
MGMT Leu84Phe Polymorphism Contributes to Cancer
Susceptibility: Evidence from 44 Case-Control Studies
Jun Liu1☯, Renxia Zhang2☯, Fei Chen1☯, Cuicui Yu2, Yan Sun3, Chuanliang Jia3,4, Lijing Zhang3,5, Taufiq
Salahuddin6, Xiaodong Li7, Juntian Lang8*, Xicheng Song3*

1 Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 2  Department of Anesthesia,
Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China , 3 Department of Otolaryngology Head and Neck Surgery,
Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China , 4  Binzhou Medical School, Yantai, Shandong, China, 5  Qingdao
Medical School, Qingdao, Shandong, China, 6  Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 7 The 3rdPeople’s
Hospital of Jinan, Jinan, Shandong, China , 8 Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical
University, Shanghai, China

Abstract

Background: O6-methylguanine-DNA methyltransferase is one of the few proteins to directly remove alkylating
agents in the human DNA direct reversal repair pathway. A large number of case-control studies have been
conducted to explore the association between MGMT Leu84Phe polymorphism and cancer risk. However, the results
were not consistent.
Methods: We carried out a meta-analysis of 44 case-control studies to clarify the association between the Leu84Phe
polymorphism and cancer risk.
Results: Overall, significant association of the T allele with cancer susceptibility was verified with meta-analysis
under a recessive genetic model (P<0.001, OR=1.30, 95%CI 1.24-1.50) and TT versus CC comparison (P=0.001,
OR=1.29, 95% CI 1.12-1.50). In subgroup analysis, a significant increased risk was found for lung cancer (TT versus
CC, P=0.027, OR=1.67, 95% CI 1.06-2.63; recessive genetic model, P=0.32, OR=1.64, 95% CI 1.04-2.58), whereas
risk of colorectal cancer was significantly low under a dominant genetic model (P=0.019, OR=0.84, 95% CI
0.72-0.97). Additionally, a significant association between TT genetic model and total cancer risk was found in the
Caucasian population (TT versus CC, P=0.014, OR=1.29, 95% CI 1.05-1.59; recessive genetic model, P=0.009,
OR=1.31, 95% CI 1.07-1.61), but not in the Asian population. An increased risk for lung cancer was also verified in
the Caucasian population (TT versus CC, P=0.035, OR=1.62, 95% CI 1.04-2.53; recessive genetic model, P=0.048,
OR=1.57, 95% CI 1.01-2.45).
Conclusions: These results suggest that MGMT Leu84Phe polymorphism might contribute to the susceptibility of
certain cancers.
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Introduction

Over the past decades, there has been an increasing
understanding of the disease process in human carcinoma. It is
now well established that carcinoma can be initiated by DNA
damage from UV exposure, ionizing radiation, environmental
chemical agents, and byproducts of cell metabolism. Normally,
when DNA damage occurs, DNA repair systems recognize the

DNA lesions, excise them, and restore the DNA to maintain
genome stability and integrity [1]. However, if genetic
alterations occur in genes encoding DNA repair proteins, the
DNA repair process may be impaired, potentially contributing to
an increased risk for developing cancers.

The O6-methylguanine-DNA methyltransferase (MGMT) is
one of the most important proteins in the DNA repair process. It
is a 207 amino acid zinc-bound protein which is encoded by
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MGMT gene located on chromosome 10 at 10q26 and spans
approximately 300kb [2]. It has been shown that MGMT has
basic methyl-transferring activity [3] and plays a central role in
the cellular defense against alkylating agents within the human
DNA direct reversal repair pathway.

Also known as O6-alkylguanine–DNA alkyltransferase
(ATase, AGT, or AGAT), MGMT protein can directly remove
alkyl or methyl adducts from the O6position of guanine to an
internal cysteine residue at codon 145 of the protein [4]. By
which, it protects cells against potential DNA alkylation damage
from endogenous and exogenous alkylating species such as
cigarette consumption, environmental contaminants, and diet
[5]. Additionally, it seems that MGMT lacks the ability to
dealkylate itself. MGMT therefore can take part only in a single
reaction, in which it is irreversibly inactivated [6]. Hence, the
reaction should be stoichiometric rather than catalytic. The
MGMT expression shows significant variation not only among
different body tissues [7], but also among individuals in the
same specific tissue [8]. Though the causes of the inter-
individual differences in MGMT protein expression levels
remain unclear to date, functional polymorphisms in the MGMT
gene may have the potential to affect DNA repair capacity.
Because of its important role in human DNA direct reversal
repair pathway, MGMT has attracted significant attention as a
candidate susceptibility gene for cancer.

