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Interleukin-1β, lipocalin 2 and nitric 
oxide synthase 2 are mechano-
responsive mediators of mouse and 
human endothelial cell-osteoblast 
crosstalk
Vimal Veeriah1,2, Angelo Zanniti1, Riccardo Paone1, Suvro Chatterjee2, Nadia Rucci1, 
Anna Teti1 & Mattia Capulli1

Endothelial cells are spatially close to osteoblasts and regulate osteogenesis. Moreover, they are 
sensitive to mechanical stimuli, therefore we hypothesized that they are implicated in the regulation 
of bone metabolism during unloading. Conditioned media from endothelial cells (EC-CM) subjected 
to simulated microgravity (0.08g and 0.008g) increased osteoblast proliferation and decreased their 
differentiation compared to unit gravity (1g) EC-CM. Microgravity-EC-CM increased the expression of 
osteoblast Rankl and subsequent osteoclastogenesis, and induced the osteoblast de-differentiating 
factor, Lipocalin 2 (Lcn2), whose downregulation recovered osteoblast activity, decreased Rankl 
expression and reduced osteoclastogenesis. Microgravity-EC-CM enhanced osteoblast NO-Synthase2 
(NOS2) and CycloOXygenase2 (COX2) expression. Inhibition of NOS2 or NO signaling reduced 
osteoblast proliferation and rescued their differentiation. Nuclear translocation of the Lcn2/NOS2 
transcription factor, NF-κB, occurred in microgravity-EC-CM-treated osteoblasts and in microgravity-
treated endothelial cells, alongside high expression of the NF-κB activator, IL-1β. IL-1β depletion and 
NF-κB inhibition reduced osteoblast proliferation and rescued differentiation. Lcn2 and NOS2 were 
incremented in ex vivo calvarias cultured in microgravity-EC-CM, and in vivo tibias and calvarias injected 
with microgravity-EC-CM. Furthermore, tibias of botulin A toxin-treated and tail-suspended mice, 
which featured unloading and decreased bone mass, showed higher expression of IL-1β, Lcn2 and Nos2, 
suggesting their pathophysiologic involvement in endothelial cell-osteoblast crosstalk.

Bone is a complex tissue, which includes a variety of cell types cooperating to maintain balanced bone formation 
and resorption. Bone is largely affected by biomechanical stimuli and its homeostasis depends not only on the 
crosstalk among bone cells but also on their interactions with bone marrow cells, nerve fibers and blood vessels1.

Bone is a highly vascularized tissue, and blood vessels largely contribute to bone physiology. Recent studies 
demonstrated that endothelial cells and osteoblasts cross-regulate each other during osteogenesis2,3, integrating 
their signals for the harmonic growth of the skeleton. The tight relationship between these cells is also observed 
in pathological conditions, including osteoporosis, in which modifications of blood stream and supply occurs 
before the onset of the disease4. Several factors contribute to the molecular interactions between endothelial cells 
and osteogenic cells, and in the context of our study, Interleukin (IL)-1β​, Lipocalin 2 (LCN2) and the Nitric Oxide 
(NO) pathways were found to be largely implicated in the pathological crosstalk between vascular endothelium 
and osteoblasts induced by mechanical failure.

IL-1β​ is a pro-inflammatory cytokine produced as a biologically inert pro-peptide that requires cleav-
age by caspase-1 to generate the active cytokine5. In bone, it is a pro-osteoclastogenic factor6 and its expres-
sion is increased by estrogen deficiency, thus contributing to the increase of osteoclast bone resorption in 
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postmenopausal osteoporosis7. In contrast, the role of IL-1β​ in osteogenesis has not yet been elucidated8, 
although it is known that IL-1β​ increases in response to IL-6, a potent anti-osteogenic factor and inducer of bone 
resorption9.

Lipocalin 2 (LCN2) is a pleiotropic and acute-phase protein that binds iron-loaded siderophores and acts 
as a bacteriostatic agent10. It plays roles in cell proliferation, differentiation and survival, and is up-regulated by 
inflammation and cancer11. Our previous work has demonstrated that LCN2 is the most up-regulated gene in 
osteoblasts subjected to simulated microgravity and exhibits an important negative effect on bone formation12,13, 
suggesting a causative relationship among mechanical unloading, LCN2 induction and osteoblast impairment.

NO is a short-lived gaseous molecule that affects the function of many cells14. It is released by endothelial cells 
in response to relaxation stimuli and impairs the contraction of vascular smooth muscle cells, with the final goal 
to reduce the peripheral blood pressure15. The NO signal relies on the activity of various Nitric Oxide Synthase 
(NOS) isoforms16, among which NOS2 represents an important endothelial inducible enzyme also expressed by 
bone cells17. NO has an important role in bone formation18, and NOS2 is activated by IL-1β​ in bone cells, contrib-
uting to inflammation-induced bone loss18.

The detrimental role of low mechanical strength on bone metabolism is well known and several pathways 
have been recognized so far to contribute to bone loss in this condition19. In contrast, very little is known on the 
role played by endothelial cells in unloaded bone. In this study, we hypothesized that mechanical forces regulate 
bone formation and resorption through the endothelial cells and that the mechano-response of endothelial cells 
to low strength contributes to the reduced osteogenesis and increased bone resorption observed in pathological 
conditions, such as disuse osteoporosis due to ageing, muscle and bone injuries, paralysis, sarcopenia, muscular 
dystrophy or prolonged bed-resting. We observed that unloaded endothelial cells release IL-1β​, which contributes 
to the enhancement of the NO signal and the priming of osteoblasts to synthesize LCN2. These molecules are 
key components of a complex cascade of events, involving NOS2 and the NF-κ​B pathways, that unbalance bone 
remodeling and cause bone loss as confirmed in in vivo mouse models of mechanical unloading, which recapitu-
late the features of human osteoporosis induced by disuse.

