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Integration of tumor extrinsic and intrinsic features
associates with immunotherapy response in
non-small cell lung cancer
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The efficacy of immune checkpoint blockade (ICB) varies greatly among metastatic non-small

cell lung cancer (NSCLC) patients. Loss of heterozygosity at the HLA-I locus (HLA-LOH) has

been identified as an important immune escape mechanism. However, despite HLA-I dis-

ruptions in their tumor, many patients have durable ICB responses. Here we seek to identify

HLA-I-independent features associated with ICB response in NSCLC. We use single-cell

profiling to identify tumor-infiltrating, clonally expanded CD4+ T cells that express a cano-

nical cytotoxic gene program and NSCLC cells with elevated HLA-II expression. We postulate

cytotoxic CD4+ T cells mediate anti-tumor activity via HLA-II on tumor cells and augment

HLA-I-dependent cytotoxic CD8+ T cell interactions to drive ICB response in NSCLC. We

show that integrating tumor extrinsic cytotoxic gene expression with tumor mutational

burden is associated with longer time to progression in a real-world cohort of 123 NSCLC

patients treated with ICB regimens, including those with HLA-LOH.
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PD-1 and PD-L1 immune checkpoint blockade (ICB) has
produced clinical responses in metastatic non-small cell
lung cancer (NSCLC)1,2. However, clinical response rates

and duration of response are highly variable, and the mechanisms
of action of ICBs in patients remain poorly understood. Identi-
fying patients who are likely to respond to a particular therapy is
a cornerstone of personalized cancer medicine. Currently, tumor
intrinsic features, such as tumor PD-L1 immunohistochemistry
(IHC) and tumor mutational burden (TMB), are the most studied
biomarkers for the prediction of response to ICB in NSCLC.
While PD-L1 IHC staining has been clinically approved as a
diagnostic for use in the front line to guide ICB therapy, it is
complicated by the variety of assays and scoring criteria for
measuring it. More notably, PD-L1 expression alone is insuffi-
cient to identify all potential responders to ICB in NSCLC3,4.
Similarly, TMB lacks definitive clinical utility as large, rando-
mized clinical trials have generated contradictory results5–7.
Tumor extrinsic features such as the presence of tumor-
infiltrating T cells have demonstrated some predictive value for
ICB response8,9 but have yet to be independently assessed in
NSCLC. Thus, there is an unmet clinical need for biomarkers that
complement PD-L1 staining to better predict individualized
outcomes for ICB in NSCLC.

With rapid advancements in clinical DNA and RNA sequen-
cing and improved access to electronic health records, there is an
increasing volume of real-world data that can be used to sup-
plement clinical trial studies. These linked molecular and clinical
real-world datasets can be used to evaluate transcriptional sig-
natures or other genomic markers associated with cancer treat-
ment outcomes in routine oncology practice. In this study, we
evaluated the association between tumor intrinsic features and
ICB outcomes by analyzing real-world molecular profiling data
and outcomes from 123 NSCLC patients. In addition, we exam-
ined whether identifying and integrating tumor extrinsic features
could more accurately predict the real-world clinical responses of
NSCLC patients. A lack of NSCLC tumor biopsies with paired
DNA and RNA sequencing data, as well as real-world outcome
data, has hampered previous research into these questions.

An essential component in the model for ICB function is the
direct killing of tumor cells by cytotoxic CD8+ T cells in response
to tumor antigen presentation on HLA class I (HLA-I) molecules.
Thus, disruption of HLA-I antigen presentation in tumors via
somatic alterations, such as mutations in its co-receptor beta 2
microglobulin (B2M) or HLA-I loss of heterozygosity (HLA-
LOH), has been proposed as an important mechanism of immune
escape and resistance to ICB10–12. Accordingly, the rate of HLA-
LOH has been reported to be as high as 40% in NSCLC patients13

and has been linked to worse survival on ICB14,15. However,
evidence has emerged that patients with disrupted tumor HLA-I
presentation can still have durable responses to ICB9,16–19. The
mechanistic basis for ICB response in HLA-I disrupted tumors
remains incompletely understood.