A large number of molecular epidemiology studies have
been carried out to assess the roles of the MGMT
polymorphisms in various types of cancer, including lung
cancer, head and neck cancer, and colorectal cancer
[9,10,11,12,13,14,15,16,17,18,19,20,21]. The MGMTLeu84Phe
substitution is the most widely studied polymorphism in MGMT
due to a (C->T) transition at nt.262 (MGMT Leu84Phe,
rs12917). However, numerous studies on the association of the
MGMT Leu84Phe polymorphism with cancer risk have yielded
inconsistent results and even partially contradictory
conclusions. Several factors may contribute to the
discrepancies among different studies. The differences of
tumor sites, ethnicities or sample size may all cause the bias of
the result of each individual study.

Since single studies may have been underpowered in
clarifying the associations of MGMT polymorphisms with
cancer susceptibility, to address the controversy among
literatures, in the present study we conducted an evidence-
based quantitative meta-analysis of the association between
the MGMT Leu84Phe polymorphism and susceptibility to
cancer.

Materials and Methods

Identification and eligibility of relevant studies
To identify all studies that explored the association of MGMT

Leu84Phe polymorphism with cancer risk, we carried out a
computerized literature search of the PubMed database (up to
July 20, 2012), using the following key words: ‘MGMT,’
‘polymorphism,’ and ‘cancer,’ without any restriction on
language or publication year. The searched papers were read
and assessed for their appropriateness of including. All
references cited in the articles were also read to identify

relevant publications. Eligible studies should meet two criteria:
(1) case-control studies; and (2) genotype frequencies in both
cancer cases and controls were available. Exclusion criteria
were as follows: (a) not relevant to MGMT Leu84Phe
polymorphism; (b) not case-control study; (c) control population
included malignant tumor cases; and (d) article was a review or
duplication of previous publication.

Data extraction
The data was extracted by two investigators (Jun Liu and Fei

Chen) from each article independently. Discrepancies were not
solved until consensus was reached on every item. From each
study, the following data were collected: author’s name, year of
publication, country of origin, racial descent, cancer type,
source of the control population, genotyping methods, matched
factors as well as adjusted factors, number of cases and
controls, genotype frequencies for cases and controls,
characteristics of cancer cases, and controls. If data of
subpopulation from different ethnicities was available in one
paper, we took each subpopulation as an individual study.

Statistical analysis
Hardy-Weinberg equilibrium (HWE) for each study was

assessed using goodness-of-fit test (x2 of Fisher’s exact test)
only in control groups [22]. Crude odds ratios (ORs) with 95%
confidence intervals (CIs) were calculated to evaluate the
strength of association between MGMTLeu84Phe
polymorphism and cancer susceptibility. In the overall and
subgroup meta-analysis, we evaluated the associations of
genetic variants with cancer risk in homozygous genetic
contrast (TT vs. CC), dominant geneticmodel (CT+TT vs. CC),
recessive genetic model (TT vs. CT+CC) and T allele vs C
allele. The significance of the pooled OR was assessed by the
Z-test (P<0.05 shows a significant association). In addition to
overall meta-analysis, stratified analysis on ethnicity (Asians,
Caucasians, and the other ethnicities group) and tumor site
was also performed A x2-based Q-test was carried out to
assess the heterogeneity of the ORs [23]. If the result of
heterogeneity test was P>0.1, ORs were pooled according to
the fixed-effects model (Mantel-Haenszel model). Otherwise,
the random-effects model (DerSimonian and Laird model) was
applied [24]. The Egger regression test and Begg-Mazumdar
test were utilized to measure the potential publication bias [25].
All statistical tests were conducted with the software STATA v.
10.0 (Stata Corporation, College Station, TX, USA) using two-
side P values.

