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Abstract 

The Janus kinase (JAK) family plays a pivotal role in most cytokine-mediated inflammatory and autoimmune 
responses via JAK/STAT signaling, and administration of JAK inhibitors is a promising therapeutic strategy for several 
diseases including COVID-19. However, to screen and design selective JAK inhibitors is a daunting task due to the 
extremely high homology among four JAK isoforms. In this study, we aimed to simultaneously predict pIC50 values of 
compounds for all JAK subtypes by constructing an interpretable GNN multitask regression model. The final model 
performance was positive, with R2 values of 0.96, 0.79 and 0.78 on the training, validation and test sets, respectively. 
Meanwhile, we calculated and visualized atom weights, followed by the rank sum tests and local mean comparisons 
to obtain key atoms and substructures that could be fine-tuned to design selective JAK inhibitors. Several successful 
case studies have demonstrated that our approach is feasible and our model could learn the interactions between 
proteins and small molecules well, which could provide practitioners with a novel way to discover and design JAK 
inhibitors with selectivity.
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Introduction
Cytokines are small proteins produced and secreted 
by immune and non-immune cells that are involved in 
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intercellular signaling and interactions [1, 2]. They pro-
mote and restrict one another, forming an extremely 
complex cytokine immune regulatory network [3]. 
When multiple cytokines released, the balance of 
the network would be broken, leading to the loss of 
immune homeostasis and causing a few immune-medi-
ated inflammatory diseases [3]. More seriously, it would 
result in a cytokine storm that often happened in viral 
infections like severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) [4–7]. Cytokine levels could be 
regulated through the Janus kinase/signal transducers 
and activators of transcription (JAK/STAT) pathway 
[8]. When cytokine binds to the receptor outside the 
cell membrane, the cytokine receptor is activated and 
phosphorylates the JAK and the downstream molecule 
STAT. The complex then enters into the nucleus and 
controls the transcription of cellular genes, which in 
turn impacts the biological function of the cell [9, 10]. 
Hence, we could design certain JAK inhibitors for the 
treatment of immune and inflammatory diseases that 
were mediated by cytokines.

JAK is a class of non-receptor tyrosine kinases, 
including four subtypes, namely JAK1, JAK2, JAK3, and 
TYK2, which regulate different cytokines. Currently, 
nine JAK inhibitors have been approved by the US 
Food and Drug Administration (FDA), the European 
Medical Agency or other regulatory agencies (Addi-
tional file 1: Table S1). Nonetheless, a large portion of 
them are non-selective, having more or less toxicities 
or other undesirable side effects. For example, tofaci-
tinib is the first pan-JAK inhibitor that targets JAK1, 
JAK2 and JAK3 for the treatment of moderate or severe 
active ulcerative colitis (UC), but owing to the simulta-
neous inhibition of JAK2-mediated erythropoietin and 
GM-CSF signaling, it has some safety concerns relat-
ing to significant adverse reactions including anemia, 
neutropenia, thrombocytopenia, zoster, and pulmonary 
embolism [11–13]. The similar story also happened 
in baricitinib, 10% of patients treated with baricitinib 
showed side effects such as upper respiratory tract 
infections and high blood cholesterol levels (hypercho-
lesterolemia) [14]. Therefore, it is reasonable to propose 
that inhibitors targeting one specific JAK isoenzymes 
without affecting other JAK-dependent signals could 
spare toxicities and maximize the clinical benefit. How-
ever, discovering small molecules that bind selectively 
to a given protein target has long been a major stum-
bling block to modern drug discovery [15]. The prom-
ise of in silico screening is tantalizing, as it would allow 
compounds to be screened at greatly reduced cost [16].

The common structure of all JAKs consists of four 
structural domains composed of seven homologous 
regions [JH1–7] [17]. Most of known small molecular 

inhibitors targeting JAKs are active site-directed. They 
bind to the adenosine triphosphate (ATP) site of the 
catalytic domain (also referred to the JH1 or “Janus 
Homology 1” domain) [18]. The crystal structures 
of the JH1 domains have been resolved for the four 
JAK isoenzymes. However, due to the high sequential 
homology and structural similarity of the ATP active 
site across JAK family, it is too hard to discover highly 
selective molecules for a specific JAK family member 
by structure-based virtual screening (VS) methods, as 
Bajusz’s study did [19]. In recent years, deep learning, 
a branch of machine learning, has been an effective 
tool for drug discovery, especially in molecular prop-
erty prediction and ligand-based VS fields [20]. Com-
pared with traditional machine learning methods, deep 
learning encompasses several layers of stacked complex 
neural networks that can represent and learn deeper 
knowledge [21]. Graph neural networks (GNN) have 
been gaining popularity among many scholars recently. 
It is plausible for GNN to represent atoms and bonds 
with nodes and edges, respectively, which are much 
more powerful at capturing the latent patterns and 
require less feature engineering efforts [22]. However, 
deep learning methods required large datasets and are 
poorly interpretable. To address these issues, we con-
structed a multitask regression model based on the 
attentive fingerprint framework (MTATFP) that allows 
for the simultaneous prediction of IC50 values of com-
pounds for the four JAK isoforms (shown in Fig. 1). In 
addition, we utilized attention coefficients to assign 
weights to each atom of the compound and visualize 
them. Our virtual screening platform could facilitate 
the discovery and modification of JAK inhibitors.