One potential mechanism for an HLA-I-independent immune
response is through CD4+ T cells. Classically, effector CD4+

T cells help CD8+ T cells by licensing dendritic cells and secreting
pro-inflammatory cytokines20,21. However, earlier studies in
animal models have shown that CD4+ T cells, which recognize
antigen via HLA class II (HLA-II) molecules rather than HLA-I,
can also directly kill tumor cells22,23. Recently, studies using
single-cell RNA sequencing (scRNAseq) have characterized
antigen-specific cytotoxic CD4+ T cells in various cancers,
including melanoma, breast, and colon cancer24–26. Furthermore,
a population of cytotoxic CD4+ T cells was characterized in
bladder cancer that directly killed autologous tumor cells in an
HLA-II-dependent manner and was associated with improved
response to ICB27. However, the presence, functions, and clinical

implications of cytotoxic CD4+ T cells in NSCLC have not yet
been characterized. Separately, multiple studies have found that
HLA-II, which is typically expressed only on immune cells, can
also be expressed on NSCLC tumor cells28–30, and tumor HLA-II
expression has been linked to increased survival in NSCLC31. We
postulate that cytotoxic CD4+ T cells exist in NSCLC and may
function via HLA-II expression on tumor cells32,33, which, when
viewed collectively, could be a mechanistic basis for anti-tumor
immune responses observed in HLA-I-disrupted tumors.

In this work, we investigate the impact of HLA-LOH on ICB
efficacy in a real-world patient cohort and identify HLA-I-
independent features associated with ICB response in NSCLC.
We use single-cell multi-omic profiling (a combination of
scRNAseq, T cell receptor [TCR] sequencing, and surface protein
profiling) to characterize the tumor and T cell compartments in
NSCLC tumors from 10 patients. We identify a robust population
of tumor-infiltrating, clonally expanded CD4+ T cells expressing
a canonical cytotoxic gene program. Concordantly, we find tumor
cells with elevated HLA-II expression in NSCLC patients. Fol-
lowing this discovery, we develop an integrative model by com-
bining tumor extrinsic cytotoxic gene expression with TMB to
predict ICB outcomes in a real-world cohort of 123 NSCLC
patients, including those with HLA-I-disrupted tumors. Overall,
this study recommends integrating tumor extrinsic and intrinsic
features to more accurately model real-world clinical responses to
immunotherapy in NSCLC.

Results
HLA class I-disrupted NSCLC patients can have durable
responses to checkpoint inhibitors. To determine whether
patients with HLA-I-disrupted NSCLC tumors can respond to
ICB, we assembled a real-world cohort of 123 patients with
metastatic, non-squamous NSCLC who were molecularly profiled
prior to initiating standard ICB treatment. Patients with action-
able EGFR or ALK alterations were excluded from the cohort.
Patient tumor samples were profiled using targeted DNA
sequencing34,35 or whole-exome sequencing, along with whole-
transcriptome RNA sequencing36,37. Additionally, DNA sequen-
cing was performed on matched normal samples obtained from
blood or saliva when available (102/123). Response to therapy was
evaluated using the time to progression (TTP)38 with a median
cohort TTP of 210 days. In this cohort, 52% of patients received
ICB as a monotherapy while the rest were treated in combination
with chemotherapy, and 50% of patients were treated with ICB in
the first line. Other key clinical metrics are detailed in Supple-
mentary Data 1.

The most frequently mutated driver genes were TP53 (62%),
followed by KRAS (50%) and STK11 (19%) (Fig. 1a). Patients with
TP53-mutated tumors had significantly longer TTP (HR= 0.60,
p= 0.028, log-rank). We also assessed a number of previously
described tumor intrinsic immunotherapy biomarkers, such as PD-
L1 IHC, TMB, and HLA-LOH. Patients with PD-L1-high tumors
(≥50% tumor cell staining) in this real-world cohort did not have
improved TTP compared to PD-L1-negative and -low patients
(HR= 0.86, p= 0.60, log-rank) (Fig. 1b). Tumors in this cohort had
a median TMB of 5.71 mutations per megabase (mut/Mb). Patients
with a high TMB (≥10 mut/Mb) had longer TTP than those with a
low TMB (HR= 0.60, p= 0.077, log-rank) (Fig. 1c).

Similar to previous studies13,14, we found that a significant
proportion of this real-world cohort had defects in class I antigen
presentation, with 26% having LOH in at least one HLA-I gene
and 2% harboring a B2M mutation (Fig. 1a, center). Furthermore,
24% of patients were homozygous for at least one HLA class I
gene. Interestingly, patients in this cohort with HLA-LOH
trended toward improved TTP compared to those with intact
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HLA-I (HR= 0.61, p= 0.11, log-rank). There was no significant
association between B2M mutation or HLA homozygosity and
TTP (B2M: HR= 1.24, p= 0.77, HLA homozygosity: HR= 0.88,
p= 0.64) (Supplementary Fig. 1). These findings show that in a
real-world setting, some patients with limitations in class I
antigen presentation can still have durable clinical responses to
immunotherapy.

