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In view of time delay existing in gene regulation, by using the analysis idea andmethods of complex network, this paper proposes a
multi-time-delay gene regulation network analysis method based on the fuzzy label propagation. 0e algorithm takes the relative
change trend coefficient, the correlation coefficient, and the mutual information as the similarity measurement indexes for the
gene pair, fully reflecting the correlation of gene pairs and simultaneously obtaining the gene regulation relationship and the time
delay through the fuzzy label propagation algorithm of the semisupervised learning. Experimental results of the cell cycle-
regulated genes of yeast show that the proposed construction method of GRN can not only correctly select potential regulation
genes but also provide details about the gene regulator model, thereby more accurately constructing gene regulation network.

1. Introduction

0e interaction between the implicit genes in gene ex-
pression data can be used to construct gene regulatory
network by analysing gene expression data [1]. 0e research
of gene regulatory network is one of the topics of post-
genomic informatics. It mainly analyses gene expression
data, uses bioinformatics methods and technologies to
identify the topological structure of gene network to deeply
understand the structure and function of biology and the
mechanism of pathological changes, and understands life
phenomena in a systematic framework [2, 3]. Gene network
research can be used to reveal the development process and
mechanism of biological tissue system and help understand
the regulation of internal substances, which can promote
people to effectively identify the cause of disease. In par-
ticular, the study of human tumor gene regulatory network
can make us have a deep understanding of the regulatory
relationship of tumor related genes and then provide basis
and guidance for tumor gene therapy. Gene regulatory
network, as the molecular basis of basic cell life activities, has
the biological characteristics of randomness, complexity,
spatiotemporal specificity, and dynamic. 0is makes the
construction of gene regulatory network very difficult.

0e time-series gene expression data have been widely
applied in the research on the gene regulation network, and
attention to the time delay has been paid increasingly as the
important factor for the gene regulation network con-
struction [4]. 0e time-delay processing can be generally
classified into two types: first type—firstly calculate the time
delay among genes, then translate the time-series gene ex-
pression data to the calculated time delay to achieve the
effect of removing delay, and finally construct the gene
regulation network to analyse the regulation relationship
among the genes; second type—directly construct the time-
delay gene regulation network model and obtain the time
delay and the regulation relationship through the time-delay
regulation network method [5]. In the first type of analysis,
Ahsen et al. [6] obtained the phase and frequency of two
gene expression data in the frequency domain through the
frequency domain change and calculated the time delay on
the basis of the relationship between the phase and the
frequency. Huang et al. [7] obtained the mutual time delay
among 101 genes by using this time-delay estimation
method, constructed the gene regulation network by
adopting the concept of community detection, and obtained
the better result. 0e delay time obtained by this method is
not always the integer multiple of time interval, and it is

Hindawi
Journal of Healthcare Engineering
Volume 2020, Article ID 2389527, 8 pages
https://doi.org/10.1155/2020/2389527

mailto:zhangqian374@126.com
https://orcid.org/0000-0003-1475-2273
https://orcid.org/0000-0002-7488-449X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2389527


necessary to obtain the delay removed gene expression value
by using the curve fitting method, which is not conducive to
the follow-up study.

0e regulation time of gene expression in cells is not
synchronous, and the regulation delay length is also different
[8]. 0e existing dynamic Bayesian network model of gene
expression regulation network based on time-series gene
expression data is difficult to model the asynchronous multi-
time-delay regulation relationship [9]. In order to solve this
urgent problem, this paper proposes a semisupervised
learning method that can accurately model the asynchro-
nous and multi-time-delay regulatory relationship between
genes. It can learn the gene expression regulatory network
with asynchronous and multi-time-delay characteristics
from the time-series expression data of gene chip. In the
learning process, it can use the known class data and the
unknown class data to obtain more information and have
better learning effect.

2. Related Work

0e reconstruction of gene regulatory network based on
expression data is also called reverse engineering or network
inference. In recent years, various algorithms have been
proposed by analysing gene expression data, such as GA
[10], gene programming [11], evolutionary strategies [12],
and ACO [13]. However, the GRNs modeled by the above
algorithm consist of only a limited number of genes. How to
reconstruct large-scale gene regulatory network is still an
unknown biological problem.