Methods
Data collection and processing
In this work, the inhibitors of four JAK isoforms and their 
experimental IC50 values were collected from three data-
bases, PubChem [23], ChEMBL [24] and BindingDB [25] 
(indicated in Fig.  1). Molecules from different sources 
were converted to SMILES strings and preprocessed by 
RDKit [26] and MolVS (https://​molvs.​readt​hedocs.​io/​
en/​latest/​index.​html), including normalization of struc-
tures, desalting, neutralization of charge and elimination 
of duplicate molecules (the canonical SMILES strings 
were chosen as the unique identification and the repeated 
molecules with lower IC50 values were kept). In order 
to ensure numerical stability during model building, we 
transformed IC50 (nM) into its negative logarithmic scale 
pIC50 (-LgIC50).

For developing multitask regression models, the 
obtained data set was randomly divided into training set, 
validation set and test set at a ratio of 8:1:1 by python 

https://molvs.readthedocs.io/en/latest/index.html
https://molvs.readthedocs.io/en/latest/index.html
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scripts. Training set is used to build the model, validation 
set is used for hyper-parameter optimization and test 
set is for the model evaluation. Furthermore, to evaluate 
the generalization ability of our model, we extracted 33 
Kd values of JAKs from Davis’s works [27] and 152 activ-
ity values from Anastassiadis et al [28] (both outside the 
training set) as two external validation sets. In Anastas-
siadis’s datasets, we converted the activity values to IC50 
values with an equation defined earlier [29].

Multitask learning based on attentive FP network
Attentive FP network architecture
As a typical graph convolutional network, graph atten-
tion network (GAT) introduced an attention mechanism 
which has been successfully applied for achieving bet-
ter neighbor aggregation [30]. The Attentive FP frame-
work was first proposed by Xiong and colleagues [31]. It 
introduced the graph-attention mechanism to learn both 

atomic and molecular properties of a given chemical 
structure, which is tailored for molecular feature extrac-
tions. In the present study, we applied the Attentive FP 
network architecture on four JAK-based tasks to predict 
the pIC50 values (see Fig.  1). We have constructed two 
Attentive FP convolutional layers for extracting atomic 
features and a readout layer for molecular embedding, 
which ultimately output the predicted values using a fully 
connected layer. A LeakyReLU [32] function was intro-
duced as a nonlinear activation function after a linear 
transformation.

Before building the attentive FP network, we translated 
the JAK-related molecules into molecular graphs using 
RDKit (version 2020_03_1), the rules were shown in 
Additional file 1: Table S2.

Fig. 1  The overview of our work. The main steps include data integration, transformation of molecules into molecular graphs as model input, 
construction of the MTATFP network and interpretation of molecules by atom weights obtained from back propagation
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Multitask learning strategy
In this work, we employed a multitask learning strategy 
to improve the predictive performance of small datasets. 
Four tasks shared the same hidden layers and hyper-
parameters during training process, and separated to 
different tasks at the output of the fully connected layer 
in the network (shown in Fig.  1). It takes advantage of 
implicit data augmentation by borrowing similarly struc-
tured information features [33]. For example, we could 
allow model eavesdrop to send JAK2-task to learn some 
features which were difficult for TYK2-task. Further-
more, it helped to focus the model’s attention on impact-
ful features since other tasks can provide additional 
evidence whether the features are relevant or not [34]. 
Meanwhile, we also constructed four single-task models 
on each JAK subtype for comparison with the multitask 
model.

Model training protocol
Concerning the overwhelming complexity and high 
computational cost of neural networks, we used ran-
dom searching strategy based on previous experience 
for hyper-parameter settings, including a few common 
ones (such as learning rate, weight decay, batch size) and 
Attentive FP hyper-parameters (such as the number of 
network layers, graph feat size and dropout). The per-
formance metrics of validation set were used for model 
selection. To avoid overfitting and saving computational 
resources, we used early stopping approaches. A maxi-
mum epoch was set as 1000. If the performance metric 
had not improved in 20 epochs on the validation set, the 
training process was terminated early. Attentive FP was 
trained by the Deep Graph Library Python (DGL) pack-
age (version 0.6.0) [35] with cuda 10.1 and the DGL-
LifeSci [36] extension (github.com/awslabs/dgl-livesci), 
which ran on the GPU version of the PyTorch [37] frame-
work (version 1.5.0).