Results

Characteristics of studies
The preliminary literature search yielded 46 articles that

explored the association of MGMT polymorphisms with the
susceptibility to different cancers. However, six articles
[26,27,28,29,30,31] irrelevant to MGMT Leu84Phe
polymorphism and four articles [32,33,34,35] without detailed
MGMT Leu84Phe genotypes data were excluded. In addition,
three articles [10,36,37] were included by literature reading and
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manual searching. Therefore, 39 articles [9-21,36-61] were
identified and included in the final meta-analysis (Figure 1).
Five papers [14], [18] [56], [59], and [61] presented data
including more than one racial populations and each subgroup
in these studies was taken as a separate study. Therefore, a
total of 44 studies from 39 papers (18938 cancer patients and
28796 controls) were included. All of the cases were confirmed
by histological or pathological examination. A classic
polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP) assay was adopted only in 7 of 44
studies and some other genotyping methods were also used
widely, such as Taqman, sequencing and Illumina SNP
genotyping BeadLab platform. All the genotyping methods are
valid for the present meta-analysis. All studies stated that the
gender status and the age range were matched between case
and control population. The characteristics of included studies
are listed in Table 1. All studies were case-control studies or
nested case-control studies within prospective cohort studies,
including 9 upper aerodigestive tract squamous cell carcinoma
(UADT SCC) studies, 7 colorectal cancer studies, 5 lung
cancer studies, 4 brain cancer studies, 3 prostate studies and
13 studies on “other cancers”. There were 15 studies of
Caucasian ethnicity, 13 studies of Asian ethnicity, and 16

studies of “mixed ethnicities” (including studies of American,
Australian, Black and unspecified population, which cannot be
categorized as a unique group since it is mixed). The detailed
MGMT Leu84Phe genotype distributions and allele frequencies
for cancer cases and controls were presented in Table 2. The
equilibrium of genotypes in the controls was consistent with
HWE in all but five studies [9,10,17,21,45] (P=0.01, P=0.06,
P=0.02, P<0.01, P=0.04, respectively) (Table 2).

Quantitative synthesis
In overall analysis, significant associations between the T

allele and cancer risk were found under the recessive genetic
model (P=0.001, OR=1.28, 95%CI 1.11-1.47) and TT versus
CC comparison (P=0.001, OR=1.28, 95% CI 1.11-1.47). And,
after we excluded those studies whose genotype equilibrium
was not consistent with HWE, significant associations between
the T allele and cancer susceptibility was also uncovered under
the recessive genetic model (P<0.001, OR=1.30, 95%CI
1.24-1.50) and TT versus CC comparison (P=0.001, OR=1.29,
95% CI 1.12-1.50). However, no significant association was
found in the dominant genetic model (TT+TC versus CC) and T
versus C comparison. These results were summarized in Table
3.

Figure 1.  Studies identified with criteria for inclusion and exclusion.  
doi: 10.1371/journal.pone.0075367.g001

MGMT Polymorphism and Cancer Susceptibility

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e75367



Table 1. Characteristics of studies included in the meta-analysis.

First author and published
year Country Cancer Racial descent Source of controls

No. of cases/
controls Matching

Inoue (2003) Japan Brain tumors Asian Population 73/224 Age

Krzensniak (2004) Poland Lung cancer Caucasian Population 96/96 Age,Sex,Smoking

Bigler (2005) America Colorectal cancer American Hospital 517/615 None

Huang (2005) Poland Gastric cancer Caucasian Population 280/387 Age,Sex

Huang (2005) 1 America Head and neck SCC Caucasian Population/hospital 400/665 Age,Sex, Race

