hidden units:

at
h =

I∑
i=1

wihxt
i +

H∑
h′=1

wh′hbt−1
h′ (1)

and differentiable activation functions are then applied:

bt
h = θh(at

h) (2)

The network input to output units:

at
k =

H∑
h=1

whkbt
h (3)

where
at

h is the sum of inputs to unit h at time t, bt
h is the activation of

unit h at time t, θh is the non-linear and differentiable activation
function of unit h, at

k is the sum of all inputs to output unit k at
time t, xt

i is the input i at time t, wih is the connection weights
between input unit i and hidden unit h, wh′h is the connection
weights between the previous hidden state h′ and itself h and
whk is the connection weights between the hidden state h and the
output unit k. Bias was neglected for simplicity.

LSTM Networks
As the input data propagates through the standard RNN’s hidden
connections to the output units, it either slowly attenuates or
amplifies exponentially, referred to, respectively, as vanishing or
exploding gradients (Bengio et al., 1994; Hochreiter et al., 2001).
The problems with this approach are that the vanishing gradient
prevents the network from learning long-term dependencies
and the exploding gradient leads to weights oscillation. These
difficulties have been addressed using gradient norm clipping
to tackle the exploding gradient and a soft constraint to deal
with the vanishing gradient (Pascanu et al., 2013). The LSTM
design addresses these problems by maintaining a memory cell C
(Figure 5) that enables the network to retain information over a
longer period by using an explicit gating mechanism (Hochreiter
and Schmidhuber, 1997; Graves, 2012; Karpathy et al., 2015).

Each LSTM cell has an input gate, forget gate, and output
gate. The input gate dictates the information used to update the
memory state, and the forget gate decides which information
to discard or remove from the cell. The final gate specifies the
information to output based on the cell input and memory.
All gates are designed such that information is exchanged from
inside and outside the block (Figure 5). Furthermore, each
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FIGURE 2 | Average thigh and shank LA and AV within a stride. A stride was defined as the interval between two successive heel strikes of the same foot (De Lisa,
1998). (A) Thigh three-dimensional AV (direction of the rotation around the X-axis). (B) Shank three-dimensional AV (direction of the rotation around the X-axis).
(C) Thigh three-dimensional LA (direction of the progression along the Y-axis). (D) Shank three-dimensional LA (direction of the progression along the Y-axis). Red is
the X-axis. Green is the Y-axis. Blue is the Z-axis.

memory block contains three peephole-weighted connections
(dotted lines in Figure 5), which are the input weight wcι, the
output weight wcω and the memory state wcφ. The functions f ,
g and h are usually tanh or logistic sigmoid activation functions
(Graves, 2012). Below are the network equations (Graves, 2012)
that govern the LSTM architecture used:

Input gates:

at
ι =

I∑
i=1

wiιxt
i +

H∑
h=1

whιbt−1
h +

C∑
c=1

wcιst−1
c (4)

bt
ι = f (at

ι) (5)

Forget gates:

at
φ =

I∑
i=1

wiφxt
i +

H∑
h=1

whφbt−1
h +

C∑
c=1

wcφst−1
c (6)

bt
φ = f (at

φ) (7)

Cells:

at
c =

I∑
i=1

wicxt
i +

H∑
h=1

whcbt−1
h (8)

st
c = bt

φst−1
c + bt

ιg(at
c) (9)

Output gates:

at
c =

I∑
i=1

wiwxt
i +

H∑
h=1

whwbt−1
h +

C∑
c=1

wcwst
c (10)

bt
w = f (at

w) (11)

Cell outputs:
bt

c = bt
wh(st

c) (12)

where wij is the weight of the connection from unit i to unit j;
at

j is the network input to unit j at time t; bt
j is the activation of

unit j at time t; ι, φ, ω respectively stand for the input gate, the
forget gate and the output gate; C is the memory cell; wcι, wcφ,
wcω are peephole weights; st

c is the state of cell C at time t; f is the
input, output and forget gates activation function; g and h are the
cell input and output activations, respectively; I is the number of
inputs; H is the number of cells in the hidden layer; and index h
is the cell outputs from other blocks in the hidden layer. Bias was
neglected for simplicity.