Atom interpretation
Lack of interpretability is another issue concerned by 
machine learning and deep learning, usually called 
“the black-box mode” [38]. Invertion of the Attentive 
FP model by extracting the hidden layers or attention 
weights could provide access to the model’s interpreta-
tion, which would help chemists gain insights into the 
skyrocketing volume and complexity of drug discovery 
data. In the Attentive FP network, since atoms are treated 
as nodes in the molecular graph, we could obtain atom 
weights by gradient backward propagation and visual-
ized according to Fig. 1 (the darker the color of the node 
is, the greater the impact on the target is). Based on this, 
we could identify atomic features that are significant 

for the target and then optimize chemical structures for 
drug design. Taking the multitask model into account, 
the atoms having relatively high contributions play big 
roles for all tasks. Here, we believe that these high scor-
ing atoms are crucial for the selectivity of the JAK family. 
The process of atom weighting calculation could be for-
mulated below:

This formula expresses the contributions of node j (the 
neighbor node, a neighbor atom) for node k (the target 
node, a specific atom) without considering the graph 
structural information. hk is the state vector of node k, hj 
is the state vector of node j and W  is a trainable weight 
matrix. The mutual attention mechanism −→a  ( W

−→
h k

,W
−→
h j ) is applied in the model, parameterized by the 

weight vector −→a  and activated by applying LeakyReLU. 
The transpose is denoted as T and concatenation is by ||. 
The numerator is expressed as the sum of the weights of 
all neighbor nodes of k.

To determine whether built models have learned the 
protein binding logic, 38 molecular series were extracted 
and compiled from Park’s works [39]. These molecular 
series were experimentally synthesized JAK inhibitors 
and contained activity values for all JAK isoforms. We 
performed predictions with a trained model for these 
inhibitors, inspecting and visualizing the atomic weights 
for fine-tuning analysis. Our goal was to evaluate how 
faithfully these contributions captured the binding logic 
for each JAK proteins.

Machine learning approaches
To further enable methodology evaluation, we compared 
our multitask deep learning model with a state-of-the-art 
machine learning method called LightGBM [40], which is 
a distributed gradient boosting framework based on the 
decision tree algorithm. LightGBM is faster and lower 
memory consumption in contrast to Extreme Gradi-
ent Boosting (XGBoost) [41] that is another gradient 
boosting framework. It abandons the Level-wise deci-
sion tree growth strategy and used a Leaf-wise strategy 
with a depth limit. Level-wise is an inefficient algorithm 
because it treats the leaves of the same level indiscrimi-
nately, which brings a few unnecessary computational 
overheads since many leaves indeed have low splitting 
gain and there is no need to search and split. By con-
trast, Leaf-wise is more productive, which finds the leaf 
with the highest splitting gain and then splits it, and so 
on. Moreover, LightGBM adds a maximum depth limit 

(1)
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exp

(
LeakyReLU

(
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on top of Leaf-wise to prevent overfitting while maintain-
ing high efficiency. Given the above considerations, we 
applied LightGBM algorithm rather than XGBoost. The 
ECFP4 fingerprint (1024 bits) [42] was chosen for the 
input of the machine learning model and calculated by 
PaDEL-descriptor program (version 2.13) [43], which is 
widely used in QSAR/QSPR tasks to characterize mole-
cules. Furthermore, considering that better performance 
may be achieved by other types of molecular represen-
tations [44], we calculated the molecular descriptors of 
the compounds using RDKit as a second approach. The 
model parameters we set to build eight regression mod-
els were also based on random search, and the final out-
comes were illustrated in Additional file  1: Table  S3. In 
order to proceed model performance comparisons, we 
guaranteed the consistency of the all datasets (train-
ing set, validation set and test set) with deep learning 
methods.

Model evaluation
The measurements in these data sets are quantitative. 
We built regression models for the quantitatively meas-
ured data sets. The performance of regression models 
was evaluated by the following metrics: R2 (the degree 
of concordance between the predictions and the cor-
responding observations), MAE (mean absolute error) 
and RMSE (root-mean-square error). The predictive 
model could be single-task or multitask. For the multi-
task models, we calculated the performance metrics for 
each individual task and reported their average values 
as global metrics. The formulas are as follows.

where, yi presented true values, ŷi presented predicted 
values and m is the total number of data sets.

Y‑randomization testing
To estimate the impacts of chance correlation, y-ran-
domization was used, which is developed to validate 
a given regression model and initially proposed by 
Rücker et  al. [45]. In this approach, activity values of 
four tasks are randomly shuffled, to disrupt the rela-
tionship between label values and feature values in the 

(2)R2 = 1−

∑
i

(
ŷi − yi

)2
∑

i

(
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)2
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1

m
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(4)RMSE =

√√√√ 1

m
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(
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)2

training data, and construct the model on the basis of 
unordered data. The procedure is repeated number 
of times. Ideally, if the new regression models have 
lower R2 values for several trials, then the given model 
is thought to be robust. Inversely, given a regression 
model, even though the performance of the model is 
great respect to the training data, if the performance 
after y-randomization is good as well, then there should 
be chance correlations in the data set and the model 
could be overfitted. In the present study, we randomly 
shuffled the IC50 values of training sets and validation 
sets ten times based on different random seeds. These 
disordered data were then applied to reconstruct the 
attentive FP multitask model repetitively, and recorded 
the R2 values of the training and validation set for each 
y-randomization model.