At present, there are various models to model gene
regulatory network. 0e simplest model is based on Boolean
networks. In reverse engineering, Boolean networks are used
to infer the underlying topology and the Boolean functions
at the nodes from the observed gene expression data. In
addition, continuous network is an extension of Boolean
network [14], which is also widely used to model gene
regulatory network. Nodes still represent the regulatory
effect of genes and their connections on gene expression.
Genes in biological systems show continuous range of ac-
tivity levels, and it has been considered that continuous
networks can capture some properties of gene regulatory
networks that do not exist in Boolean models. Many
methods based on continuous networks have been proposed
to infer gene regulatory networks, for example, based on
linear regression and based on mutual information. In
Arachne algorithm, the specific information of each gene
pair can be calculated in an appropriate way to get the actual
value of mutual information, and compared with the fixed
threshold value, a regulatory interaction can be inferred. In
addition, many probabilistic graphical models have been
proposed to measure the high-order dependence between
different gene expression patterns. Bayesian network is one
of the most popular methods to infer gene regulatory net-
work. In Bayesian networks, directed acyclic graphs are used
to indicate the conditional dependence between random
variables [15].

Many researchers think that the time delay among the
genes is constant value, and the time delay varies from gene

pairs so that the analysis on the multi-time-delay gene
regulation network was proposed in succession. To be fa-
vorable to construct the gene regulation network, the time
delay is normally regarded as the integral multiple of time
interval. Based on this, Yang et al. [16] firstly established the
time-delay gene expression matrix to dig the time-delay
regulation relationship among the genes through the deci-
sion tree classifier. Yang [17] constructed the multi-time-
delay gene regulation network by using the high-order
Markov dynamic Bayesian network. Raja Chowdhury and
Chetty [18] constructed the multi-time-delay gene regula-
tion network by using the correlation coefficient method. In
this method, the time-delay correlation coefficient among
the genes was firstly established, the maximum value of
correlation coefficient in each gene pair and the time delay
corresponding to this value were obtained through the
dynamic threshold method, and finally the maximum value
of correlation coefficient in the gene pair was compared with
the given threshold to screen the correlation coefficient
greater than the threshold and obtain the genes corre-
sponding to these correlation coefficients and the time delay
to complete the analysis on the multi-time-delay gene
regulation network. 0is method is simple and can effec-
tively handle the time-delay problem. Aderhold et al. [19]
established the time-delay mutual information among the
genes and constructed the multi-time-delay gene regulation
network through the dynamic Bayesian network: firstly
construct the multi-time-delay mutual information matrix
to select the larger gene in the mutual information and then
complete the analysis on the gene regulation relationship by
the dynamic Bayesian network. Better effect has been ob-
tained by this method. However, most of these time-delay
methods start from the relationship between genes but ig-
nore the characteristics of genes.

0e single metrical scale was used when the similarity
among the genes was measured by the above methods. When
constructing the gene regulation network, Liu et al. [20]
pointed that the single similarity evaluation scale cannot
reflect the correlation among the genes very well, so they
evaluated the correlation among the genes by using the
combined method of correlation coefficient and interquartile
range and obtained better gene regulation relationship
through the vector analysis by taking the interquartile range of
the gene pair as the horizontal ordinate and the correlation
coefficient as the vertical coordinate. By reference to [21, 22],
this paper combines the multi-time-delay correlation coef-
ficient, the mutual information, and the relative change trend
coefficient to construct the new gene pair correlation eval-
uation matrix and complete the analysis on the multi-time-
delay gene regulation network through the semisupervised
learning method of fuzzy label propagation.