Results
Role of endothelial cells on osteogenesis and osteoclastogenesis in response to decreased 
mechanical forces.  Mouse primary endothelial cells isolated from aorta expressed the endothelial mark-
ers, VEGF and PECAM, confirming the endothelial enrichment of the cultures (Supplementary Fig. S1a,b). 
Endothelial cells were loaded on microcarriers (Supplementary Fig. S1c) and exposed to unit gravity (1g) or simu-
lated microgravity (0.08g and 0.008g), using the Rotating Wall Vessel (RWV) bioreactor, developed and approved 
by the USA National Aeronautics and Space Administration (NASA), as a means to lower the mechanical forces 
acting on the cells in a condition of low shear stress. Endothelial Cell-Conditioned Media (EC-CM) were col-
lected at different time points of 1g, 0.08g and 0.008g cultures and used to treat primary osteoblasts from 7-day old 
mouse calvarias. We first analyzed whether the osteoblast cultures incubated in 1g-EC-CM exhibited any change 
of the variables investigated in the study compared to osteoblasts exposed to EC-CM derived by standard endothe-
lial cell cultures. We observed that osteoblast proliferation (Supplementary Fig. S2a), Alkaline Phosphatase 
(ALP) activity (Supplementary Fig. S2b,c) and osteoblast gene expression (Supplementary Fig. S2d–f)  
were indistinguishable between the two conditions. Furthermore, standard- and 1g-EC-CM did not induce oste-
oclastogenesis in bone marrow mononuclear cell cultures. In contrast, osteoblasts exhibited higher prolifera-
tion and lower differentiation in the presence of 0.008g-EC-CM harvested at different time points (0-96 hours) 
(Fig. 1a–c) compared to 1g-EC-CM. Similar results were observed incubating human (Supplementary Fig. S3a–c) 
or mouse primary osteoblasts (Fig. 1d–f) in 0.008g-EC-CM from the human endothelial cell line (EA.hy926), 
suggesting species cross-reactivity of the implicated pathways. Furthermore, mouse primary osteoblasts cultured 
in 0.08g- and 0.008g- mouse EC-CM showed progressive increase of proliferation and decrease of differentiation 
(Fig. 1g–i) in a manner dependent on intensity of microgravity.

Consistent with the previous results, treatment of osteoblasts with 0.08g- and 0.008g-EC-CM increased the 
mRNA expression of the proliferation marker, Cyclin D1, and decreased the mRNA expression of the differ-
entiation markers Osterix, Runx2, ALP and Collagen type 1 chain-α1 (Fig. 1j) in mouse osteoblasts incubated 
with mouse EC-CM. Furthermore, 0.08g- and 0.008g-EC-CM increased osteoblast Receptor activator of NF-κB 
transcription factor Ligand (Rankl) mRNA expression in a manner dependent on microgravity intensity, with 
no modulation of osteoprotegerin (Opg) (Fig. 1k,l) compared to 1g-EC-CM. Reliably, 0.08g- and 0.008g-EC-CM 
stimulated osteoclast formation in total bone marrow cell cultures (Fig. 1m,n), but not in purified bone marrow 
mononuclear cell cultures (Supplementary Fig. S4a,b), indicating that the effect of unloaded endothelial cells on 
osteoclastogenesis was only mediated by supporting osteoblasts.

Involvement of LCN2.  The effects of 0.08g- and 0.008g-EC-CM on osteoblasts were similar to the 
effects induced by the direct exposure of osteoblasts to simulated microgravity, which are mediated by the 
mechano-responding gene, LCN212,13. LCN2 mRNA and protein expression was undetectable in endothelial 
cells cultured in microgravity, but they increased in 0.008g-EC-CM-treated osteoblasts compared to controls 
(Fig. 2a,b), suggesting that endothelial cells released mediators that stimulated LCN2 production in the osteo-
blasts. This effect was additive to the increase of Lcn2 mRNA directly induced in osteoblasts by the low gravita-
tional force (Fig. 2c).