Definition of applicability domain
Defining the applicability domain (AD) of the model 
is a key component in the five standards of OECD 
(Organization for Economic Co-operation and Devel-
opment) on QSAR models, which can be considered 
as the chemical space of the modeling compound data 
[46]. Thus, we adopted a methodology based on struc-
tural similarity named the Euclidean distance-based 
method (DM) for AD analysis in this study. The chemi-
cal structures were represented by Morgan fingerprints. 
This method will ultimately obtain a distance threshold 
( DT  ) which can determine whether the compound is 
within the AD of the model. The detailed formula is as 
follows:

where, dave is the average of the Euclidean distance 
between each compound and its nearest compound in 
the training set, θ is the corresponding standard devia-
tion, Z is an optional parameter representing the signifi-
cance level. First, we calculate the structural similarity 
between the test set and the training set of compounds 
by RDKit to get dave and θ , then keep the k nearest neigh-
bor molecules with the highest similarity as the distance 
value. If one of these k distances exceeds the threshold of 
DT , the compound is considered to be outside of domain 
(OD) [47]; otherwise, it has fallen into the domain (ID).

Results and discussion
Data analysis
After data processing, 13,898 compounds (including 8087 
JAK1, 10,828 JAK2, 4485 JAK3 and 2465 TYK2 inhibi-
tors) were retained to build multitask regression models. 
Most of the compounds have more than two JAK isoform 
experimental IC50 values ranging from 0.00125  nM to 
767,000  nM. The final experimental value distributions 

(5)DT = dave + Z ∗ θ
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of each JAK isoform dataset were shown in Fig. 2, which 
was adequate to build a robust activity prediction model.

Chemical diversity analysis
To verify the diversity of collected compounds and 
rationalization of data set partitioning, we visualized 
the chemical space with a principal component analysis 
(PCA) [48]. MACCSkeys generated by RDKit as input 
of PCA were used to represent JAK ligands. As demon-
strated by the chemical space defined by the first three 
principal components in Fig.  3, a wide distribution of 
scatters was observed, indicating a high diversity of col-
lected molecules. Besides this, the chemical space of the 
validation and test sets were completely overlapped with 
the chemical space of the training set, which implied jus-
tifications of data splits. In our model, the training set 
contained 10,824 molecules, the validation set contained 
1529 molecules, and there were 1545 molecules in the 
test set.

Task relevance analysis
In contrast to transfer learning, multitask learning is 
more suitable for data sets that have shared molecules 
with related tasks and can predict different tasks using 
only one network architecture [49]. To verify that there 
are some correlations between the individual tasks, we 
conducted a correlation analysis on the pIC50 values of 
the four tasks, and the findings were shown in Fig. 4a. We 
also calculated the quantitative estimate of drug-likeness 
(QED) values for the compounds in the four tasks, and 
plotted their area under curves in Fig. 4b to estimate the 
similarity of the compounds, with larger overlap areas 
reflecting higher compound similarity across the four 
tasks. QED value is a quantitative metric for assessment 
of drug-likeness ranging from 0 (all properties unfa-
vorable) to 1 (all properties favorable) [50]. It could be 
expected that the activity values of all four tasks were 

moderately correlated and the four compound datasets 
were resembled as well.

Optimization of MTATFP model
The prediction performance of our multitask attentive 
FP (MTATFP) model on the validation dataset was sum-
marized in Additional file 1: Figure S1. In this case, since 
the size of our overall dataset was relatively small com-
pared to other tasks used for deep learning, and GNN 
was prone to overfitting [51], we only set two Attentive 
FP layers and one pooling layer here, and the number of 
neurons was set to the default value of 300. In the light 
of the model’s parameter search results, we noticed 
that batch size and dropout had a relatively slight effect 
on the model, while the learning rate had a significant 
effect. Models with lower values of learning rate always 
produce weak predictive power. A large learning rate 
might cause big prediction fluctuations without learning 
enough knowledge, while a model with a small learning 
rate might demand excessive updates to achieve conver-
gence. The best set of hyper-parameters for each category 
of tasks obtained from the previous random searching 
process was used to train the most predictive model. 
Ultimately, we trained models for 217 epochs (accord-
ing to early stopping state strategy illustrated in Addi-
tional file 1: Figure S2) with a batch size of 256 samples, 
and employed the Adam [52] optimizer with a learning 
rate of 1e-3 and a weight decay of 1e-6. Parameters in the 
network were updated using MSELoss which measure 
mean-squared error as loss functions of the regression 
tasks. The top performing model had an R2 value over 0.8 

Fig. 2  The box-whiskers plots concerning experimental pIC50 values 
of four JAK datasets (JAK1, JAK2, JAK3 and TYK2)

Fig. 3  Three-dimensional spatial scatter plots of the chemical spatial 
distributions on the MACCS fingerprint features for the training set, 
validation set and test set, represented as the first three principal 
components of the PCA of the small molecular JAK inhibitors
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and the model was selected for the next step in the test 
set evaluation.