Huang (2005) 2 America Head and neck SCC
Non-white
American

Population/hospital 114/89 Age,Sex, Race

Li (2005) China Bladder cancer Asian Population 167/204 Age,Sex, Smoking

Ritchey (2005) China Prostate cancer Asian Population 161/246 Age

Shen (2005) America Breast cancer American Population 1064/1107 Age

Chae (2006) Korea Lung cancer Asian Hospital 432/432 Age,Sex

Han (2006) America Endometrial cancer Caucasian Population 434/1085 Age

Han (2006) America Breast cancer Caucasian Population 1276/1714 Age

Jiao (2006) America Pancreatic cancer American Hospital 370/340 Age,Sex, Race

Kietthubthew (2006) Thailand Oral SCC Asian Population 106/164 Age,Sex

Moreno (2006) Spain Colorectal cancer Caucasian Hospital 272/299 None

Tranah (2006) 1 America Colorectal cancer American (PHS)c Hospital 186/2137 Age,Smoking

Tranah (2006) 2 America Colorectal cancer American (NHS)d Hospital 257/429 Age

Wang (2006) America Lung cancer Caucasian Hospital 1121/1163 Age,Sex, Race,Smoking,

Zienolddiny (2006) Norway Lung cancer Caucasian Population 304/363 Age,Smoking

Felini (2007) America Gliomas American Population 379/459 Age,Sex, Race

Hall (2007) Europea UADT SCC Caucasian Hospital 803/1062 Age,Sex, Residence

Hu (2007) China Lung cancer Asian Hospital 500/517 Age,Sex, residence

Huang (2007) China Cervical cancer Asian Hospital 539/800 Age,Residence

Shen (2007) Australia Non-Hodgkin’s lymphoma Australian Population 555/495 Age,Sex, Residence

Stern (2007) Singapore Colorectal cancer Asian Population 292/1166 None

Doecke (2008) Australia Esophageal adenocarcinoma Australian Population 566/1337 Age,Residence

Zhang (2008) China Biliary tract cancer Asian Population 406/782 None

Hazra (2008) America Colorectal cancer American Population 358/357 Age

kbari (2009) Iran Esophageal SCC Asian Hospital 196/250 None

Gu (2009) America Melanoma American Population 214/212 Age, Race

Khatami (2009) Iran Colorectal cancer Asian Hospital 200/201 Age,Sex

Liu (2009) America Glioma American Population 369/363 Age,Sex, Race

McKean-Cowdin (2009) America Glioblastoma Caucasian Population/hospital 998/1968 Age,Sex, Race

Yang (2009) China Non-Hodgkin’s lymphoma Asian Hospital 48/352 None

Agalliu (2010) 1 America Prostate cancer Caucasian Population 1250/1237 Age

Agalliu (2010) 2 America Prostate cancer African-American Population 147/81 Age

Huang (2010) America Oral SCC Asian Hospital 176/110 None

Palli (2010) China Gastric cancer Caucasian Population 291/537 None

Zhang (2010) Italy Head and neck SCC Caucasian Hospital 721/1234 Age,Sex

Bye (2011) 1 America Esophageal SCC Black Population 346/469 Age,Sex, Race

Bye (2011) 2 South Africa Esophageal SCC Mixed ethnicities Population 196/423 Age,Sex, Race
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When the subgroup analyses were carried out according to
tumor site, the MGMT T allele was associated with a significant
increase in risk of lung cancer (TT Versus CC, P=0.027, OR
=1.67, 95% CI 1.06-2.63; recessive genetic model, P=0.32,
OR=1.64, 95% CI 1.04-2.58). By contrast, a significant
protective effect was found for colorectal cancer under the
dominant genetic model (P=0.019, OR=0.84, 95% CI
0.72-0.97). However, no significant association was found in
other tumor sites subgroups under all genetic models. These
results are also listed in Table 3.