3. Relevant Notes

0e time-series gene expression data are denoted as
V � (xij)N×P, wherein xij expresses the expression value of
gene i at the time point j and j � 1, 2, 3, . . . , P. 0e maxi-
mum delay time among the genes is denoted as A times the
time interval.
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3.1. Time-Delay Relative Change Trend Coefficient. 0e
matrix obtained by gene expression data discretization is
denoted as D � (bij)N×(P−1).

bij �

1, if xij < xi(j+1),

0, if xij � xi(j+1),

−1, if xij > xi(j+1),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where j � 1, 2, 3, . . . , P − 1.
For any two genes m and n in the dataset, the relative

change trend coefficient for the gene n and the gene m at the
time point j is denoted as smn,j after the gene n is delayed by
a unit of time and can be calculated by the following the
formulas:

bmn,j
′ � bmj × bn(j+a), j � 1, 2, 3, . . . , P − 1 − a, (2)

smn,j � bmn,j
′ × bmn,(j+1)

′ , j � 1, 2, 3, . . . , P − 2 − a. (3)

0e value of smn,j is −1, 0, 1, wherein 1 indicates the
similar change trend of two genes.

0e relative change trend of two genes after delay is
graded.0e number of values equal to 1 is denoted as smn

′ , and
the relative change trend score for the gene n and the gene m

is denoted as scorea
mn after the gene n is delayed by a unit of

time.

scorea
mn �

smn
′

P − 2 − a
. (4)

3.2. Time-Delay Correlation Coefficient. 0e correlation
coefficient for the gene n and the gene m is denoted as ra

mn

after the gene n is delayed by a unit of time.

r
a
mn �

􏽐
P−a
j�1 xmj − xm􏼐 􏼑 xn(j+a) − xn􏼐 􏼑

���������������

􏽐
P−a
j�1 xmj − xm􏼐 􏼑

2
􏽱 �����������������

􏽐
P−a
j�1 xn(j+a) − xn􏼐 􏼑

2
􏽱 , (5)

where xm expresses the mean value of the former P − a

expression values for the gene m and xn expresses the mean
value of the latter P − a expression values for the gene n.

3.3. Time-Delay Mutual Information. Mutual information
expresses the shared information amount between two
genes, firstly performing interval partition for the gene
expression dataset and then calculating the delay mutual
information matrix among the genes. 0e mutual infor-
mation for the gene n and the gene m is denoted as Ma

mn after
the gene n is delayed by a unit of time.

M
a
mn � H(m) + H(n) − H(m, n), (6)

where H is information entropy. 0e calculation method is
as shown in formulas (7) to (9):

H(m) � − 􏽘 pmlog2 pm( 􏼁, (7)

H(n) � − 􏽘 pnlog2 pn( 􏼁, (8)

H(m, n) � − 􏽘 pm,nlog2 pm,n􏼐 􏼑, (9)

where m takes the former P − a expression value and n takes
the latter P − a expression value.

3.4. Gene Pair Similarity Evaluation Matrix. 0e gene pair
similarity evaluation matrix is I � (imnfa

′ )N×N×3×A, imnfa
′

expresses the expression value of the attribute f for the gene
n and the gene m after the gene n is delayed by a unit of time,
and a � 0, 1, . . . , A, wherein the attributes of gene pair are,
respectively, relative change trend, correlation coefficient,
and mutual information. For the convenience of subsequent
analysis, the time-delay similarity evaluation matrix is
denoted as I � (imna

′ )N×N×A, wherein imna
′ expresses the

similarity sample for the gene n and the gene m after the gene
n is delayed by a unit of time.

4. Multi-Time-Delay Gene Regulation Network
Based on Fuzzy Label Propagation

4.1. Algorithm Description. 0e converted datasets are
classified by using the fuzzy label propagation algorithm of
semisupervised learning. 0ere are two label values: 1 and
−1, wherein 1 indicates that the regulation relationship exists
between two genes in the gene pair and −1 indicates that
there is no regulation relationship.

In the fuzzy label propagation algorithm, firstly divide I

into the labeled data set IL and the unlabeled dataset IU and
calculate the similarity S(mna)(m′n′a′) of any two samples imna

′
and im′n′a′′ by using RBP kernel function.

S(mna) m′n′a′( ) �

0, m � m′, n � n′, a � a′,

exp
imna
′ − im′n′a′′

����
����
2

2σ2
⎛⎝ ⎞⎠, other,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

where σ expresses the variance of difference value between
two samples.