Model performance
MTATFP models showed predictive capabilities accord-
ing to Fig. 5 and Table 1, with the global R2 values of 0.96, 
0.79 and 0.78 calculated on the training, validation and 
test sets, respectively. Additionally, the global MAE val-
ues of those three datasets (training, validation and test 
sets) are 0.15, 0.37 and 0.37 (Table  2). The correspond-
ing global RMSE values are 0.23, 0.51 and 0.52 (Table 3). 
Distributed to every individual task in our model, the 
R2 values in training set from 0.20 to 0.27. And in vali-
dation set and test set the R2 values ranged from 0.75 to 
0.82, the MAE values ranged from 0.30 to 0.42 and the 
RMSE values ranged from 0.42 to 0.58. These values indi-
cated that the difficulty of the training task varies. The 
MTATFP regression model was further validated by the 
Y-randomization test (Fig. 6), and the global R2 values of 
the randomized model was apparently lower than those 
of the non-randomized model, which demonstrated that 
the given regression model is robust and not the outcome 
of chance. Although none of the tasks showed perfect 
predictive power and the performance on small datasets 
were worse in some extends, the results are remarkably 
better than random (proved by Y-Randomization Test), 
indicating that meaningful molecular graph features 
related to target endpoints were identified during the 
learning process.

The tables (Tables 1, 2 and 3) also displayed the assess-
ment results of all single-task models based on Attentive 
FP (STATFP) networks or LightGBM algorithm. Obvi-
ously, studies on four homologous proteins’ IC50 pre-
dictions have shown that multitask learning had great 
advantages over single-task learning and outperformed 

other methods on both validation and test set. In the case 
of STATFP models that utilized the same framework, the 
global R2 for the validation and test set of the MTATFP 
model improved by 5% and 7%, the global RMSE 
decreased by 10% and 8%, and the global MAE decreased 
by 8% and 8%, respectively. Observing the performance 
of individual tasks in the multitask model, it had signifi-
cantly improved the model performance on the small 
data of JAK3 and TYK2, while keeping the model valid-
ity constant or even slightly enhancing on the large data 
set of JAK1 and JAK2 (probably learned the molecular 
graph knowledge from other tasks), which was in accord-
ance with our anticipations of employing the multi-
task learning strategy. Versus deep learning methods, 
the LightGBM method based on molecular descriptors 
or fingerprints seemed to have close predictive abili-
ties on the small data of JAK3 and TYK2, yet the similar 
results were not achieved in larger data set. All in all, the 
MTATFP model yielded the best performance in all vali-
dation and test evaluations, producing the most accurate 
predictions with better generalizability.

Comparison with other studies on JAK selectivity
Recently, Li and colleagues proposed a multitask classi-
fication model of 391 kinases including JAK2, JAK3 and 
TYK2 to distinguish inhibitors from non-inhibitors and 
achieved good performance [53]. But the classification 
models did not present accurate bioactivity data and were 
somewhat insufficient to judge whether a compound was 
selective or not. For instance, some compounds are selec-
tive, where their IC50 values for individual kinase isoforms 
are all below the threshold of 1 μM, but in fact they have 
a difference multiplicity greater than twice. Or, molecules 
determined to be selective by the classification model, 
some of which have IC50 values around the threshold, are 

Fig. 4  Relevance analysis on individual endpoint values and input features for the full data. a Heat map showing the correlation among the pIC50 
values of the four JAK subtype small molecular inhibitors, darker colors indicated higher relevance. b The QED fraction distributions of the small 
molecules in the four tasks are plotted, the more overlapped regions the more compatible the compounds are
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indeed non-selective compounds. To facilitate the com-
parison with Li’s work, we maintained the evaluation 
metrics and divided the predicted IC50 values into active 
and inactive compounds at 1  μM to assess their AUC 
values. For Davis’s datasets, a Kd values over 1  μM was 
defined as signifying inactivity. All thresholds were set in 
consistent with the literature and the results of the com-
parisons were represented in Fig. 7. It could be seen that 
our MTATFP model had similar performance compared 
to Li’s MTDNN model in the discriminations of inhibi-
tors for the respective JAK members. Besides, we could 
extraordinarily provide specific bioactivity values IC50 on 
top of that. Although our model performed slightly worse 
on several data sets, this was likely associated with the 

chemical space of the data set with certain compounds 
occurring outside the AD of the model (shown in Addi-
tional file 1: Figure S3). Overall, MTATFP still exhibited 
impressive performance on these external datasets, and it 
would be possible to further improve the generalizability 
of the model by expanding the size of the training dataset 
and increasing the diversity of compounds.