In most of the available studies, there was no difference of
MGMT Leu84Phe genotype/allele distribution among different
ethnicities. We also performed stratified analysis by ethnicity
(Caucasians, Asians, and mixed ethnicities), and by ethnicity
and tumor site together (Table 4). In subgroup meta-analysis
by ethnicity, significant associations between TT and recessive
genetic model and total cancer risk were found in the
Caucasian population (TT versus CC, P=0.004, OR =1.32,
95% CI 1.10-1.61; recessive genetic model, P=0.002,
OR=1.34, 95% CI 1.11-1.62) and in the mixed ethnicities
population (TT versus CC, P=0.041, OR =1.27, 95% CI
1.01-1.60; recessive genetic model, P=0.037, OR=1.28, 95%
CI 1.02-1.61). And, when those studies without consistency
with HWE were excluded, a significant association was still
found for the Caucasian population (TT versus CC, P=0.014,
OR =1.29, 95% CI 1.05-1.59; recessive genetic model,
P=0.009, OR=1.31, 95% CI 1.07-1.61). However, in the Asian
subgroup and the mixed ethnicities subgroup, no significant
association was observed for any genetic model. In the
analysis stratified by ethnicity and tumor site (Table 4), we
found an increased risk only in the Caucasian subgroup for
lung cancer (TT versus CC, P=0.035, OR =1.62, 95% CI
1.04-2.53; recessive genetic model, P=0.048, OR=1.57, 95%
CI 1.01-2.45).

As shown in Table 3 and Table 4, heterogeneity widely
existed in the present meta-analysis under the dominant
genetic mode and T versus C comparison but not under the
homozygous comparison and recessive genetic model.

Publication bias
Begg’s funnel plot and Egger’s test were utilized to evaluate

the publication bias of the literature. As shown in Figure 2, the

contour-enhanced funnel plot for publication bias did not reveal
any evidence of obvious asymmetry in allele contrast (T allele
versus C allele), and, as expected, the Egger’s test did not
provide any obvious evidence for bias (t=0.12, P=0.902).

Discussion

This meta-analysis including a total of 18938 cancer patients
and 28796 controls from 44 independent genetic studies
implies that MGMT Leu84Phe polymorphism might contribute
to the susceptibility of certain cancers

Although the global analysis indicated that the T variant
allele might increase the risk of cancer, the subgroup meta-
analysis showed significant association at only two tumor sites
(colorectal cancer and lung cancer) and two ethnicity
subgroups (Caucasian subgroup and mixed ethnicities
subgroup). This phenomenon suggests that the MGMT
Leu84Phe polymorphism may play differing roles in
cancerogenesis at different sites or in different ethnicities
because of variability in genetic backgrounds [62].

Since cancer is a complex disease, it is highly possible that
any single genetic factor has only weak effects on an
individual’s phenotype. It has been reported that the interaction
of different combinations of polymorphisms in the same gene
or between and among different genes might together have a
pronounced effect on cancer risk [63,64,65]. Studies by Li et al.
[66,67] have shown that MGMT is a transcriptional suppressor
of ER-dependent signaling upon repair of the O6-
methylguanine lesion and that the Lue84 and Ile143 residues
lie in close proximity to three conserved leucines of the LXXLL
ER-interacting helix. Therefore, it is possible that the ER-
dependent signalling could be differentially mediated by the
variant 84Phe and 143Val residues. Some studies
[9,10,13,40,42,48,49,54] have tried to investigate the combined
effects of Lue84Phe, Ile143Val, and other polymorphisms in
MGMT on cancer risk. Because the available data were not
compatible, we could not evaluate the combined effects of
MGMT Leu84Phe and Ile143Val on cancer susceptibility in our
meta-analysis.

It is well established that genetic factors may play an
important role in the development of tumors. However, there is
no doubt that environmental factors such as alcohol
consumption, cigarette use, and aging also participate in

Table 1 (continued).

First author and published
year Country Cancer Racial descent Source of controls

No. of cases/
controls Matching

Loh (2011) South Africa Cancers Caucasian Population 188/1120 None

O’Mara (2011) 1 UKb Endometrial cancer Australian Population 1173/1099 Age,Residence

O’Mara (2011) 2 Australia Endometrial cancer Caucasian Population 397/406 Age

SCC- squamous cell carcinoma；UADT SCC - Upper Aerodigestive Tract Squamous Cell Carcinoma
a: Include 5 central and eastern European countries
b: Indlude Norfolk, East Anglia and United Kingdom
c: PHS- Physicians’ Health Study d: NHS-Nurses’ Health Study
doi: 10.1371/journal.pone.0075367.t001
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tumorigenesis. Several studies [11,39,42] reported that heavy
cigarette smoking could aggravate the effects of MGMT
variants on cancer risk. However, Chae et al. [10] did not find

the same results. Li et al. [40] found that both drinking and
smoking enhance genetic variants’ effects on bladder cancer
risk. It should be noted that alcohol consumption and cigarette

Table 2. Distribution of MGMT Leu84Phe genotypes and allelic frequency.