To confirm the role of LCN2 in this context, we treated osteoblasts from LCN2 knockout (KO) and wild-type 
mice with 0.008g-EC-CM and observed that LCN2 deficiency did not affect the 0.008g-EC-CM-mediated increase 
of proliferation (Fig. 2d), but it reduced the impairment of osteoblast differentiation (Fig. 2e,f) and the increase of 
Rankl mRNA expression (Fig. 2g). Consistently, LCN2 deficiency reduced the 0.008g-EC-CM-mediated increase 
of osteoclast formation in total bone marrow cell cultures (Fig. 2h,i).
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Figure 1.  Effects of Endothelial Cell Conditioned Medium (EC-CM) on osteoblasts. Primary endothelial 
cells isolated from 7 week-old CD1 mouse aorta were subjected to unit gravity (1g) and microgravity (0.008g) on 
microbeads for the indicated times, then EC-CM were collected and used to treat primary osteoblasts isolated 
from 7-day old CD1 mouse calvarias for 48 hours. (a) MTT proliferation assay. (b) Representative images of 
ALP cytochemical staining. (c) Densitometric quantification of ALP staining. The human endothelial cell line 
(EA.hy926 cells) was subjected for 96 hours to 1g and 0.008g on microbeads, then the EC-CM were collected 
and used to treat mouse primary osteoblasts for 48 hours. (d) MTT proliferation assay. (e) Representative 
images of ALP cytochemical staining. (f) Densitometric quantification of ALP staining. Primary endothelial 
cells isolated from 7-week old CD1 mouse aorta were subjected to 1g, 0.08g and 0.008g on microbeads for 
96 hours, then EC-CM were collected and used to treat primary osteoblasts isolated from 7-day old CD1 mouse 
calvarias for 48 hours. (g) MTT proliferation assay. (h) Representative images of ALP cytochemical staining. 
(i) Densitometric quantification of ALP staining. (j) RT-PCR analysis of mRNA expression of the proliferation 
marker, Cyclin D1, and the osteoblast differentiation markers, Osterix, Runx2, Alp and Collagen type 1 chain-α1 
(Coll-1), normalized versus Gapdh. Real time RT-PCR of (k) Rankl and (l) Opg mRNA expression in mouse 
primary osteoblasts treated with 1g-, 0.08g- and 0.008g-EC-CM. Total bone marrow cells were isolated from 
the long bones of 7-day old CD1 mice and cultured with 1g-, 0.08g- and 0.008 g-EC-CM. (m) Representative 
images of TRAcP staining and (n) quantification of TRAcP-positive multinucleated cells per field. Images are 
representative and data are the mean ±​ SD of 3 independent experiments (one way RM ANOVA). Bar =​ 100 μ​m. 
All gels have been run under the same experimental conditions.
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To identify the upstream molecules released by endothelial cells under microgravity, we focused on TNFα​, 
IL-1β​ and IL-17, known to be secreted factors that upregulate LCN2 expression in different cell types20,21. In our 
experimental conditions, only IL-1β​ mRNA expression was enhanced in endothelial cells cultured at 0.008g ver-
sus controls (Fig. 2j), in agreement with a recent report showing that IL-1β​ is one of the most upregulated secreted 
protein in endothelial cells during spaceflight22. The release of the IL-1β​ protein was increased in EC-CM in a 
manner dependent on the intensity of microgravity (Fig. 2k).

Involvement of NO pathway.  Our results showed that LCN2 reduces osteoblast differentiation but does 
not affect osteoblast proliferation. To investigate the underlying mechanisms, we treated osteoblasts with the cell 
proliferation inhibitor, hydroxyurea, which harmed the 0.008g-EC-CM-mediated increase of osteoblast prolif-
eration (Supplementary Fig. S5a) and Cyclin D1 overexpression (Supplementary Fig. S5b), and partially blocked 
the impairment of osteoblast differentiation (Supplementary Fig. S5c,d), indicating that the two events were only 
partially associated.

Previous studies demonstrated that the reduction of mechanical forces increases NOS2 expression in endothe-
lial cells23 and in a variety of other cell types24. NOS2 produces more NO than the other NOS isoforms25 and 
NO is one of the important regulators of osteoblast differentiation26–28. Moreover, NO has a biphasic action, 
stimulating osteoblast differentiation at low concentration and inhibiting this process at high concentration29,30. 

Figure 2.  Role of LCN2 in endothelial cell-osteoblast crosstalk. (a) RT-PCR of Lcn2 in 1g- and 0.008g-treated 
mouse primary endothelial cells (upper panels) and mouse primary osteoblasts (lower panels), normalized 
versus Gapdh. (b) Western blot analysis of LCN2 protein in 1g- and 0.008g-treated mouse primary endothelial 
cells (upper panels) and mouse primary osteoblasts (lower panels) treated with 1g- and 0.008g-EC-CM, 
normalized versus actin. (c) RT-PCR of Lcn2 in mouse primary osteoblasts subjected to 1g and 0.008g in the 
presence of 1g- and 0.008g-EC-CM, normalized versus Gapdh. Wild-type (WT) and LCN2 KO osteoblasts were 
treated with 1g- or 0.008g-EC-CM. (d) MTT proliferation assay. (e) Representative images of ALP cytochemical 
staining. (f) Densitometric quantification of ALP staining. (g) RT-PCR of Rankl in 1g- and 0.008g-EC-CM 
treated mouse primary osteoblasts, isolated from calvarias of WT and LCN2 KO mouse, normalized versus 
Gapdh. Total bone marrow cells were isolated from the long bones of WT and LCN2 KO mice and cultured 
with 1g- or 0.008g-EC-CM. (h) Representative images of TRAcP staining. (i) Quantification of TRAcP positive 
multinucleated cells per field. (j) RT-PCR of the LCN2 upstream activators IL-1β, Tnfα and IL-17 in 1g- or 
0.008g-treated mouse primary endothelial cells, normalized versus Gapdh. Bone marrow cells (BM) were 
analyzed as technical positive control for Tnfα and IL-17. (k) ELISA assay for IL-1β​ in EC-CM from mouse 
primary endothelial cells exposed for 96 hours to 1g, 0.08g or 0.008g. Images are representative and data are 
the mean ±​ SD of at least 3 independent experiments (Student’s t test). All gels have been run under the same 
experimental conditions. Actin was evaluated on the same blotting of LCN2. Bar =​ 100 μ​m.
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In our experimental conditions, we observed that Nos2 mRNA expression was higher after exposure of 
endothelial cells to low gravity (Fig. 3a,b). In osteoblasts incubated with 0.008g-EC-CM along with the NO 
quencher, 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), we observed lower 
0.008g-EC-CM-mediated increase of proliferation (Fig. 3c) and partial rescue of impaired osteoblast differentia-
tion (Fig. 3d,e) and matrix mineralization (Fig. 3f,g).