Express the category of sample imna
′ with the vector

F(mna) of 1 × 2 dimensions:

(1) If the sample imna
′ ∈ IL,

F(mna)j′ �
1, imna
′ ∈ the category j′,

0, imna
′ ∉ the category j′,

⎧⎨

⎩ (11)

where j′ � 1, 2.
(2) If the sample imna

′ ∈ IU, the label value of imna
′ is

propagated from the k′ adjacent samples and the
membership that imna

′ belongs to the category j′
meets

􏽘

i
m′n′a′
′ ∈N imna

′( )

S m′n′a′( )(mna) Fm′n′a′ − Fmna( 􏼁 � 0,
(12)
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where N(imna
′ ) expresses the set composed of k′ adjacent

samples of imna
′ , and the results are obtained from formula

(12):

Fmna � 􏽘

i
m′n′a′
′ ∈N imna

′( )

S m′n′a′( )(mna)

􏽐i
m′n′a′
′ ∈N imna

′( 􏼁S m′n′a′( )(mna)

Fm′n′a′ .

(13)

As the category labels of unknown samples are con-
tinuously renewed, Fmna in formula (13) is required to be
repeatedly calculated until the fuzzy category label values of
all samples are not changed.

Obtain the fuzzy label value F � (Fmna)N×N×A of all
samples and convert the label value matrix by the following
formula:

Fmna �
Fmna, ifFmna > 0,

0, ifFmna > 0.
􏼨 (14)

Convert the label value matrix by the following formula:

Fmna �
1, ifFmna ≠ 0, Fmna � max Fmn1, Fmn2, . . . , Fmna( 􏼁,

0, otherwise.
􏼨

(15)

0e regulation relationship exists between two genes
corresponding to the samples with the label value of 1, and
the time delay is a times the time interval.

4.2. Algorithm Steps

Step 1: estimate the missing value in the simulation data
set by using the missing value estimation method [23]
and construct the complete dataset.
Step 2: calculate the time-delay relative change trend
coefficient matrix, the time-delay correlation coefficient
matrix, and the time-delay mutual information matrix
of all gene pairs in the complete dataset.
Step 3: obtain the similarity evaluation matrix of gene
pair. 0is similarity evaluation matrix is a multidi-
mensional space matrix. For simulation simplicity, the
matrix is processed accordingly to be converted to the
two-dimensional space matrix. Make I � (im′f′ )(A×c2

N
)×3,

wherein the row sequence of the row vector im′′ is as
follows: no delay between the gene 1 and the gene 1,
delay 1 time unit between the gene 1 and the gene 1, and
delay A time unit between the gene N and the gene N.
Step 4: add the label value to a small number of gene
pairs, calculate the fuzzy label values of unknown gene
pairs on the basis of fuzzy label propagation algorithm,
and obtain the regulation relationship and the time
delay between the genes.

4.3. Time Complexity Analysis of Algorithm. 0ere are two
main bottlenecks in the calculation of this algorithm. 0e
first is to use mutual information to find the time delay
between gene pairs, and the second is to use fuzzy label
transfer algorithm to classify datasets. It is assumed that the

number of genes is N, the length of gene time series is T, the
maximum time delay is m, and the number of iterations of
fuzzy label transfer algorithm is M. When we use equation
(6) to find the mutual information of a target gene and its
regulator under a certain time delay, we need to traverse the
gene expression level matrix once, and the algorithm
complexity is O(N∗T). So, the time complexity of the
algorithm is O(N2Tm). 0e time complexity of initialization
is O(N2). 0e time complexity of fuzzy label transfer al-
gorithm using semisupervised learning is O(M). 0e time
complexity of calculating score function is O(NT). 0ere-
fore, the total time complexity is O(N2Tm + MNT).

5. Results and Discussion

5.1. Simulation Dataset. 0e simulation dataset is selected
from the yeast cell gene chip data [24, 25] provided by
Spellman et al. in Stanford University, from which 6 genes
are extracted to form a small gene regulation network. 0e
data are as shown in Table 1.