Study (year) Distribution of MGMT Leu85Phe genotypes  Frequency of MGMT Leu85Phe alleles HWE P value

 Case (n)  Control (n)  Case (n)  Control (n)  
 CC CT TT  CC CT TT  C T  C T  
Inoue (2003) 55 18 0  160 55 9  128 18  375 73 0.13
Krzensniak (2004) 67 23 6  74 17 5  157 35  165 27 0.01
Bigler (2005) 403 108 6  466 136 13  914 120  1068 162 0.41
Huang (2005) 190 82 8  279 99 9  462 98  657 117 0.95
Huang (2005) a 315 80 5  468 179 18  710 90  1115 215 0.86
Huang (2005) b 71 37 6  61 25 3  179 49  147 31 0.82
Li (2005) 132 34 1  173 28 3  298 36  374 34 0.15
Ritchey (2005) 123 36 2  213 32 1  282 40  458 34 0.86
Shen (2005) 778 265 21  824 263 20  1821 307  1911 303 0.85
Chae (2006) 344 84 4  341 81 10  772 92  763 101 0.06
Han (2006) 344 82 8  822 242 21  770 98  1886 284 0.52
Han (2006) 964 279 33  1306 382 26  2207 345  2994 434 0.75
Jiao (2006) 264 101 5  257 82 1  629 111  596 84 0.04
Kietthubthew (2006) 84 21 1  130 33 1  189 23  293 35 0.48
Moreno (2006) 213 47 12  225 63 11  473 71  513 85 0.02
Tranah (2006) a 147 33 6  1634 471 32  327 45  3739 535 0.77
Tranah (2006) b 204 47 6  330 93 6  455 59  753 105 0.85
Wang (2006) 832 259 30  872 272 19  1923 319  2016 310 0.67
Zienolddiny (2006) 189 102 13  247 106 10  480 128  600 126 0.73
Felini (2007) 289 84 6  369 84 6  662 96  822 96 0.63
Hall (2007) 574 198 31  764 277 21  1346 260  1805 319 0.48
Hu (2007) 418 77 5  421 93 3  913 87  935 99 0.38
Huang (2007) 372 156 11  592 198 10  900 178  1382 218 0.15
Shen (2007) 432 112 11  373 110 12  976 134  856 134 0.26
Stern (2007) 251 40 1  959 194 13  542 42  2112 220 0.37
Doecke (2008) 416 136 14  1029 281 27  968 164  2339 335 0.13
Zhang (2008) 352 53 1  631 144 7  757 55  1406 158 0.70
Hazra (2008) 271 72 15  254 97 6  614 102  605 109 0.34
Akbari (2009) 142 53 1  185 63 2  337 55  433 67 0.17
Gu (2009) 152 60 2  168 43 1  364 64  379 45 0.32
Khatami (2009) 40 160 0  61 140 0  240 160  262 140 0.00
Liu (2009) 299 62 8  267 89 7  660 78  623 103 0.89
McKean-Cowdin (2009) 774 204 20  1480 453 35  1752 244  3413 523 0.96
Yang (2009) 33 14 1  289 58 5  80 16  636 68 0.29
Agalliu (2010) a 949 269 32  916 298 23  2167 333  2130 344 0.83
Agalliu (2010) b 106 35 6  60 20 1  247 47  140 22 0.64
Huang (2010) 151 25 0  89 21 0  327 25  199 21 0.27
Palli (2010) 210 77 4  395 131 11  497 85  921 153 0.97
Zhang (2010) 563 151 7  933 284 17  1277 165  2150 318 0.38
Bye (2011) a 225 111 10  300 155 14  561 131  755 183 0.26
Bye (2011) b 120 65 11  294 116 13  305 87  704 142 0.71
Loh (2011) 146 37 5  894 212 14  329 47  2000 240 0.72
O’Mara (2011) a 889 261 23  810 270 19  2039 307  1890 308 0.52
O’Mara (2011) b 278 108 11  296 103 7  664 130  695 117 0.57

Bold indicates statistically significant P value.
HWE Hardy–Weinberg equilibrium
doi: 10.1371/journal.pone.0075367.t002
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use may play different roles at different tumor sites because of
the different levels of alkylating agents and different tissue
exposure concentrations. Unfortunately, owing to a lack of
studies restricted to populations only exposed to alkylating
agents, we could not obtain enough original data to further

estimate the effects of the gene-environment interactions on
cancer susceptibility.

