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Abstract: An amperometric magnetoimmunosensor for the determination of human p53 protein
is described in this work using a sandwich configuration involving the covalent immobilization
of a specific capture antibody onto activated carboxylic-modified magnetic beads (HOOC-MBs)
and incubation of the modified MBs with a mixture of the target protein and horseradish
peroxidase-labeled antibody (HRP-anti-p53). The resulting modified MBs are captured by a
magnet placed under the surface of a disposable carbon screen-printed electrode (SPCE) and
the amperometric responses are measured at −0.20 V (vs. an Ag pseudo-reference electrode),
upon addition of hydroquinone (HQ) as a redox mediator and H2O2 as the enzyme substrate.
The magnetoimmunosensing platform was successfully applied for the detection of p53 protein in
different cell lysates without any matrix effect after a simple sample dilution. The results correlated
accurately with those provided by a commercial ELISA kit, thus confirming the immunosensor
as an attractive alternative for rapid and simple determination of this protein using portable and
affordable instrumentation.

Keywords: human p53; magnetic microcarriers; screen-printed electrodes; amperometric
immunosensor; cell lysates

1. Introduction

Following heart disease, cancer is one of the main occurring diseases worldwide, the number
of new cases is expected to rise by about 70% in the next two decades [1–3]. Tumor biomarkers are
substances or processes associated with cancer whose levels in biological fluids or body tissues can
provide essential information for clinical cancer screening and early cancer detection [4]. To reduce
and control cancer, implementation of evidence-based strategies for its prevention, early detection and
management of patients is needed. Although nowadays quite a number of cancer-related proteins and
biomarkers have been identified, to be clinically useful simple and reproducible analysis procedures
need to be developed for routine use. The implementation of simple, accurate, and low-cost detection
systems for clinical biomarkers ideated to be used at home or in the field for personal healthcare and
diagnostic is, in fact, one of the main objectives in the clinical research field. P53 is a DNA binding
protein known in cancer biology as a critical tumor suppressor and transcription factor, proposed as
the master regulator of cell fate and regarded as “the guardian of the genome” [5–7]. It is considered
to play a crucial role in the regulation of the cell cycle, DNA repair, and programmed cell death,
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inhibiting the growth of tumor cells through eliciting either cell-cycle arrest or apoptosis. In cells with
disruption in cell proliferation, p53 is activated and bound to the specific DNA sequences and, as a
result, the uncontrolled cell growth is stopped or the damaged DNA is eliminated [4]. Loss of p53
function results in induction of tumors and gene mutation, which is caused by the conformational
changes in the p53 protein structure [3,4,7,8]. Mutations of the p53 gene are the most common genetic
alterations in human cancers. These mutations lead to the accumulation of the mutated p53 protein,
which then may fail to bind the consensus double-stranded DNA and lose the binding activity to its
downstream genes [2,9]. When tumor cells die and disintegrate, p53 protein is released and enters into
the circulation. A significant increase in the serum p53 protein level in a variety of human cancers has
been reported [3]. In fact, more than 50% of human cancers are related to the mutated p53, resulting
in the increase of clinical possibilities for both diagnosis and treatment. Consequently, the accurate
determination of p53 protein has become a great method for early diagnosis and prognosis of cancers.

Different methodologies have been described for the determination of thre p53 protein,
some of them based on voluminous non-portable instrumentation that also require highly-skilled
personnel, such as high-performance liquid chromatography coupled to matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry [10], or being time-consuming, such as
the popular enzyme-linked immunosorbent assay (ELISA) [11]. P53 protein has also been
determined by surface plasmon resonance (SPR) [5], impedance measurements [12,13], or
electrochemiluminiscence [3]. While SPR responses are affected by film uniformity and
surface conditions, the electrochemiluminiscence assay involves complex nanostructures, such as
streptavidin-modified gold nanoparticles (AuNPs)/thiolated graphene oxide nanocomposite as an
electrode modifier where the biotinylated capture antibody was immobilized, and a Ru-silica@Au
nanocomposite-labeled secondary antibody to amplify the measured signals.