Design of the LSTM Model
The implemented model was based on the autoencoder
LSTM, a neural network architecture composed of an encoder
and a decoder (Ding et al., 2018). The encoder encodes
the input variable length vector into a fixed length feature
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FIGURE 3 | Sliding window illustration example using the normalised shank angular velocity X-axis component (one feature). The window in this model is 25
samples and four features and the prediction outputs are five samples of four features.

FIGURE 4 | Unfolded structure of the Recurrent Neural Network.
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vector that captures the attributes of the variable length
vector. The LSTM decoder decodes the encoded fixed length
feature vector back into a variable length vector (Figure 6).
The final layer is a fully connected dense (feedforward)
mechanism for outputting predictions. The network weights
and biases were updated at the end of each batch using an
adaptive moment estimation (Adam) optimisation algorithm
(Kingma and Ba, 2014) with mean absolute error (MAE)
as an optimisation criterion. A single batch consists of 100
input/output windows. The activation for all LSTM layers was
set to a rectified rectilinear unit (ReLU) activation function
(Nair and Hinton, 2010). The LSTM autoencoder model was
implemented in Google Colab as well as Amazon Web Services
(AWS) using Python 3 (Libraries: Keras, Numpy, Pandas
and Scikit learn).

Evaluation Metrics
To evaluate the network quality, three parameters were
considered to calculate how closely the network predicted
variable trajectories ŷj (Y1, Y2, X3, X4) were to the actual variable
trajectories yj (Y1, Y2, X3, X4) across the n samples:

1. MAE given as:

MAE =
1
n

n∑
j=1

∣∣yj − ŷj
∣∣ (13)

2. Mean squared error (MSE) given as:

MSE =
1
n

n∑
j=1

(
yj − ŷj

)2 (14)

FIGURE 5 | Standard LSTM memory cell with peephole connections.

FIGURE 6 | Structure of the implemented encoder–decoder LSTM architecture given one input window. The adapter converts the 2D encoded features into 3D
output to be adopted by LSTM. The last layer is a fully connected dense layer for outputting one window prediction.
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3. Correlation coefficient (CC) given as:

P =
cov(y, ŷ)

std
(
y
)
× std(ŷ)

(15)

where std() is the standard deviation and cov(y, ŷ) is the
covariance between variables y and ŷ.

RESULTS

Using the sparse grid search approach, the model’s
hyperparameters were tuned to determine the optimum
model design (least MAE), including the number of epochs,
batch size, layers and cells. The optimum model was then trained
for 50 epochs (repetitions), and performance evaluated on the
test set using MAE, MSE and the CC. The test set was a single
stride that consisted of 170 samples. Initial 25 samples were
used from the preceding cycle in order to start predicting the
trajectories of the single stride.

Model Performance With Different Input
Window Sizes
The size of the input window was varied eight times at five
sample intervals (5–40 samples) to demonstrate the optimum
input window size (least error). The output sliding window was
fixed to five samples prediction. The model performance is shown
in Figure 7 where the impact of each input window size on the
prediction of each variable is computed.

Model Performance With Five Samples
Prediction
This sliding window comprised of 25 samples input and 5
samples prediction output. Results were given in two analyses: (i)
predicted versus actual trajectories including the absolute error
(AE) for each sample in the first output window (Figure 8)
and for the whole gait cycle (Figure 9) and (ii) performance
metrics (MAE, MSE and CC) for the first window of five samples
(Table 1) and for all windows combined (Table 2).

Model Performance With 10 Samples
Prediction
This sliding window comprised of 25 samples input, 10 samples
prediction output. Figure 10 illustrates the results as predicted
versus the actual trajectories including the AE for each sample in
the first output window, whereas Figure 11 displays the results
for the whole gait cycle. Performance metrics (MAE, MSE and
CC) for the first window of 10 samples are presented in Table 3
and for all windows combined in Table 4.