Identification of multiple cytotoxic T cell populations in
NSCLC. To investigate the existence of HLA-I-independent
mechanisms of ICB response, we sought to characterize the
landscape of infiltrating T cells in the tumor-immune micro-
environment of NSCLC. Single-cell profiling has become an
important technique in investigating the heterogeneity of the
human immune system and identifying clinically important cell
types that would not be possible with bulk RNA expression
profiling technology39,40. We performed single-cell profiling on
10 dissociated tumor samples obtained from patients with
NSCLC who had never received treatment (Supplementary
Data 2). Flow cytometry was used to separate samples into

CD45+ and CD45− fractions, which were then subjected to gene
expression profiling via scRNAseq on the 10X Genomics Chro-
mium platform. In addition, single-cell TCR and cell surface
protein profiling using DNA-barcoded antibodies were per-
formed on the CD45+ fraction (Fig. 2a). We profiled a total of
2806 CD45− cells and 62,723 CD45+ cells. For our protein
expression analysis, we computationally isolated the CD4+ T cell
compartment (16,008 cells) and the CD8+ T cell compartment
(13,935 cells) (Fig. 2b, Supplementary Fig. 2). After filtering on
highly variable genes and normalizing the expression data to unit
variance, we used Leiden clustering to identify subpopulations
within the CD4+ and CD8+ T cell compartments that have
distinct transcriptional programs (Fig. 2c).

Within the CD8+ T cell compartment, we identified six
subpopulations. Notably, five of the six clusters, CD8GZMK,
CD8GNLY, CD8GZMB-1, CD8GZMB-2, and CD8prolif exhibited
elevated expression of canonical cytotoxic genes, including
granzymes and perforins, as well as associated transcription
factors like EOMES (Fig. 2d). Cytotoxic T cells are critical
effectors of immune response in solid tumors41. We found that
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Fig. 1 Cohort clinical and genomic characteristics. a Mutation plot showing the distribution of TMB and frequency of driver mutations across the cohort
(n= 123). Each column represents a patient and columns are ordered by TMB. Immunotherapy biomarker status and mutation type are denoted by color.
Genes are sorted by frequency of mutation. b Kaplan–Meier plots showing time to progression on ICB therapy, stratified by PD-L1 IHC status (n= 92,
p= 0.87, log-rank), c TMB status (n= 123, HR= 0.60, p= 0.083, log-rank), and d HLA-LOH (n= 100, HR= 1.64, p= 0.11, log-rank). Source data are
provided as a Source Data file.
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Fig. 2 Single-cell characterization of tumor-infiltrating T cells. a Schematic overview of the experimental design (n= 10 tumor samples). b Gating
strategy for the computational isolation of the CD4+ (12,711 cells) and CD8+ T cell compartment (13,935 cells). Expression is shown in centered log-ratio
(CLR)-transformed counts. c UMAP projections show a subpopulation of cells in the T cell compartment based on Leiden clustering. Cells were labeled
based on the expression of key immune function genes. d Heatmap showing the scaled expression of key immune function genes in the T cell
compartment. e UMAP projections show the distinct patterns of expression for the cytotoxic genes PRF1, GZMB, GZMK, and GNLY. f Violin plots show the
log-transformed RNA expression of IFNG in the Leiden clusters. *Represents clusters with significantly different expressions (p < 0.05) compared to the
other clusters after Bonferroni correction (two-sided Wilcoxon Rank-Sum). For top panel: pGZMB-1= 1.04 × 10−23, n= 13,935 cells; bottom panel:
pGZMK= 4.32 × 10−12, pGZMB= 5.92 × 10−44, pGNLY= 1.40 × 10−5, n= 12,711 cells). Source data are provided as a Source Data file.
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the pattern of expression for specific cytotoxic genes varied across
the CD8+ T cell compartment (Fig. 2e). GZMA, GZMH, and
NKG7 were expressed broadly across the cytotoxic CD8+

population, however, elevated expression of GZMB and GZMK
was observed in distinct clusters (Fig. 2e, Supplementary Fig. 3).
A prior study using peripheral blood showed that GZMK+ CD8+