Interestingly, a serendipity observation revealed that cPTIO counteracted the effects of 0.008g-EC-CM also in 
osteoblasts treated with frozen conditioned medium (Fig. 3h–j). This finding was in overt contradiction with the 
well-known property of NO, a gaseous molecule with a very short half-life31. Therefore, we questioned whether 
0.008g-EC-CM induced the intracellular NOS2/NO signaling in osteoblasts as well, which could produce their 
own NO. To address this aspect we evaluated the expression of Nos2 and CycloOXygenase 2 (Cox2) in osteoblasts 
and observed that 0.008g-EC-CM increased both mRNAs in mouse primary osteoblasts compared to control 
media (Fig. 4a,b). COX2 is a downstream target of NOS232 and a known mitogen33, which induces osteoblast 
proliferation34. Of note, inhibition of osteoblast NOS2 by the NOS2 specific antagonist, N-(3-[aminomethyl]
benzyl) acetamidine (1400 W), partially prevented the 0.008g-EC-CM-induced mRNA expression of Cox2 and 
Cyclin D1 (Fig. 4c). Moreover, inhibition of osteoblast NOS2 or COX2 using 1400 W (Fig. 3d–f) or acetylsalicylic 
acid (Fig. 4g), respectively, inhibited the 0.008g-EC-CM-mediated proliferation and partially rescued osteoblast 
differentiation. These results indicate that the direct exposure of endothelial cells to reduced mechanical forces, as 
well as the treatment of osteoblasts with 0.008g-EC-CM, induced NOS2/NO signal in both cell types.

Involvement of NF-ĸB.  IL-1β​ and NOS2 are transcriptionally induced by the NF-ĸB transcription fac-
tor35,36. Moreover, IL-1β​ requires NF-ĸB activation to induce LCN2 expression37. In our experimental conditions, 
immunofluorescence analysis demonstrated that 0.008g activated NF-ĸB in endothelial cells inducing its nuclear 
translocation (Fig. 5a). Therefore, we blocked this NF-ĸB activation during the exposure of endothelial cells to 
simulated microgravity using the specific inhibitor, pyrroledine dithiocarbamate (PDTC), and observed no over-
expression of Nos2 and IL-1β mRNAs (Fig. 5b).

NF-ĸB nuclear translocation occurred also in 0.008g-EC-CM-treated osteoblasts (Fig. 5c). Furthermore, 
0.008g-EC-CM failed to induce overexpression of the osteoblast NF-ĸB target genes, Nos2 and Lcn2, in the pres-
ence of PDTC (Fig. 5d). Consequently, in this circumstance, 0.008g-EC-CM did not induce proliferation and 
partially prevented the reduction of osteoblast differentiation (Fig. 5e–g).

Role of IL-1β in the osteoblast NF-ĸB/LCN2/NOS2 pathways.  Given that IL-1β​ is a known inducer 
of LCN2 and NOS2 through the activation of NF-ĸB38,39, we asked whether NF-ĸB nuclear translocation was 
triggered in osteoblasts by the IL-1β​ released in the 0.008g-EC-CM. Results demonstrated that IL-1β​ deple-
tion by anti-IL-1β​ antibody prevented the 0.008g-EC-CM-mediated NF-ĸB nuclear translocation (Fig. 6a,b). 
Consequently, IL-1β​ depleted 0.008g-EC-CM failed to induce LCN2 and NOS2 overexpression in osteoblasts 
(Fig. 6c). Furthermore, IL-1β​ depletion reduced the 0.008g-EC-CM mediated proliferation and partially rescued 
osteoblast differentiation (Fig. 6d–f). Consistently, treatment for 24 hours with 4 ng/ml recombinant mouse IL-1β​ 
induced the transcriptional expression of Nos2 and Lcn2 in osteoblasts (Fig. 6g). Intriguingly, RT-PCR analyses 
revealed that osteoblast Lcn2 and Nos2 were independently activated by IL-1β​ through the NF-ĸB nuclear translo-
cation. In fact, Nos2 was up-regulated by 0.008g-EC-CM also in LCN2 KO osteoblasts, while the NOS2 inhibitor, 
1400 W, impaired the induction of Cox2 by 0.008g-EC-CM, but did not affect Lcn2 expression (Supplementary 
Fig. S6). Finally, IL-1β​ depletion mitigated the effect of 0.008g-EC-CM on osteoblast Rankl expression (Fig. 6h) 
and on osteoclastogenesis in total bone marrow cell culture (Fig. 6i,j).

Involvement of IL-1β/LCN2/NOS2 signals in ex vivo and in vivo bone.  To investigate whether the 
regulation of NOS2 and LCN2 pathways could have a pathophysiologic role in the bone tissue, we isolated calva-
rias from 7-day old wild-type mice and performed ex vivo organ culture in the presence of 0.008g-EC-CM. This 
treatment increased the mRNA expression of Lcn2, Rankl, Nos2 and Cyclin D1, and decreased the expression of 
osteocalcin (Ocn) compared to control EC-CM (Fig. 7a). Furthermore, we performed in vivo injection of 1g- 
and 0.008g-EC-CM onto calvarias and into tibias, respectively (Fig. 7b,c). 0.008g-EC-CM increased the mRNA 
expression of Lcn2 and Nos2 in both circumstances and reduced the bone volume over the total tissue volume 
(Fig. 7e). Consistently, in vivo double calcein labeling showed a significant decrease of mineral apposition rate 
(Fig. 7f) and a trend of decrease of bone formation rate (Fig. 7g) and osteoblast number over bone perimeter 
(Fig. 7h). Furthermore, the treatment induced an increase of osteoclast-mediated osteolysis, assessed by whole 
mount TRAcP histochemical staining of the calvarial bones (Fig. 7i,j).