In addition, there have been a few other ligand-based 
VS approaches like other machine learning algorithms 
and three-dimensional quantitative structure–activity 
relationship (3D-QSAR) analyses used in the discovery of 
JAK inhibitors as well, however they only consider drug-
likeness but not drug-selectivity since these efforts only 
gave modeling analysis of IC50 values for a specific JAK 

Fig. 5  Linear scatter plot of the training, validation and test set in our MTATFP model. The closer the scatter points are to the straight line, the better 
the approximation of the model predictions to the true values is
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isomer. Yang and colleagues constructed three groups of 
regression models based on fingerprints and XGBoost 
methods to acquire highly potent JAK2 kinase inhibi-
tors [54], the results were shown in Table 1. In contrast 
to their work, our model exhibited identical predictive 
capability for JAK2 active small molecules and at the par-
allel it was able to present the IC50 values of compounds 
for the other three isoforms with selectivity analysis. The 
most important thing is that our model breaks the black 
box by visualizing the atomic weights for model interpre-
tations rather than just giving some prediction outputs. 
And compared with several 3D-QSAR works for JAK 
selectivity studies [55–58] which collected only tens or 
hundreds of compounds to model, our model has a wider 
AD and higher robustness because of the broader chemi-
cal space of the four datasets.

Atom visualization and interpretation
In this part of the study, we defined atoms with weight 
score above the average as key atoms, and molecular 
fragments with multiple key atoms were considered as 

Table 1  R2 performance of each model on the four tasks

It showed that the performance of various models (deep learning methods 
based on MTATFP or STATFP strategies and LightGBM-based machine learning 
approaches) on each task. The closer the R2 value was to 1, the better the model 
performed
a is the best results in Yang’s work. Although each dataset could not be 
guaranteed to be the identical, our multitasking model has obvious advantages 
as well

