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Abstract: Increased triacylglycerols’ (TAG) synthesis, insulin resistance, and prolonged liver lipid
storage might lead to the development of non-alcoholic fatty liver disease (NAFLD). Global preva-
lence of NAFLD has been estimated to be around 25%, with gradual elevation of this ratio along with
the increased content of adipose tissue in a body. The initial stages of NAFLD may be reversible, but
the exposition to pathological factors should be limited. As dietary factors greatly influence various
disease development, scientists try to find dietary components, helping to alleviate the steatosis.
These components include n-3 polyunsaturated (PUFA) fatty acids, especially eicosapentaenoic acid
(EPA) and docosahexaenoic acids (DHA). This review focused on the role of resolvins, protectins and
merensins in NAFLD.
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1. Introduction

Increased triacylglycerols’ (TAG) synthesis, insulin resistance, and prolonged liver
lipid storage might lead to the development of non-alcoholic fatty liver disease (NAFLD) [1].
NAFLD is defined as lipids’ accumulation in 5% of hepatocytes or fat storage in at least 5%
of liver weight [2]. Global prevalence of NAFLD has been estimated to be around 25%, with
gradual elevation of this ratio along with the increased content of adipose tissue in a human
body [3]. It was estimated that as much as 90% of morbidly obese patients will develop
different stages of NAFLD [4]. The most important factors in the etiology of NAFLD
include poor eating habits with excessive caloric intake and insufficient physical activity. It
has been well documented that diets containing high amounts of simple carbohydrates and
saturated fatty acids promote steatosis in the liver [5]. The initial stages of NAFLD may be
reversible, but the exposition to pathological factors should be limited. As dietary factors
greatly influence various disease phenotypes, scientists try to find dietary components
helping to reduce the steatosis. These components include n-3 polyunsaturated (PUFA)
fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA) [6].
This review explains mechanisms in which active EPA and DHA derivatives affect liver
metabolism and NAFLD phenotype. Furthermore, it focused on the impact of resolvins,
protectins, and marensins in liver metabolism and NAFLD pathophysiology, all of which
were not discussed in existing reviews.

2. Dietary Trends of N-3 Fatty Acids’ Intake

According to a 1990–2010 analysis [7], global mean consumption of PUFA n-3 from
seafood, the main source of EPA and DHA, was 163 mg/day, with wild variation between
countries (from 5 to 3886 mg/day). Only in 45 out of 187 countries analyzed were mean
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intakes ≥250 mg/day, which is in line with current guidelines. The other study demon-
strated that, in almost 100 countries, the consumption of PUFA n-3 consumption was very
low and did not exceed 100 mg/day [8]. Givens et al. reported that current intake of EPA
and DHA in Europe ranges from 50 to 344 mg/day [7]. Howe at al. revealed that in persons
living in Australia the intake was estimated on 143 mg/day [9].

3. N-3 PUFA Supplementation in NAFLD

In 2016, Guo et al. [10] conducted a meta-analysis of randomized controlled trials
(RCTs), which aimed to determine the effectiveness of n-3 PUFA supplementation in
NAFLD. The study included 11 RCTs and 10 case- control studies. N-3 PUFA supplemen-
tation significantly improved alanine aminotransferase (ALT) concentration (−7.53 U/L;
95% CI: −9.98, −5.08; p < 0.001). Four trials explored the impact of n-3 PUFA supple-
mentation on liver fat content and the pooled synthesis showed that the mean difference
in this parameter in persons receiving the supplementation compared to controls was
−5.11% (95% CI: −10.24, 0.02%; p = 0.051). Consequently, the authors were able to prove
that n-3 PUFA supplementation significantly reduces the ALT, aspartate aminotransferase
(AST), and TAG concentrations and, marginally, liver fat content. The study provides
substantial evidence that n-3 PUFA supplementation, especially DHA, has a favorable
effect in treatment of NAFLD [10].