T cells are at an earlier stage of maturation than GZMB+ CD8+

T cells42. Consistent with that finding, CRTAM, an immunoglo-
bulin superfamily protein induced after TCR activation43,44, was
primarily expressed in the CD8GZMK population, indicating that
these cells are in an earlier stage of effector cell differentiation
than the other cytotoxic CD8+ populations. Interestingly, the
CD8GNLY cluster, which had the highest expression of the pore-
forming peptide granulysin (GNLY), expressed both GZMB and
GZMK, suggesting an intermediate state between the CD8GZMK

and CD8GZMB clusters.
The two GZMB-high clusters identified, CD8GZMB-1 and

CD8GZMB-2, shared a number of characteristics. They both
exhibited elevated CD103 and CD39 expression, a phenotype
that has previously been associated with an enrichment of tumor-
reactive T cells45,46. In addition, they expressed high levels of
immune checkpoint genes, such as PDCD1, LAG3, and TIGIT,
suggesting that they are exhausted and could be targeted by ICB
regimens. They also expressed CXCL13, which has been
associated with better response and survival in NSCLC patients
treated with PD-1 blockade due to enhanced immune cell
recruitment to tertiary lymphoid structures47. Notably, the
CD8GZMB-1 population was enriched for FABP5 and 41BB
expressing cells, which is indicative of a heightened oxidative
metabolic rate. A comparable population has been observed in
hepatocellular carcinoma, and it is hypothesized that the
metabolic adaptation of these cells confers a survival advantage
in the tumor microenvironment48.

The final cytotoxic cluster, CD8prolif, appeared to be actively
proliferating as evidenced by high S and G2M cell cycle scores
relative to other clusters. These cells most likely represent clones
that were recently TCR stimulated and are now undergoing active
clonal expansion (Fig. 2d). The only non-cytotoxic cluster,
CD8naive-like, expressed markers such as CCR7 and IL7R, and
most likely represent bystander T cells. All six populations,
including the CD8naïve-like cells, expressed IFNG (Fig. 2d, f). The
IFN-γ-regulating transcription factors EOMES and TBX21 were
expressed in multiple populations, suggesting redundancy and
overlapping transcriptional control of IFNG.

We next sought to characterize the relationship between the
CD8+ clusters using partition-based graph abstraction (PAGA)49

(Supplementary Fig. 4a). Similar to our expectations based on the
patterns of RNA expression, the CD8GZMK, and CD8GNLY clusters
had much greater connectivity to the CD8naive-like than the two
CD8GZMB clusters. Interestingly, the CD8prolif cluster was
connected to the CD8GZMB clusters but not the other cytotoxic
clusters, suggesting that GZMB expressing cells are the primary
CD8+ T cell population undergoing proliferation and clonal
expansion in the tumor microenvironment.

We also identified populations of T cells with cytotoxic gene
expression within the CD4+ T cell compartment, as previously
noted in NSCLC50 and other cancers24,27,51. The pattern of
cytotoxic gene expression was heterogeneous in these CD4+

T cells, but broadly paralleled that observed in the CD8+ T cell
compartment (Fig. 2e). The expression of GZMB and GZMK was
again elevated in distinct clusters (Fig. 2e, Supplementary Fig. 3).
The GNLY-high cluster, CD4GNLY, co-expressed GZMB but not
GZMK. Similarly, CRTAM and EOMES, which have been
implicated in the induction of the cytotoxic program in CD4+

T cells52,53, were most highly expressed in the CD4GZMK

population. Interestingly, the CD4GZMB cluster, but not the

CD4GZMK or CD4GNLY clusters, expressed high levels of immune
checkpoints such as PDCD1 and CTLA4 (Fig. 2d, Supplementary
Fig. 3), and are therefore the cells likely to be responsive to ICB
therapy54.

Notably, cytotoxic CD4+ T cells, particularly the CD4GZMB and
CD4GNLY cells, expressed IFNG at significantly higher levels than
non-cytotoxic CD4+ T cells (p < 0.0001 for both, Mann–Whitney
U) (Fig. 2f). IFNG has been shown to directly increase HLA-II
expression in tumor cells23,30,31,55. Thus, cytotoxic CD4+ T cells
may serve as a reservoir for the paracrine induction of HLA-II
antigen presentation machinery in tumor cells.

Consistent with other known functions of CD4+ T cells, we
identified a T follicular helper cluster, CD4follicular, with high IL7R
and CD200 expression. Single-cell analyses in an NSCLC model
have indicated that T follicular helper cells promote cytotoxic
CD8+ T cell proliferation and tissue residence in the tumor
microenvironment56. In addition, we also identified a regulatory
T cell cluster, CD4regulatory, with high FOXP3 expression and an
activated T cell cluster, CD4activated, characterized by CD69
expression (Fig. 2d).