We note several limitations in the present study. First, there
was wide heterogeneity due to the nature of our meta-analysis,
and the results should be interpreted with caution. Second, our

Table 3. Summary ORs (95% CI) for MGMT Leu84Phe variant under different genetic models and tumor site.

MGMT Leu85Phe N# TT versus CC  CT+TTversus CC  TT versus CT+CC  T versus C

    (dominant genetic model)  (recessive genetic model)   

Tumor site  OR (95%CI) P  OR (95%CI) P  OR (95%CI) P  OR (95%CI) P
Total 44 1.28 (1.11-1.47) 0.001  1.01 (0.94-1.08)b 0.808  1.28 (1.11-1.47) 0.001  1.01 (0.96-1.08)b 0.504
Total in HWE 39 1.29 (1.12-1.50) 0.001  1.00 (0.93-1.07)b 0.890  1.30 (1.24-1.50) 0.000  1.01 (0.95-1.08)b 0.692
UADT SCC 9 1.24 (0.89-1.73) 0.197  0.96 (0.82-1.13)b 0.626  1.25 (0.90-1.73) 0.189  0.98 (0.84-1.15)b 0.820
Colorectal cancer 7 1.29 (0.85-1.95) 0.234  0.89 (0.78-1.02) 0.091  1.35 (0.90-2.04) 0.152  0.94 (0.84-1.05) 0.267
Colorectal cancer in HWE 5 1.25 (0.62-2.50)b 0.536  0.84 (0.72-0.97) 0.019  1.30 (0.64-2.66)b 0.470  0.88 (0.77-1.01) 0.073
Lung cancer 5 1.38 (0.92-2.06) 0.119  1.05 (0.92-1.19) 0.485  1.34 (0.90-2.00) 0.147  1.06 (0.95-1.20) 0.298
Lung cancer in HWE 3 1.67 (1.06-2.63) 0.027  1.05 (0.91-1.21) 0.526  1.64 (1.04-2.58) 0.032  1.08 (0.95-1.23) 0.232
Brain cancer 4 1.11 (0.71-1.73) 0.664  0.89 (0.68-1.16)b 0.390  1.42 (0.73-1.79) 0.562  0.90 (0.72-1.13)b 0.375
Prostate cancer 3 1.48 (0.88-2.48) 0.136  1.22 (0.74-2.00)b 0.445  1.51 (0.91-2.53) 0.113  1.25 (0.81-1.94)b 0.321
Endomtrial cancer 3 1.14 (0.74-1.77) 0.560  0.92 (0.80-1.06) 0.240  1.64 (0.75-1.80) 0.495  0.95 (0.84-1.07) 0.394
Other cancers 13 1.17 (0.88-1.54) 0.281  1.10 (0.97-1.26)b 0.147  1.14 (0.87-1.51) 0.350  1.09 (0.97-1.23)b 0.152
Other cancers in HWE 12 1.14 (0.86-1.51) 0.368  1.09 (0.95-1.26)b 0.216  1.12 (0.84-1.47) 0.446  1.08 (0.95-1.22)b 0.236

Bold indicates statistically significant P value
All summary ORs were calculated using fixed-effects models, unless stated otherwise
# Number of studies
b Random-effect models
HWE − Hardy Weinberg Equilibrium
doi: 10.1371/journal.pone.0075367.t003

Table 4. Summary ORs (95% CI) for MGMT Leu84Phe variant categorized by ethnicity and ethnicity / tumor site under
different genetic models.