A meta-analysis conducted by Yan et al. [11], which included 18 studies with a
total number of 1424 patients and utilized the fixed effect model, found a significant
improvement in liver fat content (RR: 1.56; 95% CI: 1.23 to 1.97, seven studies included),
ALT (SMD = −0.50; 95% CI: −0.88 to −0.11, 14 studies included), AST (SMD = −0.54;
95% CI: −1.04 to −0.05, 12 studies included), g-glutamyl transferase (GGT, SMD = −0.48;
95% CI: −0.64 to −0.31, eight studies included), TAG (SMD = −0.47; 95% CI: −0.76 to
−0.19; 16 studies included), insulin resistance (HOMA-IR, WMD = −0.4; 95% CI: −0.58
to −0.22; eight studies included), and fasting glucose (SMD = −0.25; 95% CI: −0.43 to
−0.06; seven studies included) in persons receiving n-3 PUFA. The results indicated that
n-3 PUFA supplementation may improve metabolic and cardiovascular risk factors and
surrogate markers for NAFLD progression. However, there was significant interstudy
heterogeneity, although a subgroup and meta-regression analyses showed no significantly
clear methodological discrepancy [11].

The recent meta-analysis conducted in 2020 by Lee at al. [12], comprising 22 RCTs
with 1366 participants, confirmed previous results. The meta evidence was that n-3 PUFA
supplementation significantly improves the levels of TAG, total cholesterol, high-density
lipoprotein (HDL), and body mass index (BMI), with pooled mean difference and 95% CIs
between supplemented persons and controls as follows: −28.57 (−40.81 to −16.33), −7.82
(−14.86 to −0.79), 3.55 (1.38 to 5.73) and −0.46 (−0.84 to −0.08), respectively [12].

Recent research undoubtedly demonstrated that supplementation of n-3 PUFA can
support the steatosis reduction and significantly improves key biochemical characteristics
of NAFLD. The most popular n-3 source in RCTs included in the abovementioned syntheses
was fish oil containing high concentrations of EPA and DHA. Studies underline that these
components stand for high biological activity of fish oil [6].

4. EPA, DPA and DHA Derivatives

Provided with a diet, α-linolenic acid (ALA) and linoleic acid (LA) undergo changes,
catalyzed by many enzymes that extend their structure (elongases) and form double bonds
(desaturases). Metabolic changes of ALA and LA take place in the endoplasmic reticu-
lum [13]. As a result of the action of these enzymes (∆5-, ∆6-desaturases and elongases),
ALA forms EPA (C20: 5 n-3), DPA (C22: 5 n-3) and DHA (C22: 6 n-3). The extent of ALA to
its metabolites’ conversion varies in terms of gender. For example, in men, ALA to EPA
conversion ranges from 6 up to 7.9%, ALA to DPA is approximately 6%, and ALA to DHA
frequency does not exceed 1% with a range between 0 and 3.8%. Meanwhile, in women,
these percentages are up to 21.1% regarding conversion to EPA, 5.9% to DPA, and 9.2% to
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DHA [14]. High ALA-to-DHA-conversion ratio in women results from higher demand on
DHA supply during pregnancy and lactation [15]. It has also been shown that about 9% of
DHA from the diet can be converted back into EPA as a result of DHA β-oxidation [16].
ALA conversion to long-chain derivatives and, consequently, their levels in plasma and
phospholipids of red blood cells depends also on the polymorphism of the FADS1 and
FADS2, genes coding ∆5- and ∆6-desaturase proteins [17].

The functional relationship between n-3 and n-6 PUFA pathways of their metabolic
transformations involves competition for the substrate. The predominance of LA in the
diet inhibits the synthesis of EPA and DHA, with the increased synthesis of arachidonic
acid (ARA, n-6) [18]. Improper balance between n-3 and n-6 in the diet may result in
the disturbance of the physiological balance [19]. The enzymatic competition involves
also lipoxygenases (LOX) and cyclooxygenases (COX) and other enzymes responsible
for the PUFA transformation to cytokine mediators. DHA and DPA can be converted
into anti-inflammatory and organ-protective components, such as D- series of resolvins,
protectins, and maresins [20]. EPA, dependent of metabolic factors, is converted to both
anti-inflammatory (E- series of resolvins) and inflammatory mediators (prostaglandins,
tromboxanes, leukotrienes and hydroxy acids) [21]. The products of n-3 PUFA conversion
are provided in Table 1 [22–27].

Table 1. Enzymatic deratives of EPA, DHA and DPA.