DISCUSSION

Our aim was to develop and evaluate an LSTM autoencoder
model to predict the trajectories of four kinematic variables (Y1,
Y2, X3, X4), simulating the output from wearable sensors (IMU).
The predicted kinematic feature variables, LA and AV, for the
shank and thigh were reliably predicted up to 10 samples or

FIGURE 7 | Model performance with different input window sizes. Red is MAE. Blue is MSE. (A) Thigh LA (Y1). (B) Shank LA (Y2). (C) Thigh AV (X3). (D) Shank AV
(X4).
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FIGURE 8 | Model performance for the first window, showing predicted trajectories (green) and actual trajectories (red). Columns represent the absolute error (AE)
for the five predicted samples. (A) Thigh LA Y1. (B) Shank LA Y2. (C) Thigh AV X3. (D) Shank AV X4

FIGURE 9 | Model performance over the entire gait cycle when five samples prediction window is used. The figure shows predicted trajectories (orange) and actual
trajectories (blue). (A) Thigh LA Y1. (B) Shank LA Y2. (C) Thigh AV X3. (D) Shank AV X4.
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TABLE 1 | Model performance for predicting the first five stride samples.

Feature MAE MSE CC

Y1 0.125 m/s2 0.019 m/s2 0.99

Y2 0.133 m/s2 0.022 m/s2 0.99

X3 0.032 deg/s 0.001 deg/s 0.98

X4 0.033 deg/s 0.001 deg/s 0.99

TABLE 2 | Model performance for predicting the complete stride using an input
window size of 25 samples and an output window size of 5 samples.

Feature MAE MSE CC

Y1 0.047 m/s2 0.006 m/s2 0.99

Y2 0.047 m/s2 0.006 m/s2 0.99

X3 0.028 deg/s 0.001 deg/s 0.99

X4 0.024 deg/s 0.001deg/s 0.99

time steps, i.e., up to 60 ms in the future. A 60-ms prediction
of future trajectories adds a feedforward term to an assistive
device controller rather than being reactive and predominantly
relying on feedback terms (i.e., sensory information; Tanghe
et al., 2019). This enables the assistive device to adapt to changes
in human gait, allowing smoother synchronisation with user
intentions and minimising interruptions when the user changes
their movement pattern (Elliott et al., 2014; Zhang et al., 2017;
Ding et al., 2018; Zaroug et al., 2019). A known future trajectory
might also monitor the risk of balance loss, tripping and falling,
in which impending incidents can be remotely reported for early
intervention (Begg and Kamruzzaman, 2006; Begg et al., 2007;

Nait Aicha et al., 2018; Hemmatpour et al., 2019; Naghavi et al.,
2019). Since 60 ms falls in the range of slow (60–120 ms) and fast
(10–50 ms) twitch motor units (Winter, 2009), this would enable
wearable devices such as IMUs to alert (e.g., by audio/visual
signal) an elderly user about an imminent risk of tripping and
potentially gives them a chance to adjust their gait accordingly.

In contrast to the 1- to 2-s window for human activity
recognition proposed by Banos et al. (2014), no window has
previously been suggested for forecasting human movement
trajectories (Banos et al., 2014). In addressing this limitation, the
present project input and output sliding windows were tested
to discover the optimum prediction model. The input window
was varied from 5 to 40 samples, whereas the output window
was fixed at 5 samples during each test. Results showed that
both MAE and MSE increased after 25 samples for all variables
except for the thigh LA Y1 in which 15 samples scored lowest.
Due to the majority score, 25 samples were fixed, and the output
window size manipulated between 5 and 10 samples. Prediction
error MAE and MSE gradually increased across the first 5 and 10
sample prediction windows, indicating better prediction early in
the stride cycle. This prediction horizon suggests that an output
window exceeding five samples may not be sufficiently reliable
for forecasting gait trajectories. LA-predicted trajectories began
to deviate earlier than AV, possibly due to the double derivative
generating a noisier signal.