We also sought to characterize the relationship between
clusters in the CD4+ compartment using a PAGA graph
(Supplementary Fig. 4b). Similar to the findings in CD8+ T cells,
the CD4GZMK, and CD4GNLY clusters had close connections to the
CD4naive-like cluster, but the CD4GZMB cluster did not. Taken
together, the comparison of CD8+ and CD4+ T cells reveals the
distinct development of cytotoxic populations that share a
number of transcriptional features, including increased levels of
granzymes, perforin, and immune checkpoint genes.

Cytotoxic T-cell populations are clonally expanded. Clonal
expansion is a key trait of antigen-experienced T cells. To
determine whether the cytotoxic T cell populations exhibited
evidence of clonal expansion within the tumor microenviron-
ment, we analyzed the TCR repertoires derived from the
scRNAseq data. We define an expanded TCR clone as a popu-
lation that contains more than one cell with identical TCR alpha
and TCR beta CDR3 sequences and found evidence of extensive
clonal expansion within all cytotoxic T cell populations.

Almost all CD8+ cytotoxic cells (83%) were members of an
expanded T cell clone, and the Shannon entropy of the TCR
repertoire from cytotoxic CD8+ cells was significantly lower than
that of non-cytotoxic CD8+ cells (p < 0.001, Hutcheson’s t-test)
(Supplementary Fig. 5a). As expected, the CD8prolif population
was the most clonally expanded, followed by the CD8GZMB-1 and
CD8GZMB-2 clusters (Fig. 3a, Supplementary Fig. 5b). Notably, the
CD8prolif cluster shared a high proportion of TCR clones with the
two CD8GZMB populations, indicating that these effector cells are
being antigen-stimulated and actively undergoing clonal expan-
sion (Fig. 3b). In contrast, the CD8prolif cluster contained a lower
proportion of CD8GZMK and very few CD8GNLY clones, implying
that these early-stage cytotoxic CD8+ T cells proliferate less
actively than CD8GZMB populations.

There were far fewer clonally expanded CD4+ T cells than
CD8+ T cells (Fig. 3c, Supplementary Fig. 5b). However, large
clonal expansions were detected specifically within the cytotoxic
CD4+ populations, with 54% of all cytotoxic CD4+ cells
belonging to an expanded clone. Additionally, the Shannon
entropy of the TCR repertoire of cytotoxic CD4+ cells was
significantly lower than that of non-cytotoxic CD4+ cells
(p < 0.001, Hutcheson’s t-test). This suggests that similar to
cytotoxic CD8+ T cells, these cells are responding to tumor
antigens.

When we looked at the prevalence of shared clones across
CD4+ T cell subpopulations, we discovered that 26% of
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CD4GZMK clones and 35% of CD4GNLY clones were shared with
CD4activated cells (Fig. 3d). In contrast, only 3% of CD4GZMB cell
clones were shared with the CD4activated population (Fig. 3d). This
suggests CD4GZMK and CD4GNLY cells are likely earlier-stage
cytotoxic cells that are differentiated from recently activated
CD4+ cells. However, the CD4GZMB population shared over 54%
of its clones with the CD4follicular population (Fig. 3d). T follicular
helper cells have been hypothesized to promote anti-tumor CD8+

T cell responses in NSCLC56. The shared clonal lineage suggests
that cytotoxic CD4+ T cells and those that may provision CD8+

T cells help stem from a common precursor. Taken together, our
results demonstrate the significant clonal expansion of CD8+ and
CD4+ cytotoxic T cells, suggesting that these populations both
have encountered tumor antigens.

NSCLC tumor cells express HLA class II. To determine whether
NSCLC tumor cells have the ability to directly present antigen to
cytotoxic CD4+ T cells, we evaluated HLA expression in the
CD45− cell fraction using scHLAcount50. We sequenced 2152
CD45− cells and, utilizing Leiden clustering and lineage markers,
identified distinct populations of the tumor, endothelial, and
fibroblast cells (Supplementary Fig. 6). Since HLA-I is expressed
by the vast majority of human cells, the majority of cells con-
tained detectable amounts of HLA-I RNA (Fig. 4a). Expression of
HLA-II is typically limited to antigen-presenting cells and
endothelial cells. However, HLA-II has been shown to be
expressed on lung epithelial cells57,58 as well as NSCLC tumor
cells28–30. We found that a subset of tumor cells expressed HLA-
II and that its expression was significantly correlated with that of
its chaperone, CD74 (invariant chain) (R= 0.627, p < 0.0001,
Pearson correlation) (Fig. 4a, b). Notably, HLA-II expression in

tumor cells was not uniform across the genes examined, with
significantly higher HLA-DRB1 than HLA-DQA1, HLA-DQB1,
and HLA-DPB1 (p < 0.0001, Kruskal–Wallis) (Fig. 4c).