Extract the regulation relationship among 6 genes based
on the research of Hou et al. [26]. 0e regulation network
structure is shown in Figure 1.

6. Results

In simulation, firstly we need to select part of samples to add
the labels. In this paper, the sample label value is set to −1
when the delay between the genes Clb6 and Cln1 is 0, the
sample label value is set to 1 when the delay between the
genes Clb2 and Cln2 is 0, and the maximum time delay A is
set to 2. 0e simulation results are shown in Table 2.

It can be seen from Figure 1 that there are 10 pairs of
genes having the regulation relationship. Table 2 shows that
the method of this paper can correctly identify 8 pairs of
genes having the regulation relationship, accounting for 80%
of the total gene pairs having the regulation relationship, and
the accuracy is relatively perfect. In 8 pairs of genes correctly
identified, there are two pairs of genes having time delay,
namely, Swi5 and Cln2 and Cln2 and Clb1, and the time
delay is 1 unit. 0e change relationship of expression values
for 8 pairs of genes correctly identified is shown in Figure 2.
Horizontal coordinates represent gene expression level and
vertical coordinates represent time point of gene expression.

It can be seen from Figure 2 that the change relationships
of the gene expression data in Figures 2(a) and 2(c)–2(e) are
basically consistent and the change relationships of the gene
expression data in Figures 2(b) and 2(f )–2(h) are basically
contrary, and Figure 2(g) shows the change relationship
between the gene Cln2 and the gene Clb1 after the gene Cln2
is delayed by 1 unit of time. On the left side, the time points
corresponding to the peaks and troughs of Cln2 expression
value and Clb1 expression value are basically the same, and
the change trends are contrary; on the right side, the ex-
pression value changes of two genes are disordered to some
extent, but except for the last three time points, the ex-
pression value changes of other time points substantially
conform to the change contrary trends. Figure 2(h) shows
the expression value change relationship between the gene
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Cln2 and the gene Swi5 after the gene Cln2 is delayed by 1
unit of time. It can be seen from the figure that the change
trends of two gene expression values are contrary, wherein
the first peak of the expression value for the gene Swi5 was
obtained at the seventh time point and the first trough of the
expression value for the gene Swi5 was obtained at the
twelfth time point; the first peak of the expression value for
the gene Cln2 was obtained at the seventh time point, and
the first trough of the expression value for the gene Cln2 was
obtained at the eleventh time point; the time points of peaks
and troughs for the two genes are basically the same.
0erefore, based on the premise and assumption, the result
that the time delay between Swi5 and Cln2 and between Cln2
and Clb1 is 1 time interval in the regulation is reasonable.

7. Discussion

In order to have objective and scientific comparison results,
hypothesis testing is used on the experimental results. Let the
variables X1, X2, X3, X4 denote the classification error rate
of algorithms proposed in this paper, reference [17], ref-
erence [20], and reference [27], respectively. Since the value
of X1, X2, X3, X4 is subject to many random factors, we
assume that they submit to normal distribution,
Xi ∼ N(μi, σ2i ), i � 1, 2, 3, 4. Now, we compare the random
variable mean of these algorithms, μi (i � 1, 2, 3, 4). 0e
smaller μi is, the lower the expected classification error rate is
and the higher the efficiency is. Because the sample variance
is the unbiased estimation of the overall variance, the sample
variance value is used as an estimate of the generality

variance. In this experiment, the significance level α is set as
0.01.

Table 3 shows the comparison process on μi and other
parameters. We can see from Table 1 that the expectations of
classification error rate in this paper are far below than other
algorithms.