MGMT Leu85Phe N# TT versus CC  TT+TC versus CC  TT versus TC + CC  T versus C

    (dominant genetic model)  (recessive genetic model)   

Ethnicity  OR (95%CI) P  OR (95%CI) P  OR (95%CI) P  OR (95%CI) P
Caucasian 15 1.32 (1.10-1.61) 0.004  0.98 (0.90-1.06)b 0.560  1.34 (1.11-1.62) 0.002  1.00 (0.93-1.09)b 0.923
Caucasian in HWE 13 1.29 (1.05-1.59) 0.014  0.96 (0.88-1.06)b 0.407  1.31 (1.07-1.61) 0.009  0.99 (0.91-1.08)b 0.827
Asian 13 0.97 (0.58-1.61) 0.898  1.07 (0.88-1.31)b 0.485  0.94 (0.57-1.56) 0.805  1.03 (0.86-1.22)b 0.779
Asian in HWE 11 1.19 (0.68-2.09) 0.546  1.04 (0.83-1.30)b 0.724  1.15 (0.65-2.01) 0.633  1.02 (0.83-1.26)b 0.861
Mixed ethnicities 16 1.27 (1.01-1.60) 0.041  1.01 (0.91-1.13)b 0.813  1.28 (1.02-1.61) 0.037  1.04 (0.95-1.13)b 0.457
Mixed ethnicities in HWE 15 1.25 (0.99-1.58) 0.057  1.00 (0.90-1.12)b 0.997  1.26 (1.00-1.58) 0.052  1.08 (0.95-1.22)b 0.236

Caucasian             
Lung cancer 3 1.62 (1.04-2.53) 0.035  1.12 (0.96-1.31) 0.159  1.57 (1.01-2.45) 0.048  1.14 (0.99-1.31) 0.061
UADT SCC 3 0.88 (0.33-2.33)b 0.794  0.85 (0.66-1.08)b 0.182  0.92 (0.36-2.35)b 0.865  0.87 (0.66-1.14)b 0.312

Asian             
UADT SCC 3 0.94(01.15-5.84) 0.950  0.96(0.7101.30) 0.800  0.93 (0.15-5.76) 0.939  0.97 (0.73-1.28) 0.802

Mixed ethnicities             
Colorectal cancer 4 1.46 (0.89-2.38) 0.134  0.85 (0.72-1.01) 0.059  1.53 (0.94-2.50) 0.088  0.91 (0.79-1.06) 0.220

Bold indicates statistically significant P value
All summary ORs were calculated using fixed-effects models, unless stated otherwise
# Number of studies
b Random-effect models
UADT SCC − Upper Aerodigestive Tract Squamous Cell CarcinomaHWE − Hardy Weinberg Equilibrium
doi: 10.1371/journal.pone.0075367.t004
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results were based on unadjusted information, and the lack of
original data limited estimation of the effect of confounding
factors on cancer risk. Notably, confounding factors such as
sex, age, alcohol drinking, smoking, and socioeconomic status
may alter the association of genetic variants with cancer
susceptibility. Third, the number of eligible studies in the
subgroup analysis was limited. Subsequently, some subgroup
meta-analysis might not have enough statistical power to
accurately evaluate the association between the MGMT
Leu84Phe polymorphism and cancer risk. More importantly,
haplotype analysis has been regarded as a much better
approach in genetic association research. However, since
more detailed individual information on genotypes of the other
polymorphisms of MGMT was unavailable, we were not able to
conduct linkage disequilibrium and haplotype analysis in this
study.

In conclusion, we observed several significant associations
of the MGMT Leu84Phe polymorphism with cancer
susceptibility. MGMT Leu84Phe variants may increase lung
cancer risk, especially in Caucasians, but reduce colorectal
cancer risk, indicating some differences among different tumor
sites. In addition, MGMT Leu84Phe variants may increase
cancer risk in Caucasians and in the mixed ethnicities group,

which suggests an appreciable difference among different
ethnic populations. Further well-designed study with greater
sample size will be helpful in clarifying the haplotypes, gene–
gene and gene–environment interactions on MGMT
polymorphisms and tissue-specific cancer risk in ethnicity
specific populations, and further mechanistic studies are
warranted to elucidate the exact functional roles of MGMT
variants.
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