Electrochemical immunosensors have contributed extensively to the implementation of new
methodologies requiring simple, portable, and low-cost instrumentation ideally suited for future
point-of-care (POC) testing systems. In fact, a few electrochemical immunosensors have been
reported for the detection of p53 protein. Xie et al. [9] reported a graphene-based immunosensor
for the electrochemical quantification of phosphorylated p53 on serine 15 where the biotinylated
detector antibody was labeled with streptavidin-peroxidase and the electrocatalytic response to
the reduction of hydrogen peroxide in the presence of thionine by differential pulse voltammetry
(DPV) was used to monitor the immunocomplex formation. Additionally, Du et al. [7] reported
the detection of phosphorylated p53 at Ser392 using a secondary antibody modified with graphene
oxide as a nanocarrier of horseradish peroxidase (HRP) and AuNPs-modified screen-printed carbon
electrodes (SPCEs) modified with a self-assembled monolayer of N-hydroxysuccinimide activated
hexa(ethylene glycol) undecane thiol for attachment of the capture antibodies. In this case, square
wave voltammetry (SWV) was used for monitoring the immunocomplex formation based on the
thionine/hydrogen peroxide system. The same group proposed a multiplexed electrochemical
immunoassay of phosphorylated p53 proteins using gold nanorods (AuNRs) as nanocarriers for
co-immobilization of HRP and the detector antibody, and gold working electrodes modified with
NHS to incubate the capture antibody [8]. Carbon nanospheres and apoferritin protein cage (iron
storage protein) nanoparticles were used by Chen et al. [14] for signal amplification in a sandwich
immunocomplex for phosphorylated p53 at serine 15. Magnetic particles (MBs) were used to
immobilize the capture antibodies and the lead ions liberated from the Pb3(PO4)2 core within
the apoferritin shell were detected by stripping SWV at an in situ plated Bi film formed on a
SPCE. Very recently, Afsharan et al. [4] have proposed the detection of p53 protein sandwiched
between a biotinylated capture antibody immobilized on the surface of a GCE using thiolated
graphene oxide/streptavidin-AuNPs and a secondary antibody labeled with HRP. The electrocatalytic
reduction of thionine in the presence of hydrogen peroxide was, again, used in the monitoring of the
immunocomplex formation. Although, as it will be commented later, all of these approaches showed
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good sensitivities, they make use of complex nanostructures which need laborious and time-consuming
procedures to be implemented.

In this paper, an amperometric immunosensor for the determination of p53 protein in cell lysates
is described making use of the well-known excellent characteristics of magnetic microparticles for
the selective, rapid, easy, and efficient capture of biomolecules from complex samples. A simple
sandwich configuration is proposed based on the use of an HRP-labeled detector antibody and the
hydroquinone/hydrogen peroxide (HQ/H2O2) system to detect the captured immunocomplexes
on SPCEs.

2. Materials and Methods

2.1. Apparatus and Electrodes

Amperometric measurements were performed with a CHI812B potentiostat (CH Instruments,
Austin, TX, USA) controlled by software CHI812B. SPCEs (DRP-110, DropSens, Llanera (Asturias),
Spain), consisting of a 4-mm diameter carbon working electrode, a carbon counter electrode, and
a Ag pseudo-reference electrode, were employed as transducers and a specific cable connector
(DRP-CAC also from DropSens, S.L.) acted as an interface between the SPCEs and the potentiostat.
All measurements were carried out at room temperature.

A Vortex Bunsen AGT-9 (Velp Scientifica, Usmate, MB, Italy) for the homogenization of the
solutions, a Thermomixer MT100 constant temperature incubator shaker (Universal Labortechnik,
Leipzig, Germany), a magnetic separator DynaMag™-2 Magnet (ThermoFisher Scientific, Waltham,
MA, USA) and a Magellan V 7.1 (TECAN, Männedorf, Switzerland) ELISA plate reader were also
employed. Capture of the modified MBs onto the SPCE surface was controlled by placing it in a
homemade Teflon casing with an embedded neodymium magnet (AIMAN GZ) [15].

2.2. Reagents and Solutions

All reagents were of the highest available grade. Carboxylic acid-modified MBs (HOOC-MBs,
2.7 µm·Ø, 10 mg·mL−1, DynabeadsTM M-270 Carboxylic Acid, Cat. No. 14305D) were purchased from
Invitrogen-Thermo Fisher (Waltham, MA, USA).

N-terminal Glutathione S-Transferase (GST)-tagged recombinant full length human p53 protein,
expressed in Escherichia coli (EMD Millipore Corporation, Darmstadt, Germany, Catalog #14-865),
mouse anti-p53 monoclonal antibody (used as capture antibody, AbC, from BD Transduction
Laboratories™, Franklin Lakes, NJ, USA, ref. 610183), and mouse anti-p53 monoclonal antibody
conjugated to HRP (used as detector antibody, AbD, from NOVUS BIOLOGICALS, Abingdon Oxon,
UK, NBP2-34434H) were employed. A human total p53 DuoSet IC ELISA (from R and D Systems, Inc.,
Minnneapolis, MN, USA, Catalog Number DYC1043) was used to perform the ELISA assay.