Finally, we investigated the IL-1β​, NOS2 and LCN2 pathways in unloaded mouse models obtained by 
intramuscular injection of botulin toxin in hind limbs, or by tail suspension for 21 days, which are known to 
induce marked bone loss13. The transcriptional expression of these molecules increased in the posterior long 
bones of both models (Fig. 7k–p). Interestingly, and in agreement with our hypothesis, their expression returned 
towards normal values in tail suspended mice subjected to physical exercise (Fig. 7n–p), confirming the 
mechano-responding properties and the pathophysiologic relevance of the described pathways.

Discussion
The results obtained in our in vitro, ex vivo and in vivo studies support the involvement of endothelial cells in the 
response of bone to reduced mechanical forces, which are known to cause severe bone loss and increased risk 
of fracture. We demonstrated that a tight network of stimuli from endothelial cells and osteoblasts integrate the 
response of bone to the lowering of physical strengths, suggesting their involvement in the development of disuse 
osteoporosis. How endothelial cells sense gravitational forces is a matter of speculation. Changes in mechanical 
strengths are believed to be sensed by adhesion receptors, including selectins, cadherins and integrins, through 
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Figure 3.  Role of the NOS2-NO-COX2 pathway in endothelial cell-osteoblast crosstalk. Mouse primary 
endothelial cells were subjected to 1g and 0.008g for the indicated times. (a) Real time RT-PCR analysis of 
Nos2 normalized versus Gapdh. (b) EA.hy976 cells were subjected to 1g and 0.008g for 96 hours. RT-PCR of 
Nos2 normalized versus Gapdh. Mouse primary osteoblasts were treated with 1g- or 0.008g-EC-CM in the 
absence or presence of the NO quencher cPTIO. (c) MTT proliferation assay. (d) Representative images of 
ALP cytochemical staining. (e) Densitometric quantification of ALP staining. (f) Representative images of 
mineralized nodule formation by the Von Kossa staining. (g) Densitometric quantification of mineralization. 
Frozen 1g- and 0.008g-EC-CM were de-frozen in ice and used to treat mouse primary osteoblasts in the absence 
or presence of the NO quencher, cPTIO. (h) MTT proliferation assay. (i) Densitometric analysis of ALP 
cytochemical staining. (j) Densitometric quantification of mineralization (Von Kossa staining). Data are the 
mean ±​ SD of 3 independent experiments (Student’s t test). Bar =​ 100 μ​m. All gels have been run under the same 
experimental conditions.
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which the cell undergoes variations in tensions that modify its architecture40. This phenomenon reminds the 
structural principle of “biotensegrity”41 and it is thought to cause reorganization and stabilization of the cytoskel-
etal components, including the nuclear scaffold that, through mechanisms yet to be determined, modulates gene 
expression42.

Disuse osteoporosis represents a pathologic condition with high socio-economic burden, whose incidence is 
steadily increasing in Western countries due to the extended life expectancy. It is secondary to several diseases, 
including sarcopenia, paralysis, muscular dystrophies, ageing, bone and muscle injuries or prolonged bed-binding 
due to other disorders43,44. In this work, we identified the molecules responsible for the endothelial-osteoblast 
crosstalk in response to decreased mechanical stimuli, and described the network of regulations that finely 
orchestrates the adaptive response of bone to unloading (Fig. 8). Our results are strengthen by the in vivo exper-
iments that fully recapitulated the in vitro observations, providing a robust translational relevance to the study. 
Three of these molecules, IL-1β​, NO and LCN2, are soluble factors whose targeting could be exploited for therapy. 
Notably, systemic treatment with NO inhibitors, like tilarginine acetate, is already approved for clinical trials45, 
and an IL-1β​ blocker (canakinumab®​) is used to combat autoimmune and other diseases46–48. We believe that our 
study provides a rational for extending the employment of these therapies for the treatment of disuse osteoporosis 
and open a new direction to prevent the deleterious effects of bone unloading. Furthermore, the upregulation 
of osteoblast LCN2 in response to 0.08 and 0.008g-EC-CM confirms the central role for this molecule in the 
response of osteoblasts to reduced mechanical forces recently demonstrated by our group12,13, further strength-
ened by the additive effect of the 0.008g-EC-CM over the LCN2 expression directly enhanced in osteoblasts by the 
microgravity itself. Taken together, the observations of our study suggest that not only LCN2 is directly induced 
by the reduction of mechanical loading in osteoblasts12,13, but also that this effect is further potentiated by the 

Figure 4.  Role of the NOS2-NO-COX2 pathway in endothelial cell-osteoblast crosstalk. Mouse primary 
osteoblasts were treated with 1g- and 0.008g-EC-CM. Real time RT-PCR of (a) Nos2 and (b) Cox2 normalized 
versus Gapdh. Mouse primary osteoblasts were treated with 1g- or 0.008g-EC-CM in the absence or in the 
presence of the NOS2 inhibitor 1400 W. (c) RT-PCR of Cox2 and Cyclin D1 normalized versus Gapdh. (d) MTT 
proliferation assay. (e) Representative images of ALP cytochemical staining. (f) Densitometric quantification 
of ALP staining. Osteoblasts were treated with 1g- and 0.008g-EC-CM in the absence or presence of the COX 
inhibitor acetylsalicylic acid. (g) RT-PCR analysis of Cyclin D1 and Alp normalized versus Gapdh. Images are 
representative and data are the mean ±​ SD of at least 3 independent experiments (Student’s t test). Bar =​ 100 μ​m. 
All gels have been run under the same experimental conditions.
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unloaded endothelial cells through the IL-1β​ mediated signal. Although LCN2 is a pleiotropic molecule with a 
variety of roles in different tissues and conditions, its deletion in mice causes only a mild increase of infection 
susceptibility49, thus supporting the possibility that LCN2 blocking treatment could be developed for therapy in 
humans.