We further investigated the presence of cytotoxic CD4+ T cells
and HLA-II-expressing tumor cells in treatment-naive NSCLC
samples using immunofluorescence (Fig. 4d, Supplementary Fig. 7).
We tested and optimized a panel of tumor epithelial- and
lymphocyte-specific markers. Pan-cytokeratin staining was used to
identify epithelial populations within tumor samples, while CD4 and
CD8 staining was used to identify tumor-infiltrating T cells. In
addition, we used HLA-DR to evaluate HLA-II expression and
GZMB to identify cytotoxic lymphocyte populations. We identified
regions within tumor samples in which T cells co-expressed CD4
and GZMB, and tumor cells co-expressed pan-CK and HLA-DR. In
some instances, close proximity was observed between these
populations. Additionally, H&E staining of a neighboring slide
revealed clusters of malignant cells adjacent to lymphocyte clusters.
These findings indicate the possibility of direct physical interaction
between cytotoxic CD4+ T cells and HLA-II-expressing NSCLC
tumor cells.

Integration of tumor extrinsic and intrinsic features associated
with immunotherapy response. To determine the clinical rele-
vance of CD8+ and CD4+ T cell cytotoxicity, we examined the
relationship between the cytotoxic populations identified in the
single-cell analysis and real-world ICB response in NSCLC. To
begin, we generated gene signatures for each cluster by identifying
the top 25 differentially expressed genes within cytotoxic clusters
relative to all other clusters in the corresponding CD8+ and
CD4+ compartments. We used the RNA-sequencing data from
real-world patient tumor samples and their matched clinical data

Fig. 3 Cytotoxic CD4+ and CD8+ T cells are clonally expanded in NSCLC. a UMAP projection showing the clone size associated with the TCR for each
cell in CD8+ and c CD4+ T cells. b, d TCR clonal association between phenotypic states visualized using a graph structure. Each node represents a Leiden
cluster and the width of each directed edge represents the percent of clones from the starting node shared with the target node. The color of each edge
matches that of the starting node. Edges with weights in the lowest tertile for CD4+ and lowest quartile for CD8+ T cells are not shown for clarity. Source
data are provided as a Source Data file.
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to assess the expression of specific gene signatures in patients and
their association with ICB response. Cox proportional hazards
(PH) analysis revealed that cytotoxic CD8+ and CD4+ signatures
had the strongest associations with TTP (Supplementary Fig. 8a)
(CD8GZMB-1: HR= 0.77, p= 0.033, CD4GZMB: HR= 0.80,
p= 0.044, CoxPH). Thus, gene signatures from both cytotoxic
CD8+ and CD4+ T cell populations were associated with real-
world ICB response in NSCLC.

We next examined whether general CD8+ and CD4+ T cell
infiltration were associated with real-world ICB response. We used
estimates of CD8+ and CD4+ T cell infiltration derived from the
xCell59 algorithm and found that TTP was not significantly
associated with the presence of total CD8+ and CD4+ T cells
(CD8+ T cells: HR= 0.86, p= 0.29, CD4+ T cells: HR= 1.11,
p= 0.36, CoxPH) (Supplementary Fig. 8b). This demonstrated that
the presence of cytotoxic T cells, rather than total T cells, is associated
with better prognosis in patients with NSCLC treated with ICB.

Following these findings, we investigated whether a pan-T cell
cytotoxicity signature could be used to predict response to ICB in
NSCLC patients. We developed a canonical cytotoxic gene
signature consisting of genes that were highly expressed by
CD4+ or CD8+ cytotoxic T cells in our single-cell data
(Supplementary Fig. 9a, b). The gene list includes 25 genes with
the greatest log-fold change in expression in either CD4+ or
CD8+ cytotoxic T cells compared to non-cytotoxic T cells. We
calculated a cytotoxic score by taking the arithmetic mean of the
selected genes’ log-transformed RNA expression values. Our
cytotoxic score was found to be positively correlated with the
gene signatures derived from the cytotoxic CD4+ and CD8+

Leiden clusters (Supplementary Fig. 9c). However, the cytotoxic
score was not correlated to xCell estimates of total CD8+ or
CD4+ T cell infiltration (Supplementary Fig. 9d, e).