Sodium chloride, potassium chloride, sodium di-hydrogen phosphate, di-sodium hydrogen
phosphate, sulfuric acid, and Tris-hydroxymethyl aminomethane-HCl (Tris-HCl) were purchased from
Scharlab (Barcelona, Spain). N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) was purchased
from Acros Organics (Thermo Fisher, Waltham, MA, USA). N-hydroxysulfosuccinimide (Sulfo-NHS),
ethanolamine, HQ, Tween® 20 and hydrogen peroxide (30%, w/v), sodium monohydrogen carbonate
(≥99.7%), and disodium carbonate (≥99.0%) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Ethylenediaminetetraacetic acid (EDTA, Merck, Madrid, Spain), 2-(N-morpholino)ethanesulfonic acid
(MES, Gerbu Biotechnik, Heidelberg, Germany, GmbH), and a commercial blocker casein solution
(a ready-to-use, PBS solution of 1% w/v purified casein, Thermo Scientific, Thermo Fisher, Waltham,
MA, USA) were used. Human hemoglobin (Sigma-Aldrich, St. Louis, MO, USA, H7379), IgG from
human serum (Sigma-Aldrich, St. Louis, MO, USA, I2511), bovine serum albumin (BSA Type VH,
Gerbu Biotechnik, Heidelberg, Germany, GmbH), recombinant human ErbB2 protein (Sino Biological
Inc., North Wales, PA, USA, SEKA10004), recombinant human progesterone receptor (PR, R&D Systems
Inc., Minneapolis, MN, USA, in Human Total Progesterone R/NR3C3 DuoSet IC ELISA, ref. DYC5415),
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recombinant human estrogen receptor α (ERα, R and D Systems Inc., Minneapolis, MN, USA in
Human Total ER alpha/NR3A1 DuoSet IC ELISA, ref. DYC5715) and recombinant human TNFα
protein (in TNF-alpha EIA Kit, ELISA, RUO, 12 × 8 wells, Beckman Coulter, Alcobendas, Madrid,
Spain, ref. IM1121) were also used for the selectivity study.

The following solutions, prepared with water from a Millipore Milli-Q purification system
(18.2 MΩ·cm), were employed: 0.05 M phosphate buffer, pH 6.0; 0.1 M phosphate buffer, pH 8.0;
phosphate-buffered saline (PBS) consisting of 0.01 M phosphate buffer solution containing 137 mM
NaCl and 2.7 mM KCl, pH 7.5; 0.025 M MES buffer, pH 5.0; 0.01 M sodium phosphate buffer consisting
of PBS with 0.05% Tween® 20 (pH 7.5, PBST) and 0.1 M Tris-HCl buffer, pH 7.2.

Activation of the HOOC-MBs and blocking steps were carried out using an EDC/sulfo-NHS
mixture solution (50 mg·mL−1 each in MES buffer, pH 5.0) and a 1 M ethanolamine solution (prepared
in 0.1 M phosphate buffer solution, pH 8.0), respectively.

2.3. MBs Functionalization and Sandwich Immunoassay

Unless otherwise stated, the MBs were placed in the magnetic separator and concentrated for 3 min
before removing the supernatant after all of the involved steps. All incubation and washing steps were
performed at 25 ◦C by incubating the MBs in 25 and 50 µL of the corresponding solution, respectively.

The functionalization of MBs was performed as follows: a 3 µL-aliquot of HOOC-MBs was
transferred into a 1.5 mL Eppendorf® tube and washed twice for 10 min with MES buffer at 25 ◦C and
under continuous stirring (950 rpm). Surface MBs carboxyl groups were activated by incubation in
25 µL of a freshly EDC/sulfo-NHS solution (50 mg·mL−1 each prepared in MES buffer, pH 5.0) during
35 min at 25 ◦C (950 rpm). Subsequently, MBs were washed twice with MES buffer and incubated
for 30 min (950 rpm) in 25 µL of 5 µg·mL−1 AbC solution (prepared in MES buffer). Thereafter, the
AbC-MBs were washed twice with MES buffer (pH 5.0) and incubated in a 1 M ethanolamine solution
(prepared in 0.1 M phosphate buffer, pH 8.0) for 15 min at 950 rpm in order to block the remaining
unreacted groups on the surface of the activated MBs. The MBs were washed by incubating 15 min
with the blocker casein solution (25 ◦C, 950 rpm) and stored at 4 ◦C in 50 µL of filtered PBS until use.

The sandwich immunoassay was carried out by re-suspending the AbC-MBs in 25 µL of a mixture
solution containing a variable concentration of the target protein (or the sample to be analyzed)
and 5000 diluted HRP-AbD (prepared in blocker casein solution) and incubating for 30 min (25 ◦C,
950 rpm) in order to form the sandwich immunocomplexes (AbC-p53-HRP-AbD) onto the MBs surface.
The modified MBs were then washed twice with PBST solution and re-suspended in 50 µL 0.05 M
phosphate buffer (pH 6.0) to perform the amperometric measurements.

2.4. Amperometric Detection

Amperometric measurements were carried out by pipetting the 50 µL of the modified MB
suspension on the working electrode surface of the SPCE, which was previously positioned horizontally
on a homemade Teflon casing with a neodymium magnet encapsulated. Then, the SPCE/magnet
holding block ensemble was immersed into an electrochemical cell containing 10 mL 0.05 M phosphate
buffer of pH 6.0 and 1.0 mM HQ (prepared just before performing the electrochemical measurement).
Amperometry in stirred solutions was made by applying a detection potential of −0.20 V (vs. the
Ag pseudo-reference electrode). After baseline stabilization for 60 s, 50 µL of a 0.1 M H2O2 solution
were added to the electrochemical cell and the current recorded until the steady-state current was
reached (approx. 100 s). The amperometric signals given through the manuscript corresponded to the
difference between the steady-state and the background currents.