Across the stride cycle, an output window of 5 samples showed
better model performance (lower MAE scores) than the 10-
sample output window, particularly when there is less noise in
the predicted signal for all variables. Predictions of five samples

FIGURE 10 | Model performance for the first window, showing predicted trajectories (green) and actual trajectories (red). Columns represent the AE for the 10
predicted samples. (A) Thigh LA Y1. (B) Shank LA Y2. (C) Thigh AV X3. (D) Shank AV X4.
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FIGURE 11 | Model performance over the entire gait cycle when 10 samples prediction window is used. The figure shows predicted trajectories (orange) and actual
trajectories (blue). (A) Thigh LA Y1. (B) Shank LA Y2. (C) Thigh AV X3. (D) Shank AV X4.

for all variables achieved high CC (0.99) and maintained below
MAE 0.048 deg/s and 0.029 m/s2. These result parameters are
different from those of earlier work (Findlow et al., 2008; Luu
et al., 2014). The difference is in the type of predicted data (lower
limb joint angles of the hips, knees and ankles) and in the type
of output, which was not a forecast, but rather a prediction of
joint angles from the LA and AV of the lower limb segments.
Nonetheless, the work presented in this paper showed higher CC
values than the earlier works (Findlow et al., 2008; Luu et al.,
2014) at the intersubject test. Overall, the LSTM model was able

TABLE 3 | Model performance for predicting the first 10 stride samples.

Feature MAE MSE CC

Y1 0.839 m/s2 1.206 m/s2 0.52

Y2 0.596 m/s2 0.667 m/s2 0.75

X3 0.176 deg/s 0.042 deg/s 0.94

X4 0.122 deg/s 0.019 deg/s 0.96

TABLE 4 | Model performance for predicting the complete stride using an input
window size of 25 samples and an output window size of 10 samples.

Feature MAE MSE CC

Y1 0.170 m/s2 0.096 m/s2 0.96

Y2 0.202 m/s2 0.096 m/s2 0.96

X3 0.079 deg/s 0.015 deg/s 0.98

X4 0.086 deg/s 0.014 deg/s 0.98

to learn the trajectories and generalise across participants. This
generalisation is invaluable to adapt algorithm performance to a
wider population in assistive devices, particularly when each user
responds differently to the same device (Zhang et al., 2017).

This study was limited to the walking movement with a 60-ms
prediction horizon and healthy participants walking at 5 km/h.
The speed was imposed to report the feasibility of whether
lower limb future trajectories are predictable. In future work,
the model would be developed to accommodate a higher gait
variance from more participants and other populations, such as
female, older adults and individuals with gait disorders walking
at their preferred as well as slower and faster speeds (Winter,
1991). More participants (i.e., stride examples) would potentially
improve the model performance to predict trajectories above
60 ms and also provide a more comprehensive validation set,
a strategy to find the optimum number of epochs and avoid
model overfitting (Graves, 2013). The LSTM autoencoder can
be made flexible by automating the input/output window size
depending on the detected human activity, which revamps the
LSTM capacity to recognise a wider range of human action
transitions, such as slow to fast walking. Although LSTM
autoencoders described here were able to learn and predict
future data points, further research is needed to explore other
LSTM architectures, such as bi-directional LSTM (Graves and
Schmidhuber, 2005). Bi-directional LSTM can be useful in
forward and backward modelling of sequential data, giving
further insights into sequential pattern modelling (Liu and Guo,
2019; Zhang et al., 2019).
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CONCLUSION

This study confirmed the possibility of predicting the future
trajectories of human lower limb kinematics during steady-state
walking, i.e., thigh AV, shank AV, thigh LA and shank LA. An
input window of 25 samples and an output window of 5 samples
were found to be the optimum sliding window sizes for future
trajectories prediction in LSTM. The LSTM model prediction
horizon was better able to forecast the earlier sample trajectories
and was also able to learn trajectories across different participants.
Further work is required to systematically investigate the effects
of tuning the model’s hyperparameters, including layers and
cells, optimisation algorithms and learning rate. Future work
could focus on automating input/output window size and using
predicted kinematics to identify discrete gait cycle events such
as heel strike and toe-off (Kidziński et al., 2019). Long short-
term memory methods for human movement prediction have
applications to balance loss, falls prevention and controlling of
assistive devices.
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