Our results show that endothelial cells and osteoblasts share the same key transcription factor, NF-κ​B, to 
orchestrate the response to unloading. In endothelial cells, NF-κ​B is directly activated by the low mechanical 
strengths and induces NOS2 and IL-1β​ expression, while in osteoblasts it is activated by the IL-1β​ released by the 
unloaded endothelial cells and induces NOS2 and LCN2 transcription. Both pathways affect osteoblast activity, 
NOS2 increasing proliferation and LCN2 impairing differentiation, with the endpoint of reduced matrix nodule 
formation and mineralization. This effect itself can cause bone loss as a consequence of insufficient osteogenesis. 
On the other hand, LCN2 also stimulates RANKL production by osteoblasts, which, even in the absence of mod-
ulation of OPG, causes the RANKL/OPG ratio to favor osteoclastogenesis and, consequently, bone resorption, 
thus adding deleterious effects on bone mass. It is clear though that mechanical forces contribute to the balance of 
bone remodeling also through the endothelial cells, and that deregulation of this delicate integrated signaling net-
work represents one of the biological basis by which osteogenesis is impaired and osteoclastogenesis is enhanced, 
unbalancing bone turnover.

Figure 5.  Role of NF-κB in endothelial cell-osteoblast crosstalk. (a) Immunofluorescence analysis of p65 
NF-ĸB subunit subcellular localization in 1g- and 0.008g-treated mouse primary endothelial cells. (b) RT-
PCR analysis of IL-1β and Nos2 in mouse primary endothelial cells subjected to 1g and 0.008g in the absence 
or presence of the NF-κ​B inhibitor PDTC, normalized versus Gapdh. (c) Immunofluorescence analysis of 
p65 NF-ĸB subunit subcellular localization in 1g- and 0.008g-EC-CM treated mouse primary osteoblasts. 
Osteoblasts were incubated in 1g- or 0.008g-EC-CM in the absence or presence of PDTC. (d) RT-PCR of 
Nos2 and Lcn2 normalized versus Gapdh. (e) MTT proliferation assay. (f) Representative images of ALP 
cytochemical staining. (g) Densitometric quantification of ALP staining. Images are representative and data are 
the mean ±​ SD of at least 3 independent experiments (Student’s t test). Bar =​ (a) 30 μ​m; (c) 10 μ​m; (f) 100 μ​m. 
All gels have been run under the same experimental conditions.
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The study presents some limitations. Simulating microgravity conditions on Earth is not an easy task. We 
employed the RWV bioreactor, which represents one of the most reliable means to model this situation. The 
bioreactor has been developed by the NASA and allows tridimensional cultures of adhesive cells through their 
interaction with microbeads. Our 1g cultures were performed incubating endothelial cells on microbeads in 
non-adhesive Petri dishes, which represent the culture conditions closest, but not identical, to those created by the 
RWV bioreactor. These tridimensional cultures were indistinguishable from standard bidimensional endothelial 
cell cultures in terms of the variables investigated in this study. According to our previous work13, in key exper-
iments performed with the RWV bioreactor we subjected the endothelial cells to 0.08g and 0.008g. The experi-
mental conditions between these two settings were identical except for the intensity of the gravitational forces. We 
observed that the magnitude of the changes observed in our experiments was proportional to the reduction of the 
gravitational force applied, making us confident that we were indeed observing changes induced by microgravity 
and not by other factors. Furthermore, some of our findings, for instance the increase of IL-1β​ in endothelial cells 
subjected to microgravity, were observed also in endothelial cells in spaceflight22, supporting the reliability of our 
results.