2.5. Cell Culture and Lysate Production

KM12SM and KM12C cell lines obtained from I. Fidler’s laboratory (MD Anderson Cancer Center,
Houston, TX, USA), and SW480, SW620, MCF-7, MDA-MB-436, and BxPC3 cell lines obtained from
the American Type Culture Collection (ATCC, Teddington, Middlesex TW11 0LY, UK) cell repository,
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were grown according to established protocols in DMEM (Dulbecco’s modified Eagle’s medium),
supplemented with 10% fetal bovine serum, penicillin and streptomycin, and 2.5 mM L-glutamine
(GIBCO-Invitrogen, Carlsbad, CA, USA) supplemented with recommended nutrients. For cell lysis,
cells were washed with cold PBS, incubated for 5 min with PBS 4 mM EDTA to detach them from the
plates, centrifuged at 1200 rpm to remove PBS 4 mM EDTA, and subjected to the addition of 1 mL cold
lysis buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS)
supplemented with 1X protease inhibitor cocktail, 1 mM phenylmethylsulfonyl fluoride, and 1 mM
activated sodium orthovanadate. Then, the cells were incubated on ice for 10 min, passed through a
25 gauge needle attached on a 1 mL syringe 10 times and transferred to a microcentrifuge tube. The cell
lysate was then clarified by centrifuging at 13,200 rpm at 4 ◦C for 15 min. Total protein concentration
was determined using a BCA protein assay kit (Pierce, Rockford, IL, USA) and the lysates stored at
−80 ◦C until further use.

2.6. Sodium Dodecyl Sulfate-Polyacrylamide (SDS-PAGE) Immunodetection Analysis

Cancer cell lysates (10 µg of each protein extract) were analyzed by 10% SDS-PAGE with
Coomassie Blue R-250 staining (Sigma-Aldrich, St. Louis, MO, USA).

For immunodetection, 10 µg of each protein extract were run in parallel using 10% SDS-PAGE.
Then, proteins were transferred to nitrocellulose membranes (Hybond-C extra) using semi-dry transfer
(Bio-Rad, Hercules, CA, USA) [16,17]. After blocking, membranes were incubated at optimized
dilutions with alternatively antiPR monoclonal antibody (R&D Systems, Minneapolis, MN, USA) or
anti-tubulin monoclonal antibody (Sigma) as loading control followed by incubation with SAv-HRP
(R&D Systems, Minneapolis, MN, USA) at 1:1000 dilution or HRP-anti-mouse IgG (Pierce, Thermo
Fisher Scientific, Waltham, MA, USA) at 1:5000 dilution, respectively. Specific reactive proteins were
visualized with SuperSignal West Pico Maximum Sensitivity Substrate (Pierce, Thermo Fisher Scientific,
Waltham, MA, USA).

2.7. Analysis of Real Samples

The developed immunosensor was employed for the determination of the target protein in
cell lysates containing different endogenous concentrations of p53 protein. The antiPR-MBs were
re-suspended in 25 µL of blocker casein solution supplemented with 2.0 µg of cell lysates and
5000 diluted HRP-AbD. The protocols described in Sections 2.3 and 2.4 were followed to form the
sandwich immunocomplexes and perform the amperometric detection. Since no matrix effect was
apparent under the mentioned conditions, determination of p53 in cell lysates was carried out by
interpolation of the measured amperometric signals into the calibration graph constructed with
standards. The same lysate samples (1.0 µg, samples SW480 and MDA-MB-436, and 2.5 µg of each
other sample) were also analyzed by an ELISA method involving the use of the same immunoreagents.

3. Results and Discussion

The fundamentals of the immunosensor design and the involved electrochemical transduction
are schematically displayed in Figure 1. Using this strategy, all immunoreactions occurred on
the MB surface while the SPCE acted just as the electrochemical transducer. Briefly, the specific
capture antibody (AbC) was covalently immobilized onto HOOC-MBs activated previously with an
EDC/sulfo-NHS solution. After a blocking protocol with ethanolamine of the unreacted activated
groups on the MBs and washing with the casein blocker solution, AbC-MBs were incubated with
the samples supplemented with the HRP-labelled detector antibody (HRP-AbD), the target protein
being sandwiched between the AbC immobilized on the MBs and the HRP-AbD. The as-prepared
MBs, bearing the sandwich immunocomplexes, were captured magnetically on the working electrode
surface by placing the SPCEs on a custom-fabricated magnetic holding block, and the extent of the
biorecognition event was monitored by amperometry in stirred solutions of the reduction current
generated upon H2O2 addition in the presence of HQ.