Next, we use some evaluation indexes to evaluate the
algorithm. TP, TN, FP, and FN are abbreviations of true
positive, false positive, true negative, and false negative,
respectively. Perform the following operations on all target
genes and regulatory genes. If the regulatory relationship
between the target gene and regulatory gene is inferred by
this algorithm and the previous literature has proved the
regulatory relationship, then the value of TP is increased by
1. If the regulatory relationship between the target gene and
regulatory gene is inferred by this algorithm, but the pre-
vious literature has not proved the regulatory relationship,
then FP is increased by 1. If the algorithm in this paper does
not infer the regulatory relationship between the target gene
and the regulatory gene and no previous literature has
proved that there is a regulatory relationship between the
target gene and the regulatory gene, then the value of TN is
increased by 1. And if the algorithm in this paper does not
infer that there is a regulatory relationship between the
target gene and the regulatory gene, but the previous lit-
erature has proved that the regulatory relationship exists,
then add 1 to the value of FN. Each algorithm evaluation
standard is evaluated by some combination of TP, FP, TN,
and FN. 0e most common algorithms for predicting gene
regulatory networks are sensitivity (Sn), specificity (Sp), and

Table 2: 0e correctly identified gene pairs and the time delay.

Gene pairs Cln1-Cln2 Swi5-Cln2 Swi5-Clb2 Cln2-Clb2 Cln1-Clb2 Cln2-Clb1 Swi5-Clb1 Clb2-Clb1
Time delay 0 1 0 0 0 1 0 0

Table 1: 0e information of selected genes.

Gene Dataset Gene Dataset Gene Dataset
Cln1 YMR199W Clb2 YPR119W Clb1 YGR108W
Cln2 YPL256C Clb6 YGR109C Swi5 YDR146C

Cln2

Swi5

Cln1

Clb2

Clb6Clb1

Figure 1: 0e structure of regulatory network formed by the 6 genes.
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Figure 2: 0e changing relationship of the eight gene pairs. (a) 0e changing relationship of Cln1 and ln2. (b) 0e changing relationship of
Cln2 and Clb2. (c) 0e changing relationship of Clb1 and Swi5. (d) 0e changing relationship of Clb2 and Swi5. (e) 0e changing re-
lationship of Clb1 and sClb2. (f )0e changing relationship of Cln1 and Clb2. (g)0e change relationship between Cln2 and Clb1 after Cln2
is delayed by 1 unit of time. (h) 0e change relationship between Cln2 and Swi5 after Cln2 is delayed by 1 unit of time.
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accuracy (Acc). Sn�TP/(TP+ FN), Sp�TN/(TN+FP), and
Acc� (TP +TN)/(TP+ FP+TN+FN). 0e comparison re-
sults are shown in Table 4.

Table 4 compares the inference results of the four
methods for gene regulatory network. 0e sensitivity of
reference [17] method is only 37.5%, that of reference [20]
method is 36.4%, that of reference [27] method is 24.2%, and
that of the proposed method is 43.8%. It can be seen that in
the network construction of this gene, the method proposed
in this paper is better for identifying the right edge; it also
shows that the addition of transcription factor linkage site
data reduces the information loss in data processing. 0e
data in accuracy are also optimal, which shows that the
accuracy of network construction in this paper has been
improved.

0erefore, each gene has a complex regulatory rela-
tionship in different cell cycles. 0e direction of regulation
can be determined by using the method of multiple time
delay, which is in line with the mechanism of biological time
sequence activity. 0e introduction of transcription factor
linked site data can reduce the network complexity and
construct the regulatory network more effectively.

To sum up, the multi-time-delay gene regulation net-
work method based on the fuzzy label propagation is
feasible.

8. Conclusions

In consideration of the time delay existing in the interaction
of genes, this paper constructs the multi-time-delay gene
regulation network, uses the relative change trend coeffi-
cient, the correlation coefficient, and themutual information
as the evaluation indexes of the gene pair to construct the
similarity matrix of the gene pairs, and then analyses the
regulation relationship and the time delay among the genes
by using the fuzzy label propagation algorithm. Due to the
high complexity of algorithm in this paper, the method
proposed in this paper is unsuitable for the construction of

large network, and the error recognition ratio will be in-
creased when the maximum time delay is set to high value.
However, the method proposed in this paper is feasible.
0erefore, how to effectively modularize the large network,
divide the large network into many small networks, and
integrate the small networks into the large network in the
analysis will be an improvement direction of the method in
this paper.
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