Methods Training set Validation set Test set

Global MTATFP 0.96 0.79 0.78

STATFP 0.93 0.75 0.73

LightGBM_MD 0.93 0.69 0.70

LightGBM_ECFP4 0.91 0.71 0.70

JAK1 MTATFP 0.95 0.80 0.82

STATFP 0.95 0.80 0.80

LightGBM_MD 0.91 0.75 0.72

LightGBM_ECFP4 0.91 0.75 0.76

JAK2 MTATFP 0.97 0.83 0.81

STATFP 0.96 0.82 0.8

LightGBM_MD 0.94 0.70 0.75

LightGBM_ECFP4 0.92 0.75 0.71

Xgboosta 0.97a 0.80a 0.80a

JAK3 MTATFP 0.97 0.77 0.76

STATFP 0.91 0.68 0.70

LightGBM_MD 0.92 0.69 0.70

LightGBM_ECFP4 0.90 0.69 0.73

TYK2 MTATFP 0.94 0.76 0.75

STATFP 0.91 0.69 0.63

LightGBM_MD 0.93 0.61 0.62

LightGBM_ECFP4 0.91 0.65 0.61

Table 2  MAE performance of each model on the four tasks

The lower the MAE value was, the better the model performed

Methods Training set Validation set Test set

Global MTATFP 0.15 0.37 0.37

STATFP 0.21 0.40 0.40

LightGBM_MD 0.22 0.45 0.44

LightGBM_ECFP4 0.23 0.43 0.43

JAK1 MTATFP 0.19 0.37 0.39

STATFP 0.18 0.36 0.39

LightGBM_MD 0.25 0.45 0.44

LightGBM_ECFP4 0.24 0.42 0.44

JAK2 MTATFP 0.18 0.38 0.38

STATFP 0.21 0.40 0.40

LightGBM_MD 0.22 0.48 0.47

LightGBM_ECFP4 0.25 0.46 0.46

JAK3 MTATFP 0.16 0.42 0.41

STATFP 0.27 0.49 0.47

LightGBM_MD 0.24 0.49 0.48

LightGBM_ECFP4 0.26 0.48 0.45

TYK2 MTATFP 0.15 0.30 0.30

STATFP 0.19 0.34 0.35

LightGBM_MD 0.15 0.36 0.38

LightGBM_ECFP4 0.18 0.37 0.37

Table 3  RMSE performance of each model on the four tasks

The lower the RMSE value was, the better the model performed

Methods Training set Validation set Test set

Global MTATFP 0.23 0.51 0.52

STATFP 0.29 0.56 0.57

LightGBM_MD 0.30 0.62 0.61

LightGBM_ECFP4 0.33 0.60 0.60

JAK1 MTATFP 0.27 0.52 0.53

STATFP 0.27 0.51 0.55

LightGBM_MD 0.34 0.61 0.60

LightGBM_ECFP4 0.35 0.57 0.60

JAK2 MTATFP 0.26 0.51 0.54

STATFP 0.28 0.55 0.56

LightGBM_MD 0.31 0.66 0.62

LightGBM_ECFP4 0.36 0.63 0.64

JAK3 MTATFP 0.21 0.58 0.58

STATFP 0.36 0.70 0.66

LightGBM_MD 0.33 0.67 0.65

LightGBM_ECFP4 0.38 0.66 0.62

TYK2 MTATFP 0.20 0.44 0.42

STATFP 0.26 0.49 0.52

LightGBM_MD 0.21 0.52 0.55

LightGBM_ECFP4 0.25 0.52 0.52
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key substructures. Altering a few key atoms or substruc-
tures might have a meaningful impact on the predicted 
outcomes of four tasks. To estimate whether the atom 
weightings were statistically significant, we introduced 
a rank sum test [59]. Two sets of atom weightings were 
tabulated as A and B. A was the atom weightings in the 
substructure that we deemed important, and B was the 
weightings of the remaining atoms in that molecule. In a 
rank sum test, if the hypothesis that A is much greater 

than B is valid, the p-value is less than 0.05 which means 
the atoms in A are much more important than B. To 
facilitate the presentation of those findings, the atom 
weightings of each molecule in JAK inhibitor series were 
regularized and visualized. Three chosen areas were 
modified to heighten the selectivity of JAK1 inhibitors 
in Park’s works (shown in Fig. 8), some of which would 
be interpreted by our trained multitask models. We pre-
dicted the IC50 values of the lead compound 17a for the 
four JAK isoforms and calculated its atom weights. As 
shown in Fig.  8, the cyclohexane in the B part showed 
a dark green color, which we assumed to be a key sub-
structure, and performed a rank sum test on the atoms 
in it and found that the hypothesis held and the aver-
age atomic weight (0.63) of this substructure was also 
remarkably higher than that (0.41) of the remaining 
atoms, so we determined that the cyclohexyl amine is a 
key substructure. Although the average atom weights 
of the A and C parts was a bit lower than the total atom 
weight (0.46), they were also potential to affect the final 
outcomes due to the presence of some key atoms, which 
was consistent with the descriptions in the literature and 
we could utilize these for drug design.

The JAK1 selective inhibitors were designed by fine-
tuning the substituents or scaffolds and observing the 
deviation of the four IC50 values. Methyl amide, cyclo-
propyl amide and cyclopentyl amides were compared in 
the A part, and it was found that the amide bonds of all 
three compounds (17c, 17i and 17  k, shown in Fig.  9) 
were displayed in dark color. However, the average atom 
weights of A part decreased as the amide volume became 
bulkier and the binding affinity of the compounds to JAK 
changed at the same time, suggesting that amide might 
be a JAK isomer selective switch especially the methyl 
amide due to it had the highest atom weight and the 
greatest influence. Our model predictions were in agree-
ment with experimental results in the literature [39]. 
We further investigated the effect of the size and shape 
of the cyclic amine group in the B part on the selectivity 
of JAK by determining three basic scaffolds and simul-
taneously ensuring that the other substituents were the 
same, including 3-aminopyrrolidine (19c), piperidin-
4-ylmethyl (18c) and 4-aminoazepane (30c) (presented 
in Fig.  9). The results showed that the inhibitory activ-
ity against JAK1 was slightly increased but selectivity 
decreased obviously with the size of the cyclic amine 
group, which also supported that the cyclic amine group 
was a key substructure in concordance with the litera-
ture descriptions [39]. At next stage, we were interested 
in investigating whether our model could correctly cap-
ture the stereochemistry of the compounds and whether 
the cis–trans isomers of the compounds were correlated 
with the selectivity of the JAK inhibitors. According to 

Fig. 6  Box plots of the results of ten times Y randomization tests on 
the training and test sets. The closer the R2 value was to 1, the better 
the model performed

Fig. 7  Histograms of AUC comparison between MTATFP model 
and MTDNN model. a The model performance in Davis’s datasets 
including JAK2, JAK3 and TYK2. b The model performance in 
Anastassiadis’s datasets. The closer the AUC value was to 1, the better 
the model performed
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the literature [39], 38a was more selective for JAK1 than 
JAK2, JAK3 and TYK2, respectively, while the enanti-
omer 38b has a higher IC50 value for JAK1 which was far 
outweighed by 38a. Under our calculations, although our 
model had some variations in the predictions for 38b, 
the overall tendency was the consistency with the experi-
mental results, and the weights of the atoms near one of 
the E bonds were changed to some extent, which indi-
cated that our model have learned certain knowledge of 
chemical space.