Figure 6.  Effect of IL-1β depletion on endothelial cell-osteoblast crosstalk. Mouse primary osteoblasts were 
treated with complete or IL-1β​-depleted media as indicated. (a) Immunofluorescence analysis of p65 NF-ĸB 
subunit subcellular localization. (b) Quantification of p65 NF-ĸB-positive nuclei per field. (c) RT-PCR of Lcn2 
and Nos2 normalized versus Gapdh. (d) MTT assay to analyze cell proliferation. (e) Representative images of 
ALP cytochemical staining. (f) Densitometric quantification of ALP activity. (g) RT-PCR of Lcn2 and Nos2 
normalized versus Gapdh in mouse primary osteoblasts treated with vehicle (PBS) or mouse IL-1β​ recombinant 
protein. (h) RT-PCR of Rankl normalized versus Gapdh in mouse primary osteoblasts treated with complete 
or IL-1β​-depleted media. Total bone marrow cells were isolated from the long bones of WT mice and treated 
with complete or IL-1β​-depleted 1g- or 0.008g-EC-CM. (i) TRAcP cytochemical staining. (j) Quantification of 
TRAcP-positive multinucleated cells. Images are representative and data are the mean ±​ SD of 3 independent 
experiments (Student’s t test). Bar =​ (a) 20 μ​m; (e) 100 μ​m; (j) 50 μ​m. All gels have been run under the same 
experimental conditions.
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Figure 7.  Ex vivo and in vivo activation of the IL-1β/NOS2/LCN2 pathway. (a) Calvarias were isolated 
from 7-day old C57BL/6J mice and cultured ex vivo with 1g- or 0.008g-EC-CM. RT-PCR of Lcn2, Ocn, RankL, 
Nos2, and Cyclin D1 normalized versus Gapdh. 1g- and 0.008- EC-CM were injected in 4 week-old C57BL/6J 
mice (b) into tibias (intra-tibial injection) and (c) onto calvarias (subcutaneous injection). RT-PCR of Nos2 
and Lcn2 normalized versus Gapdh. (d) Representative of micro-CT images of 4 week-old C57BL/6J mouse 
calvarias treated in vivo with 1g- and 0.008g-EC-CM. (e) Quantitative analysis of calvarial bone volume over 
total tissue volume (BV/TV). (f) Calcein labeling (green fluorescence, double white arrows) (upper panels) and 
quantification of Mineral Apposition Rate (MAR) (lower panel). (g) Quantification of Bone Formation Rate 
(BFR). (h) Histological images of toluidine blue stained histological sections (osteoblasts, red arrows) (upper 
panels) and quantification of osteoblast number over bone perimeter (Ob.N./B.Pm.) (lower panel),  
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In conclusion, in this study integrating signals have been demonstrated to orchestrate the response of bone to 
low mechanical strengths and to contribute to the bone loss observed in disuse osteoporosis. These signals asso-
ciate the response of endothelial cells to the response of osteoblasts, strengthening the concept of the importance 
of the molecular cooperation between these two cell types to keep the bone tissue healthy.

Materials and Methods
Materials and conventional methods are described in Supplementary Materials and Methods. Uncropped PCRs 
and Western blots for Figs 1j, 2a,f,i, 5d and 7c are shown is Supplementary Figs S7–S11.

Ethics and animal studies.  Procedures involving animals and their care were conducted in accordance 
with national and international laws and policies (European Economic Community Council Directive 86/609, 
OJ L 358, 1, December 12, 1987; Italian Legislative Decree 4.03.2014, n.26, Gazzetta Ufficiale della Repubblica 
Italiana no. 61, March 4, 2014) and received Institutional approval by the Internal Ethical Board regulation 
(University of L’Aquila, Italy) headed by Prof. Edoardo Alesse. Animals were purchased from Charles River 
(Milan, Italy). Animal studies were conducted in compliance with the ARRIVE requirements and are described 
in Supplementary Table S1.

Rotating wall vessel (RWV) bioreactor.  The RWV Bioreactor-model STLV, size 55 ml (Synthecon 
CELLON S.ar.l, Strassen, Luxembourg) was used for this study; it was developed and approved by the NASA 
for in vitro reduced mechanical forces research. This is a bubble-free culture vessel containing membrane dif-
fusion gas exchange, where the cells on microbeads and culture medium rotate inside the vessel. Microbeads 
are used as a solid body for cells in suspension, especially if they are adhesive cells like endothelial cells. 
Microbeads and cells rotate inside the vessel of the bioreactor and this horizontal rotation gives cells a con-
stant randomization of the normal gravity vector, thus mimicking a state of free fall, which simulate aspects of 
microgravity. Rotation about a horizontal axis reduces shear and turbulence compared to conventional stirred 
bioreactors. Information is available at http://www.biocompare.com/Product-Reviews/41543-Rotary-Cell-Cultu
re-System-RCCS-8DQ-From-Synthecon-Inc/.

Processing of endothelial cells for exposure to reduced mechanical forces.  Mouse primary 
endothelial cells or EA.hy926 cells were collected after confluence and re-suspended in DMEM-10% FBS con-
taining CultiSpher-G® microbeads (1 g/L medium), at a cellular density of 1.2 ×​ 106 cells/ml, to allow cell-cell and 
cell-substrate interaction on microbeads. This suspension was grown for up to 96 hours into the RWV bioreactor 
under a 50- or 16-rpm rotations, which lead to a condition of 0.08g and 0.008g, respectively, or in non-adhesive 
Petri dishes for the unit gravity condition (1g). We used standard bidimensional endothelial cultures (without 
microbeads) to check any change induced by the 1g tridimensional cultures (with microbeads) on the variables 
investigated in the study. For some experiments, cultures were performed in the presence or absence of PDTC 
(500 μ​M). At the end of the experiment, cells were collected, along with microbeads and conditioned medium, 
and separated by centrifuge. Endothelial cells were processed for RNA and protein extraction or fixed for immu-
nofluorescence experiments. EC-CM were collected on ice and immediately frozen at −​80 °C. For some NO 
signaling experiments, conditioned media were used without freezing, as indicated in the results section.

Treatment with conditioned media.  1g-, 0.08g- and 0.008g-EC-CM were used to: i) incubate in vitro 
osteoblasts, total bone marrow cells and purified bone marrow mononuclear cells, ii) incubate ex vivo calvaria 
cultures and iii) inject in vivo intra-tibially, or subcutaneously in the area above the calvarial bones. In some  
in vitro experiments, osteoblasts were treated with EC-CM along with 1400 W (10 μ​M), PDTC (500 μ​M), acetyl-
salicylic acid (1 mM), cPTIO (100 μ​M) and hydroxyurea (200 μ​M).