Biosensors 2016, 6, 56 6 of 14Biosensors 2016, 6, 56  6 of 14 
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human p53 standards with and without AbC immobilized on the MBs. Results showed negligible 
non-specific adsorption of the HRP-AbD, but large non-specific adsorption of the target protein at 
AbC-free MBs. In order to minimize these non-specific signals, 1 M ethanolamine and commercial 
casein solution blocking agents were tested, as well as different blocking protocols (only one 
blocking process either with a 1 M ethanolamine solution or with the commercial casein solution, or 
two successive blocking steps, first with 1 M ethanolamine and then with the casein solution). The 
resulting amperometric measurements (data not shown) showed that the target protein was 
immobilized to the MBs through the AbC only when two successive blocking steps with 1 M 
ethanolamine and the commercial blocker casein solution were performed after the AbC 
immobilization onto the MBs. All other blocking protocols did not avoid significant non-specific 
adsorption of the human p53 protein to the unmodified MBs, thus preventing proper 
implementation of the sandwich configuration. Once the non-specific adsorptions were minimized, 
all of the experimental variables involved in the immunosensor preparation were optimized. The 
criterion of selection adopted for optimization was the largest current ratio between the 
measurements for 100 (signal, S) and 0.0 (blank, B) ng·mL−1 human p53 standard solutions 
(signal-to-blank, S/B, ratio) obtained at −0.20 V (vs. the Ag pseudo-reference electrode). This 
detection potential was previously optimized for the HRP/HQ/H2O2 system [15]. Table 1 
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Figure 1. Schematic illustration of the fundamentals of the magneto-actuated amperometric sandwich
immunosensor developed for human p53 determination (relative sizes of the components are not
drawn to scale).

3.1. Optimization of Experimental Variables

In order to evaluate non-specific binding of the antigen and/or detector antibody on the activated
MBs’ surface, we compared the amperometric responses obtained for 0.0 and 100 ng·mL−1 human p53
standards with and without AbC immobilized on the MBs. Results showed negligible non-specific
adsorption of the HRP-AbD, but large non-specific adsorption of the target protein at AbC-free
MBs. In order to minimize these non-specific signals, 1 M ethanolamine and commercial casein
solution blocking agents were tested, as well as different blocking protocols (only one blocking
process either with a 1 M ethanolamine solution or with the commercial casein solution, or two
successive blocking steps, first with 1 M ethanolamine and then with the casein solution). The resulting
amperometric measurements (data not shown) showed that the target protein was immobilized to
the MBs through the AbC only when two successive blocking steps with 1 M ethanolamine and
the commercial blocker casein solution were performed after the AbC immobilization onto the MBs.
All other blocking protocols did not avoid significant non-specific adsorption of the human p53
protein to the unmodified MBs, thus preventing proper implementation of the sandwich configuration.
Once the non-specific adsorptions were minimized, all of the experimental variables involved in the
immunosensor preparation were optimized. The criterion of selection adopted for optimization was the
largest current ratio between the measurements for 100 (signal, S) and 0.0 (blank, B) ng·mL−1 human
p53 standard solutions (signal-to-blank, S/B, ratio) obtained at −0.20 V (vs. the Ag pseudo-reference
electrode). This detection potential was previously optimized for the HRP/HQ/H2O2 system [15].
Table 1 summarizes all the optimized variables, the corresponding ranges into which they were checked
and the values selected for the preparation of the MBs-based immunosensor.
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Table 1. Different experimental variables optimized to develop the amperometric human
53 immunosensor.

Variable Tested Range Selected Value

VHOOC-MBs, µL 1–6 3
[AbC], µg·mL−1 0.0–50.0 5.0

tincubation AbC, min 0–90 30
HRP-AbD dilution factor 1/50,000–1/1000 1/5000

tincubation HRP-AbC, min 0–60 30
tblocking ethanolamine, min 0–60 15

tblocking commercial blocker casein solution, min 0–60 15
Steps number 1–2 1

As examples, results obtained in the optimization of the AbC loading and the dilution applied
to the commercial AbD solution, are provided in Figure 2a,b, respectively. As expected, while there
are no significant differences between the B signals (obtained in the absence of target protein), the
current measured at −0.20 V for 100 ng·mL−1 human p53 increased significantly with the AbC loading
(Figure 2a) up to 50 µg/ mL, and then decreased drastically, most likely due to the steric hindrance of
the antigen when large amounts of the capture antibody are immobilized [18]. Regarding the dilution
applied to the AbD solution (Figure 2b), the currents measured both in the presence and in absence of
p53 protein increased with the AbD concentration. This behavior was attributed to an increase in the
non-specific adsorption of this antibody. A 1/5000 dilution factor, where the highest S/B ratio was
observed, was chosen for further experiments.

Biosensors 2016, 6, 56  7 of 14 

Table 1. Different experimental variables optimized to develop the amperometric human 53 
immunosensor.  