EPA

Enzyme Derivatives

P 450 20-hydroksyeicosapentaenoic acid (20-HEPE)

P 450/ACA-COX-2 18-hydroperoksyeicosapentaenoic acid
18-HpEPE

ACA-COX-2/5LOX Resolvin E1, E2 (RvE1, RVE2)

P-450/5-LOX Resolvin E3 (RvE3)

LOX-5 5-hydroxyeikozapentaenoic acid (5-HEPE)

ACA-COX-2 Leukotoriene A5 (LTA5)

COX-1/2 Leukotiene B5 (LTB5)

5- hydroksyoxopentaenoic acid (5-oxo-EPA)

Prostaglandin G3

Prostacyclins I3

Tromboxanes 3

DHA

ACA-COX-2, 15-LOX 17-hydroperoksyeicosapentaenoic acid
17-HpDHA

5-LOX 7- hydroxyoxodocosaheksaenoic acid
(7-oxo-DHA)

12-LOX 14-hydroperoksyeicosapentaenoic acid
14-HpDHA

ACA-COX-2, 15-LOX Marensins 1,2 (MaR1, MaR2)

ACA-COX2, 15/5-LOX Protectins 1 (PD1)

Resolvins D1–6 (RvD1, RvD2, RvD3, RvD4,
RvD5, RvD6)
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Table 1. Cont.

DPA

15/5-LOX Resolvins D1,D2,D5 (RvD1, RvD2, RvD5)

COX-2 Resolvins 13-series (RvT1, RvT2, RvT3, RvT4)

ACA-COX-2 17-hydroperoksydocosapentaenoic acid
1(7-HpDPA)

15-LOX Protectins 1,2 (PD1, PD2)

12-LOX Marensins 1,2 (MaR1, MaR2)

5. Resolvins

Resolvins are cytokines of an anti-inflammatory nature produced during EPA, DPA
and DHA metabolism. E- series of resolvins are produced by oxygenation of EPA, a process
catalyzed by ACA-COX-2, resulting in 18-HpEPE formation [28]. The next step requires
the reduction of 18-HpEPE to 18-HEPE and oxygenation by 5-LOX. This hydroperoxide
metabolite is converted via a hydrolyzation pathway to RvE1. The reduction of hydroper-
oxide by a peroxidase can generate RvE2 [29]. D-series of resolvins are produced in two
oxygenation steps. The first step is mediated by 15-LOX and results in the formation of 17-
HpDHA, which is then quickly reduced to 17-HDHA. The next oxygenation step requires
5-LOX and leads to the formation of a peroxide intermediate that is reduced to RvD5 and
further hydrolyzed to RvD1 and RvD2 [27]. At the same time, the oxygenation by 5-LOX
at the C-4 carbon position generates RvD3, RvD4 and RvD6 [30]. DPA is a precursor of
two series of resolvins: D- and 13-series with a DPA core. Resolvin D-series from DPA are
produced by the same enzymes as DHA. The 13-series of resolvins are produced by the
oxygenation with COX-2 to 13-HDPA and S-nitrosylation [31].

COX-2 is widely known to mediate prostaglandin production. However, it can be
acetylated in the presence of aspirin or other non-steroidal drugs. ACA-COX-2 does not
catalyze prostaglandins’ production but mediates the resolvins’ and protectins’ forma-
tions [32]. Simon et al. revealed that daily aspirin use was associated with less severe
histological features of NAFLD and NASH and lower risk for progression to advanced
fibrosis with time [33].