ELISA assay and IL-1β depletion.  IL-1β​ present in the conditioned media was quantified by ELISA 
method using Ray Bio® mouse IL-1β​ ELISA kit protocol (Cat# ELM-IL1beta-001), according to the manufacturer 
instructions. We used the same kit also to deplete IL-1β​ from condition media. For this purpose, we incubated 
1g- and 0.008g-EC-CM in ELISA wells with immobilized IL-1β​ antibody for 1 hour at room temperature. Then 
condition media were removed and used to treat osteoblasts. The stripes were further processed for ELISA to 
confirm the depletion of IL-1β​. Control media were kept in uncoated wells in the same conditions.

Ex vivo calvarial culture.  Calvarias were dissected from 8-week old C57BL/6J mice, cleaned thoroughly 
from soft tissues and cultured with 1g and 0.008g EC-CM. After 48 hours, calvarias were collected and processed 
for RNA extraction using TRIzol method.

(i) Representative images of whole mount TRAcP staining and (j) TRAcP quantification. Eight-week old 
C57BL/6J mice were subjected to Botox injection as described in methods, RNA was isolated from their long 
bones and mRNA expression of (k) IL-1β, (l) Lcn2 and (m) Nos2 was analyzed by real-time RT-PCR. Eight-
week old C57BL/6J mice were subjected to hind limb tail suspension (TS), with or without physical exercise 
(TS +​ EX) by the forced swim test to counteract the mechanical unloading. Total RNA was isolated from femurs 
and subjected to real time RT-PCR for (n) IL-1β, (o) Lcn2 and (p) Nos2. Images are representative and data are 
the mean ±​ SD of at least 3 independent experiments or 3 mice/group (Student’s t test). Bar =​ (f) 2 μ​m;  
(h) 20 μm. All gels have been run under the same experimental conditions.

http://www.biocompare.com/Product-Reviews/41543-Rotary-Cell-Culture-System-RCCS-8DQ-From-Synthecon-Inc/
http://www.biocompare.com/Product-Reviews/41543-Rotary-Cell-Culture-System-RCCS-8DQ-From-Synthecon-Inc/
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In vivo intra-tibial and subcutaneous calvarial injection.  Eight-week-old C57BL/6J mice were anes-
thetized and 1g or 0.008g EC-CM were injected locally into the tibia or subcutaneously onto the calvarias. After 
7 days, mice were sacrificed and tibia and calvarias were dissected. Samples were cleaned free of soft tissues and 
frozen in dry ice for RNA extraction. In another set of experiments, EC-CM-injected animals were sacrificed after 
3 weeks, calvarias were dissected, mounted with 70% ethanol and analyzed by micro-CT.

In vivo treatment with botulin toxin A.  Eight‐week‐old C57BL/6 mice were subjected to botulin toxin 
A (Botox) injection as described previously50. Briefly, mice were anesthetized, then saline solution (20 mL) or 
Botox (2.0 unit/100 g) were injected into the left and the right hind limbs, respectively, into the quadriceps and 
the posterior compartment of the calf (targeting gastrocnemius, plantaris, and soleus). The behavioral response 
of each mouse was monitored on days 1, 3, 7, and weekly thereafter using whole body weight measurement and 
assessment of gait disability. After 21 days mice were sacrificed, then the hind limbs were removed, femurs and 
tibias were cleaned free of soft tissues and frozen in dry ice for RNA extraction.

Hind limb tail suspension.  Hind limb tail suspension was performed on 8‐week‐old C57BL/6 mice using 
the protocol described by Sakata et al.51. Briefly, a strip of elastic tape forming a half‐circle at the middle of the tail 
was applied to the ventral surface of the mice tail. A swivel attached to the half‐circle of the tape was fixed to an 
overhead wire, the height was adjusted to maintain the mice suspended at an approximately 30-degree angle. The 
swivel apparatus allowed animals to move freely into the cage using their forelimbs. After 21 days of suspension 
mice were euthanized by CO2 inhalation, hind limbs were removed and cleaned from soft tissues, then they were 
frozen in dry ice for the RNA extraction. An equal number of mice were maintained under normal cage condi-
tions for 21 days as controls.

Forced swim test.  C57BL/6 mice subjected to tail suspension were allowed to swim in a 250‐L water‐filled 
tank (water depth =​ 20 cm), with water temperature kept at 31 °C. This test lasted 5 minutes and was repeated 3 
times/day for 3 days/week during the entire period of unloading (3weeks)52. Control mice were released from tail 
suspension for the same time of swimming test.

Figure 8.  Pathways involved in endothelial cell-osteoblast crosstalk in unloading conditions. Schematic 
representation of the identified molecular mechanisms. The reduction of mechanical loading activates 
NF-ĸB nuclear translocation and up-regulates its target genes NOS2 and IL-1β​ in endothelial cells. Increase 
of NOS2-NO production enhances proliferation and decreases differentiation in osteoblasts. IL-1β​ secretion 
from endothelial cells activates NF-ĸB nuclear translocation in osteoblasts and induces the overexpression 
of its target genes NOS2 and LCN2. NOS2, through its downstream target COX2, increases proliferation and 
decreases differentiation in osteoblasts. LCN2 overexpression impairs osteoblast differentiation and induces 
osteoclastogenesis by increasing osteoblast RANKL expression.
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Statistics.  Results are expressed as the mean ±​ SD of at least three independent in vitro experiments and at 
least 3 mice/group. Statistical analysis was performed by the Student’s t-test and one-way Repeated Measures 
Analysis of variance (RM ANOVA) according to the type of data sets. The statistical methods are indicated in 
the figure legends and the p-values are indicated in the figures. A p value <​ 0.05 was conventionally considered 
statistically significant.
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