Variable Tested Range Selected Value 
VHOOC-MBs, µL 1–6 3 

[AbC], µg·mL−1 0.0–50.0 5.0 
tincubation AbC, min 0–90 30 

HRP-AbD dilution factor  1/50,000–1/1000 1/5000 
tincubation HRP-AbC, min  0–60 30 
tblocking ethanolamine, min 0–60 15 

tblocking commercial blocker casein solution, min 0–60 15 
Steps number 1–2 1 

As examples, results obtained in the optimization of the AbC loading and the dilution applied 
to the commercial AbD solution, are provided in Figure 2a,b, respectively. As expected, while there 
are no significant differences between the B signals (obtained in the absence of target protein), the 
current measured at −0.20 V for 100 ng·mL−1 human p53 increased significantly with the AbC 
loading (Figure 2a) up to 50 µg/ mL, and then decreased drastically, most likely due to the steric 
hindrance of the antigen when large amounts of the capture antibody are immobilized [18]. 
Regarding the dilution applied to the AbD solution (Figure 2b), the currents measured both in the 
presence and in absence of p53 protein increased with the AbD concentration. This behavior was 
attributed to an increase in the non-specific adsorption of this antibody. A 1/5000 dilution factor, 
where the highest S/B ratio was observed, was chosen for further experiments. 

 
(a)

(b)

Figure 2. Dependence of the S/B current ratio (red ▪) with the AbC loading (a) and AbD dilution 
factor used to perform the immunoassay (b). Amperometric responses were measured for 0 (dark 
blue bars) and 100 ng·mL−1 of human p53 standard (light blue bars). Error bars were estimated as 
triple that of the standard deviation (n = 3). 

0 0,5 1 2,5 5 10 25 50
0.0

2.0x10-7

4.0x10-7

6.0x10-7

8.0x10-7

1.0x10-6

-i,
 A

[Abcapture], μg mL-1

0

5

10

15

20

25

30

 

S
/B

1/50000 1/25000 1/10000 1/5000 1/2500 1/1000
0.0

2.0x10-7

4.0x10-7

6.0x10-7

8.0x10-7

1.0x10-6

1.2x10-6

1.4x10-6

Abdet dilution

S
/B

-i,
 A

0

5

10

15

20

25

30

 

Figure 2. Dependence of the S/B current ratio (red �) with the AbC loading (a) and AbD dilution factor
used to perform the immunoassay (b). Amperometric responses were measured for 0 (dark blue bars)
and 100 ng·mL−1 of human p53 standard (light blue bars). Error bars were estimated as triple that of
the standard deviation (n = 3).
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Regarding the number of steps involved in the immunoassay working protocol, two different
procedures were checked: (1) target protein capture and sandwiching with the labeled detector
antibody were carried out in a single step by 30 min incubation of the AbC-MBs in a mixture solution
containing human p53 standard and HRP-AbD; (2) two sequential steps involving 30 min incubation
of the AbC-MBs in the p53 protein solution, followed by another 30 min incubation in the HRP-AbD
solution. Results (not shown) indicated a slightly higher S/B current ratio when only one single
incubation step was used which, in addition, considerably reduced the total assay time. This behavior
has been also observed for other sandwich immunoassays [19,20] and can be attributed to a higher
efficiency of the immune and labeling reactions due to the lower steric hindrance occurring when the
target antigen and the detector antibody are free in homogeneous solution. Accordingly, the shorter
one-step protocol was selected for further studies.

3.2. Analytical Characteristics of the Immunosensor

The reproducibility of the amperometric responses obtained for 50 ng·mL−1 human p53 standards
was evaluated with ten different immunosensors. A relative standard deviation (RSD) value
of 3.3% was calculated demonstrating the reliability of the whole procedure including both the
immunosensor fabrication (MBs modification and magnetic capture on the SPCE surface) and the
amperometric transduction.

The calibration plot constructed for human p53 standards under the selected experimental
conditions (Figure 3) exhibited a linear range (r = 0.998) between the measured current and the p53
concentration from 5–150 ng·mL−1, with a slope value of (1.3± 0.1)× 10−8 A·mL·ng−1 and an intercept
of (1.4± 0.8)× 10−7 A. It is important to mention that, despite using a one-step sandwich immunoassay,
no induction of any hook effect was observed at the tested concentration levels. This effect would only
be expected for much larger concentrations than those usually considered as cut-off values in clinical
samples for p53 overexpression in cancer ailments, thus ensuring the absence of potential misdiagnosis
due to falsely decreased results. Detection (LOD) and quantification (LQ) limits, estimated according
to the 3 × sb/m and 10 × sb/m criteria, respectively, where m is the slope of the linear calibration
plot, and sb is the standard deviation of 10 amperometric signals measured in the absence of the target,
were 1.29 and 4.31 ng·mL−1, respectively.
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The storage stability of AbC-MBs conjugates, once the ethanolamine blocking step was performed,
was evaluated by keeping them at 4 ◦C in filtered PBS. Each working day, a few of the prepared
conjugates were incubated with fresh solutions of HRP-AbD supplemented with 0 or 50 ng·mL−1

human p53 standard, according to the protocols described in Sections 2.3 and 2.4. No significant
differences in the measured current S/B ratio were apparent for a period of seven days, indicating
acceptable storage stability of the AbC-MBs bioconjugates, which can be prepared in the lab and stored
until used for point-of-care testing at bed side.