In vitro studies revealed that RvD1 reduced apoptosis and tunicamycin-induced TAG
accumulation through c-Jun N-terminal kinase (JNK) pathway in HepG2 cells. Further-
more, the resolvin significantly decreased TAG accumulation and SREBP-1 expression [34].
Animal studies proved that resolvins have a great influence on NAFLD course. Rodriguez
et al. showed that RvE1 (administered in a regimen of 100 ng/body weight, twice weekly
for four weeks) suppressed fibrosis in Sprague–Dawley rats, which received diethylni-
trosamine (70 mg/mg body weight intraperitoneally) once a week. RvE1 intake normalized
albumin, ALT, and lactate dehydrogenase (LDH) levels and decreased the histological
distortion, inflammatory infiltration, necrotic areas, and microsteatosis [35]. González-
Périz conducted research, in which n-3 PUFA was administered to ob/ob mice, being
an animal model of fatty liver disease. The results proved that the expression of genes
involved in insulin and glucose metabolism (namely PPARγ and GLUT-2/GLUT-4) and
insulin receptor (IRS-1/IRS-2) were up-regulated. Further analysis showed that PUFA
metabolites decreased the formation of pro-inflammatory eicosanoids originated from n-6
PUFA and enhanced the formation of resolvins and protectins. Furthermore, RvE1 and
PD1 limited the insulin-sensitizing effects and increased adiponectin expression similarly
to rosiglitazone (antidiabetic drugs) [36]. Rius et al. tested the ability of RvD1 to improve
the metabolic parameters initiated by caloric restriction in obese mice with non-alcoholic
steatohepatitis (NASH). In order to reduce body weight and fat content, mice underwent
40% calorie restriction diet and were administered with RvD1 (300 ng/day) or placebo. In
mice administered with the intervention product, adiponectin expression at mRNA and
protein levels increased and liver macrophage infiltration was inhibited. Moreover, RvD1
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induced macrophages’ transformation from M1- to M2-like anti-inflammatory phenotype
and initiated macrophage immune response. In the liver tissue, the resolving supply
decreased hypoxia-induced expression of COX-2, IL-1β and IL-6 [37]. Similar results were
provided by Hellmann et al., who evaluated whether RvD1 (2 µg/kg) administration
improves insulin sensitivity by diminishing chronic inflammation associated with obesity.
The study results provided evidence that RvD1 improved blood fasting glucose, increased
adiponectin production and simultaneously decreased the expression of IL-6 in adipose
tissue. Moreover, macrophages’ F4/80 + CD11c + structure formation was reduced by
>50% in adipose tissue [38]. Pal et al. investigated the effects of 4-day RvE1 administration
in C57BL/6J mice and found that such intervention diminished hyperinsulinemia and
hyperglycemia [39].

6. Protectins

Protectins are anti-inflammatory molecules produced from DHA and DPA. A first
compound detected from the protectin family was PD1 [40]. It is produced by oxygena-
tion of DHA/DPA through a pathway activated by 15-LOX [30]. The 15-LOX generates
17-HpDHA, which is rapidly converted to a 16, 17-epoxide-containing molecule after the
epoxidation to PD1 [41]. Protectin DX (PDX), an isomer of protectin/neuroprotectin D1
derived from DHA, enhances the palmitate-induced TAG accumulation through the regu-
lation of SREBP1 pathway. When HepG2 cells were treated with PDX, the suppression of
endoplasmic reticulum stress via AMPK-induced ORP150 expression was found. Addition-
ally, reduced hepatic steatosis induced by a high-fat diet was detected [42]. González-Périz
et al. examined the effect of n-3 PUFA supplementation (6% of the lipid in the diet came
from by n-3 PUFA) in ob/ob mice. A mass spectrometry lipidomic analysis showed that
n-3 PUFA reduced the formation of pro-inflammatory eicosanoids derived from n-6 PUFA
and increased the formation of resolvins and protectins. The study provided evidence
that RvE1 and PD1 possess the insulin-sensitizing and antisteatotic effects similarly to
the antidiabetic drug rosiglitazone. The study confirmed that PDX-associated IL-6 release
promotes hormone-dependent suppression of hepatic glucose [36].

There is still limited information about role of protectins in NAFLD. Maciejewska et al.
found that, during NAFLD progression, the concentration of protectins’ D1 does not change
significantly [43]. Protectins have a great impact on macrophage polarization (a process
by which macrophages produce distinct functional phenotypes as a reaction to a specific
microenvironment) [44], which is associated with the pro-inflammatory state in adipose
and liver tissues. Macrophage polarization to M1 phenotype and increased ratio of M1/M2
induce proinflammatory signals and make the adipocytokines from adipose tissue to be
released [45]. Negative macrophage polarization and increased release of inflammatory
cytokines are very important factors in NAFLD pathogenesis and progression [46].

7. Maresins

Maresins are DHA- and DPA-derived molecules produced by macrophages [47].
Maresins are biosynthesized via lipoxygenation by placing molecular oxygen at the carbon-
14 position. The biosynthesis of maresins is initiated by 12-LOX and involves DHA and DPA
oxygenation. Afterwards, 14-hydroperoxy-intermediate is epoxidated and converted to 13,
14-epoxy-maresin. Moreover, 13, 14-epoxide intermediates inhibit the 12-LOX conversion
of eicosatetraenoic acid. It is considered that 13, 14-epoxide intermediates might have a
positive influence on the pathway of maresin biosynthesis and boost anti-inflammatory
effect [48].