Notably, the cytotoxic score was significantly associated with
TTP in the Tempus ICB-treated NSCLC cohort (HR= 0.56,

Fig. 4 A subpopulation of tumor cells express HLA class II in NSCLC. UMAP projections showing the expression of a HLA-I and HLA-II in the CD45−

fraction. HLA-I and II expression was measured by summing the expression of all the individual genes assessed in the locus. b Comparison of HLA-II and
CD74 (invariant chain) expression (R= 0.751, unadjusted p= 0, Pearson correlation test). c Boxplots show the log-transformed expression of the individual
HLA-II genes assessed (p= 1.01 × 10−178, Kruskal–Wallis, n= 1377 cells). The box represents the interquartile range, with the center line at the median.
The whiskers extend up to 1.5 times the interquartile range (IQR). d Representative multiplex immunofluorescent staining of CD8 (blue), CD4 (red), GZMB
(green), PanCK (magenta), HLA-DR (cyan), and DAPI (gray) in an NSCLC tumor (n= 2). Overlay without DAPI is shown for CD8, CD4, and GZMB, and
for PanCK and HLA-DR, along with the corresponding H&E. Scale bar, 25 μm. Source data are provided as a Source Data file.
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p= 0.027, log-rank) (Fig. 5a), but not in the TCGA LUAD60

cohort of patients primarily treated with platinum therapy
(HR= 1.00, p= 1.0, log-rank) (Fig. 5b). This indicated that
cytotoxic gene expression is an important tumor extrinsic
characteristic associated with immunotherapy response.

We next considered various tumor intrinsic characteristics that
may act as a complement to T cell cytotoxicity. We reasoned that
a higher mutation burden would increase potential tumor antigen
availability to cytotoxic CD4+ and CD8+ cells. Notably, the
cytotoxic score was not correlated with TMB in the ICB-treated
NSCLC cohort (R=−0.0028, p= 0.98, Pearson correlation)
(Fig. 5c). We combined TMB and the cytotoxic score to create
a simple complementary multimodal model (MM) capable of
capturing both the intrinsic availability of potential tumor
antigens and the infiltration of T cells with cytotoxic phenotypes.
First, TMB was binarized using a 10 mut/Mb cutoff (Fig. 1c), a
value previously used in clinical trials5,8. Then, we trained CoxPH
models to predict TTP using the cytotoxic score and binarized
TMB status on 100 random shuffles of the cohort, with 75% of
patients in each shuffle used for training and 25% for evaluation.

The model was evaluated using its out-of-fold performance. Each
patient was assigned an MM score based on their average out-of-
fold score, and the scores were binarized using the cohort’s
median score as the cutoff to create two risk categories. In the
Tempus ICB-treated NSCLC cohort, the MM score was
significantly associated with TTP (HR= 2.17, p= 0.001, log-
rank) (Fig. 5d).

Finally, we sought to specifically evaluate our MM performance
on HLA-I-disrupted NSCLC patients. In the ICB-treated HLA-
LOH subcohort, increasing MM score was significantly associated
with shorter TTP (HR= 4.11, p= 0.0084, log-rank) (Fig. 5e).
These findings demonstrate that features capturing T cell
cytotoxic phenotype and TMB are associated with TTP in real-
world ICB-treated NSCLC patients, including both HLA-I-intact
and -disrupted patients.

Discussion
ICB therapy is now used as a standard of care for the majority of
metastatic NSCLC patients. In this study, we evaluated the