Table 2 compares the main features of the developed immunosensor with other
electrochemical immunosensors described so far for the determination of both phosphorylated and
non-phosphorylated human p53. Although the LOD achieved is not as low as those reported by other
authors, all of them using nanomaterials-based amplification systems, this immunosensor offered a
sensitivity adequate for the determination of the target protein in cell lysates without any amplification
step as it will be demonstrated below. It is worth remarking, also, of the short time required to
prepare the immunosensor, in comparison with that required with the other methodologies. Moreover,
the 45 min assay time required with the developed inmunosensor is 2–4 times shorter than that of
other approaches free of immunoreactions acceleration strategies [7–9]. Furthermore, the inherent
simplicity of the method reported here can be also claimed as an important practical advantage
versus all of other approaches reported so far, which require multiple reagents and complex and
time-consuming substrate/nanomaterials modification protocols, thus making them difficult to be
considered as suitable tools for the development of user-friendly devices for on-site determination of
this relevant biomarker.
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Table 2. Characteristics of electrochemical biosensors for the detection of p53 protein.

Working Electrode Detector Antibody
Labelling

Transduction
Technique Sample Concentration

Range LOD Preparation
Time *

Assay
Time ** Reference

Graphene-chitosan-SPCE HRP-streptavidin-biotin DPV - 0.2–10 ng·mL−1 0.1 ng·mL−1 ~4 h ~2 h [9]

AuNPs-SPCE HRP-GO SWV Spiked human
plasma 0.02–2 nM 0.01 nM >4 h >2 h [7]

NHS-SPGE HRP-Au nanorods SWV -

0.01–20 nM
(phospho-p53392)

0.05–20 nM
(phospho-p5315)

0.1–50 nM
(phospho-p5346)

0.05–20 nM
(total p53)

5 pM
(phospho-p53392)

20 pM
(phospho-p5315)

30 pM
(phospho-p5346)

10 pM
(total p53)

>4 h ~5 min [8]

Bi-SPCE PCN-NS SWV Human serum 0.02–20 ng·mL−1 0.01 ng·mL−1 ~3 h ~1.5 h [14]

Thiolated
GO-streptavidin-AuNPs-GCE Avidin-biotin-HRP DPV

Cell lysates.
Normal and

cancerous human
skin fibroblast cells

0.2–2 pM 30 fM ~20 h ~3 h [4]

SPCE HRP Amperometry Cell lysates 5–150 ng·mL−1

(69 nM–2.1 µM)
1.29 ng·mL−1

(18 nM)
~2 h ~45 min This work

* Estimated time to prepare the immunosensor (fabrication of nanostructures and/or antibodies labelling procedures not included); ** Estimated time from the application of the sample
to the system till the signal measurement. AuNPs, gold nanoparticles; DPV, differential pulse voltammetry; GCE, glassy carbon electrode; GO, graphene oxide; HRP, horseradish
peroxidase; NHS, N-hydroxysuccinimide-activated hexa(ethylene glycol) undecane thiol; NS, carbon nanospheres; PCN, protein cage nanoparticles; SPCE, screen-printed carbon
electrode; SPGE, screen-printed gold electrode; SWV, square wave voltammetry.
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3.3. Selectivity of the Magnetoimmunosensor

The selectivity of the developed immunosensor was evaluated towards other cancer biomarkers
and against non-target proteins which can coexist with p53 protein in human serum. These tests
were performed by comparing the current values measured with the immunosensor for 0.0 and
10.0 ng·mL−1 human p53 standards both in the absence and in the presence of these potential
interfering compounds at a similar concentration to that of the target biomarker or at their usual
or higher protein concentrations in serum samples. Figure 4 shows that the reliable determination
of 10 ng·mL−1 of the target protein was possible in the presence of all the other non-target proteins
at the assayed concentration levels except for human IgG. The significant interference observed in
the presence of 1.0 mg·mL−1 human IgG, already reported by other authors [20–22] in sandwich
immunoassays using mouse monoclonal antibodies, is attributed to the presence of human anti-mouse
antibodies (HAMAs) which show specificity for mouse immunoglobulins and can cross-link the
capture and labeled antibodies in the absence of the analyte. Although no significant interference
was observed in the presence of human IgG only at a 0.1 mg·mL−1 concentration level (see bars 8 in
Figure 4), it is important to mention that this interference will not pose any problem in the analysis of
cell lysates without endogenous content of this non-target protein.
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Figure 4. Immunosensor selectivity towards p53 protein. Current values measured for 0.0 (dark blue
bars) and 10.0 (light blue bars) ng·mL−1 human p53 standard in the absence (1) and in the presence of:
10.0 ng·mL−1 TNFα (2); 5.0 ng·mL−1 ErbB2 (3); 5.0 ng·mL−1 ERα (4); 5.0 ng·mL−1 PR (5); 5.0 mg·mL−1

BSA (6); 1.0 mg·mL−1 human IgG (7) and 0.1 mg·mL−1 human IgG (8). Supporting electrolyte, 0.05 M
sodium phosphate solution, pH 6.0; Eapp = −0.20 V vs. the Ag pseudo-reference electrode. Other
conditions are as described in Table 1 (selected values column). S/B ratio (red •) are those obtained for
each experimental point. Error bars estimated as triple that of the standard deviation (n = 3).