Analysis of applicability domain
The AD setting can avoid over-prediction bias arising 
from the significant characteristic differences between 
test and training chemicals, which means that it is neces-
sary to evaluate the AD of a model to identify the reli-
ability of the prediction for different molecules [60]. 
By calculating the distance matrix, we obtained dave of 
0.1262 and θ of 0.2522. Next, in order to find the best AD, 
we set different k values and Z values, finally received 
the corresponding threshold DT and the corresponding 
number of OD compounds, which were given in Table 4. 
As observed, the consequent increase in Z values and 
decrease in k resulted in an accompanying growth of DT 
and a constant decline in the compounds outside the AD. 

Subsequently, we used our MTATFP model to predict 
the ID and OD compounds in the test set at different val-
ues of k and DT , and the performance of each data set 
was shown in Table  5. By comparing and analyzing the 
results, we noticed that the overall evaluation metrics of 
the model were all improved when DT = 0.06315 (k = 3, 
Z=−  0.25) (compared to the complete test set without 
removing the OD compounds) and were able to distin-
guish to the maximum extent between ID and OD com-
pounds (the prediction performance of ID compounds 
was significantly better than that of OD compounds). The 
findings indicated that our defined AD is appropriate for 
the proposed MTATFP model and could allow the model 
to serve more accurately in practical applications. 

In addition, it is worth to notice that our MTATFP 
model not only has an excellent prediction ability for 
ID compounds (R2 = 0.79, MAE = 0.36, RMSE = 0.51), 
but also has a good prediction performance for OD 
compounds (R2 = 0.72, MAE = 0.48, RMSE = 0.63). We 
believed that this phenomenon could reflect the advan-
tage of a multitask learning strategy, which allows sub-
tasks to learn from each other. Even if a compound is 
missing information from one task,  it will still be deter-
mined by stealing knowledge from other tasks, which 

Fig. 8  The atom weight visualization of the lead compound 17a. Three areas (A, B, C) were chosen to be modified for the selective JAK1 inhibitor 
design. Atom_mean represented the average of the atom weights in the highlighted region in red and the deeper the color in the graph is, the 
higher the value of the atom weights is. The table in the figure exhibited some of the atom weight values with their atom indexes and the predicted 
IC50 values
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Fig. 9  Several examples of atom weight visualization for JAK inhibitor small molecules
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may correspondingly increase the fault tolerance of the 
model.

Conclusions
Designing selective JAK inhibitors has been a daunting 
challenge owing to the extremely high homology among 
individual isoforms. Although traditional QSAR models 
tend to have perfect predictive power, there is still no 

guarantee that the predictions could guide selective drug 
design. Here, we constructed an MTATFP regression 
model to predict the pIC50 values of small molecules to 
four JAK isoforms and got atom weights to identify key 
atoms and substructures important to the target selectiv-
ity. Then we used these key substructures to fine-tune the 
compounds, and further defined the applicability domain 
of the model. The results indicated that the constructed 
model could effectively learn the interactions between 
small molecule ligands, each JAK isoform and the key 
substructures recognized can correctly guide JAK-selec-
tive inhibitor design. The multitask learning strategy also 
significantly improved the model performance for small 
data sets, giving an extended error tolerance. Overall, our 
JAK-selective virtual screening platform offers the advan-
tages of speed, accuracy and interpretability for quantita-
tive prediction of selective JAK inhibitors.

Table 4  The amounts of compounds outside the applicability 
domain in the test set at different Z and k values

Z − 0.25 − 0.2 − 0.15 − 0.1

k

3 130 92 67 43

4 176 117 87 51

5 226 150 114 69

DT 0.06315 0.07576 0.08837 0.1010

Table 5  The evaluation performance of compounds both inside domain (ID) and outside the domain (OD) in the test set at different Z 
and k values

R2 MAE RMSE

ID OD ID OD ID OD

k3 Z\0.25 0.79 0.72 0.36 0.48 0.51 0.63

k4 Z\0.25 0.79 0.76 0.36 0.44 0.51 0.59

k5 Z\0.25 0.79 0.74 0.36 0.44 0.50 0.59

k3 Z\0.2 0.79 0.73 0.37 0.45 0.51 0.59

k4 Z\0.2 0.79 0.74 0.36 0.45 0.51 0.59

k5 Z\0.2 0.79 0.75 0.36 0.44 0.51 0.59

k3 Z\0.15 0.79 0.70 0.37 0.45 0.51 0.57

k4 Z\0.15 0.78 0.76 0.37 0.45 0.51 0.58

k5 Z\0.15 0.79 0.75 0.36 0.44 0.51 0.58

k3 Z\0.1 0.78 0.74 0.37 0.44 0.52 0.57

k4 Z\0.1 0.78 0.77 0.37 0.44 0.52 0.57

k5 Z\0.1 0.79 0.75 0.37 0.45 0.51 0.59
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