Maresins are able to decrease the synthesis of proinflammatory cytokines, namely,
TNF-α, IL-1β and IL-6. Moreover, maresins inhibit neutrophil infiltration, restrict the
further recruitment of polymorphonuclear leukocytes (PMNs), and excite the nonphlogistic
recruitment of mononuclear cells [49]. Maresins might also reduce the inflammation
via lowering the production of leukotriene B4 (LTB4) and inhibition of leukotriene A4
hydrolase (LTA4H.) [50].
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As a proresolving lipid mediator, MaR1 activates protein kinase C, which results in
limited infiltration of neutrophil and lowered levels of chemokine C-X-C motif ligand 1,
IL-6 and TNF- α [51]. Viola et al. confirmed that MaR1 prevented atheroprogression in
smooth muscle cells by changing macrophage profile, making a reparative phenotype to be
originated, and stimulated the synthesis of collagen, enhancing overall healing abilities [52].
In another study, it was proven that MaR1 reduced TNF-α, IL-1β, monocyte chemotactic
protein 1 (MCP-1), and the proinflammatory M1 macrophage phenotype marker Cd11c
expression and upregulated glucose transporter-4 protein (Glut-4) and adiponectin in
diet-induced obese (DIO) mice. MaR1 supply increased adiponectin gene expression and
improved the insulin tolerance test, Akt and AMPK phosphorylation, and IL-10 synthesis
in ob/ob mice [53]. Maresin 1 may also improve diabetic nephropathy by decreasing
fibronectin (FN), NLRP3 inflammasome and TGF-β1 expression in mouse glomerular
mesangial cells [54].

Jung et al. tested MaR1 action under hyperlipidemic conditions and noticed that
MaR1 reduced the hepatocyte endoplasmic reticulum stress and reduced lipid deposition
in the liver. Moreover, MaR1 can increase AMP-induced protein kinase activity, which is
associated with increased Ca2+—ATPase 2b (SERCA2b) expression in the sarcoendoplasmic
reticulum [55]. It was shown that administration of MaR1 increased Serca2b mRNA
expression and hepatic AMPK phosphorylation, while ER hepatic stress was reduced in
mice administered with a high-fat diet (HFD). In addition, treatment with MaR1 inhibited
hepatic lipid synthesis, thus limiting steatosis in the liver of HFD-fed mice [55].

Laiglesia et al. conducted a study in DIO mice. Animals were fed with MaR1 (2–
10 µg kg−1 i.p., 20 days and 2 µg kg−1, i.p., or 50 µg kg−1) by oral gavages for 10 days,
respectively. Maresin administration reduced liver steatosis via decreasing lipogenic
enzymes’ expression (fatty acid synthase (FAS) and stearoyl-CoA desaturase-1) and influ-
enced AMPK activation by inducing autophagy. The intervention also decreased the level
of TAG in the liver in mice with obesity-related hepatosteatosis. These reports suggest that
MaR1 might be a useful tool in the treatment of NAFLD by reducing hepatocyte lipogenesis
induced by stress in the endoplasmic reticulum [56].

Maresin 2 (MaR1), the second member of maresins’ family, namely 13, 14-diHDHA,
is also produced via 12-LOX activity [57]. MaR2 plays a role in limiting PMN infiltration,
similarly to MaR1. However, there is still limited data on properties of MaR2 in the context
of NAFLD.

8. Conclusions

N-3 fatty acids and their derivatives have a beneficial effect in many diseases, including
NAFLD. Despite the fact that n-3 supplementation supports NAFLD treatment, there is still
insufficient information about the role of EPA, DHA and DPA derivatives in preventing
the disease progression. In vitro and in vivo studies showed that all anti-inflammatory
derivatives of n-3 fatty acids may have a similar mechanism of action, including decrease of
inflammation, reduction of lipogenesis in the liver, and improvement of insulin sensitivity
(Figure 1). It should be highlighted that the therapeutic implication of resolvins’, marensins’
and protectins’ supply in NAFLD supportive therapy still remains unclear. In recent clinical
trials, the supplementation was based on fish oil, n-3, or EPA and DHA supplementation.
In the concept of PUFA supplementation, we cannot predict the enzymatic pathways of
n-3 derivatives’ productions. However, clinical trials should verify the findings to further
consider these compounds as beneficial supplements in NAFLD patients.
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Figure 1. Resolvins’, protectins’ and marensins’ mechanisms of action. Created with BioRender.com
(22 April 2021).
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