3.4. Determination of Human p53 in Cell Lysates

The real usefulness of the developed methodology was evaluated by determining the endogenous
content of the target protein in cell lysates expressing different p53 levels. Since no statistically
significant differences were observed between the slope value of the calibration plot constructed
with human p53 standards and the slope values of the calibration graphs recorded for cell lysates
assayed (once they were adequately diluted with blocker casein solution and spiked with growing
amounts of a standard human p53 solution up to 100.0 ng·mL−1 and supplemented with 5000 times
diluted HRP-AbD), we concluded that no significant matrix effects were apparent in these complex
samples. Therefore, the endogenous concentration of human p53 in cell lysates was quantified in
a straightforward manner by interpolating the amperometric responses obtained with the diluted
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samples (up to a final lysate amount of 2.0 µg) into the calibration plot prepared with human p53
standards (Figure 3).

The obtained results were compared with those provided by a commercial ELISA kit. A paired
samples t-test demonstrated that no significant differences (α = 0.05) existed between the results found
by both methods (p-value = 0.50). It is important to note the reliability of the approach just after a
simple dilution with blocker casein solution despite the complexity of samples. The plot of the mean
contents obtained with the ELISA kit versus those provided by the magnetoimmunosensor (Figure 5)
resulted in a linear least-squares regression graph (r = 0.997) with a slope value of (1.04 ± 0.04) and
an intercept of (−0.01 ± 0.01). As can be observed, the correlation found was highly satisfactory
since the confidence intervals (at a significance level of α = 0.05) for the slope and intercept included
the unit and the zero values, respectively, indicating that the methodology involving the use of the
magnetoimmunosensor exhibited no systematic errors and can be successfully used for the reliable
determination of p53 protein in cell lysates.
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Figure 5. Comparison of the results obtained with the magnetoimmunosensor and the ELISA
methodologies. Dots in the graph correspond to (from left to right) BxPc3, MCF-7, KM12SM, SW620,
KM12C, MDA-MB-436, and SW480, respectively. Error bars are estimated as a triple that of the standard
deviation (n = 3).

These results pointed out that, despite the LOD achieved with the developed immunosensor
being higher than that claimed for the ELISA spectrophotometric kit using the same immunoreagents
(1.29 ng·mL−1 vs. 100 pg·mL−1), the sensitivity of the developed approach is suitable for real
practice. Moreover, the use of the MBs-based immunosensor allowed the analysis to be made in
approximately seven times shorter a time than the ELISA method (45 vs. 300 min once the AbC-MBs
and AbC-plate were prepared and blocked, respectively), and in a simplified analytical procedure
requiring only one incubation step with the sample solution supplemented with the HRP-AbD.
Therefore, the significantly shorter assay time, the inherent simplicity, and the involvement of portable
and cost-effective instrumentation of the approach reported here can be claimed as important practical
advantages over commercial ELISAs, which use tedious, time-consuming multistage processes and
expensive detection instrumentation, making them difficult to implement as a tool for the development
of user-friendly devices to perform routine and decentralized analysis. Although the developed
methodology applicability has only been tested with cell lysates, it may also be applied to the
determination of the target protein in other samples with clinical relevance, such as tissues’ biopsies
or exosomes.
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4. Conclusions

A simple electrochemical methodology for the determination of human p53 protein, based on
the use of immune-MBs as selective capture microcarriers and amperometric detection on SPCEs,
has been developed for the first time and applied to the analysis of cell lysates. Determination of
p53 protein is carried out sandwiching it between specific capture antibodies covalently attached to
previously-activated carboxylated MBs and HRP-labeled detector antibodies. The concentration of the
target protein is related with the amperometric signal obtained (at −0.20 V vs. a Ag pseudoreference
electrode) after magnetic capturing of the resulting modified MBs on the surface of a SPCE upon the
addition of H2O2 and in the presence of HQ. The developed bioplatforms, with 7-day storage stability,
allowed the selective and sensitive determination of the target protein (LOD of 1.2 ng·mL−1 for human
p53 standards) without any signal amplification and successful applicability to the analysis of cell
lysates. Moreover, the rapid, simple, portable, and cheap operation make this immunosensor a very
attractive alternative to commonly-used ELISAs for the development of automated devices for on-site
and routine determinations.
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