Fig. 5 Cytotoxic gene signature is associated with ICB response in NSCLC. a Kaplan–Meier plots showing time to progression stratified by cytotoxic score
(CS) status in the Tempus NSCLC ICB cohort (n= 123, HR= 0.56, p= 0.029, log rank), and b the TCGA-LUAD NSCLC cohort (n= 486, HR= 1.00,
p= 1.0, log rank). c Correlation of TMB and CS in the NSCLC ICB cohort (n= 123, R=−0.0098, unadjusted p= 0.91, Pearson correlation test).
d Kaplan–Meier plot showing time to progression on ICB therapy, stratified by multimodal score (MM) status in the Tempus NSCLC ICB cohort (n= 123,
HR= 1.94, p= 0.005, log rank) and e the HLA-I-deficient subgroup (n= 26, HR= 3.59, p= 0.017, log rank). Source data are provided as a Source
Data file.
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association of tumor extrinsic features and intrinsic features with
ICB response in a real-world cohort of NSCLC patients. We
developed a gene signature for cytotoxicity that captures the
transcriptional activity of both CD4+ and CD8+ cytotoxic T cells.
Previous studies in other cancer types have demonstrated that
cytotoxic gene signatures can be used as ICB biomarkers41,61–63,
but the predictive ability of these signatures and their association
with the CD4+ compartment have not been thoroughly explored
in NSCLC. We demonstrate that patients with higher expression
of our cytotoxic score had significantly longer TTP on ICB than
those with lower expression. This metric was independent of
TMB and had more predictive power than PD-L1 IHC status.
These findings demonstrate that integrating a canonical cytotoxic
gene signature with TMB may be an effective biomarker for
identifying NSCLC patients who are more likely to respond to
ICB and can remain robust even in populations with high levels
of HLA-LOH or other HLA-I antigen presentation deficiencies.

In this study, we also characterized the tumor-infiltrating T cell
compartment in 10 NSCLC tumors. We identified a CD4+ T cell
population that expresses a canonical cytotoxic program similar
to classical cytotoxic CD8+ T cells. Cytotoxic CD4+ T cells in
cancer have primarily been characterized in animal models,
though recent studies have identified them in patients across
multiple cancer types51. However, the presence, functions, and
clinical implications of these cells in NSCLC have remained lar-
gely unknown. In this work, we show that CD4+ T cells with a
cytotoxic phenotype are a notable component of the tumor-
infiltrating immune population in NSCLC. Additionally, we
demonstrated these cells are clonally expanded, suggesting they
are specific for a tumor antigen. These cells also express IFNG,
which may induce HLA-II expression as observed in some
NSCLC cells here. Given the evidence for cytotoxic CD4+ T cells
in multiple solid tumors51 as well as now NSCLC, we propose
that cytotoxic CD4+ T cells are a fundamental component of the
tumor immune microenvironment. Recent work by Cohen et al.54

has elucidated the priming of CD4+ T cells that express cytotoxic
genes (Tht-I) by antigen-presenting dendritic cells and implicated
them in enhancing ICB-induced antitumor immune responses.
At the same time, work by Oh et al. 27 have demonstrated
cytotoxic CD4+ T cells can directly kill autologous tumors in an
HLA-II-dependent manner. While anti-tumor activity in cancers
lacking both HLA-II and HLA-I expression is thought to be
coordinated by NK and CD4+ T cells64,65, we propose that the
distinct expression of HLA-II on NSCLC cells presents a viable
pathway for cytotoxic CD4+ T cells to drive ICB response in
HLA-I-disrupted patients.

More research to further characterize cytotoxic CD4+ T cells
will also facilitate the development of the next generation of ICB
drugs. For example, therapeutically increasing HLA-II expression
in myeloid or tumor cells may provide a novel way to rationally
combine drugs with ICB treatment. The inhibition of CDK4/6
and MEK has been linked to increased HLA-II expression in
tumor cells66,67. At the same time, cytotoxic CD4+ T cells
upregulate PDCD1, CTLA4, and TIGIT, and are likely to be
responsive to current ICB therapies. Notably, anti-CTLA-4
therapy, when combined with a decrease in regulatory T cells,
has been shown to enhance cytotoxic CD4+ T cell anti-tumor
activity68. Thus, such rational combinations may successfully
enhance tumor antigen presentation and the efficacy of ICB in
certain cancers.

We used real-world data to characterize the relationship
between tumor extrinsic and intrinsic features and ICB response
in NSCLC patients. While real-world data can more accurately
reflect the complexities and diversity of patient care in the real
world than clinical trials, it does have some drawbacks. Standard
clinical trial endpoints, such as RECIST scores and overall

survival, may be unavailable in some patients. Nonetheless, we
were able to effectively investigate the impact of HLA-LOH on
ICB efficacy and determine whether integrating tumor extrinsic
and intrinsic features more accurately model real-world clinical
responses38. Further clinical research will be required to validate
our integrative model as a predictive or a broadly prognostic
NSCLC biomarker for ICB. As a result, we believe that clinical
trials and real-world data complement one another and that
incorporating real-world data into clinical research can lead to
more robust biomarker discovery and guide clinical trial designs.

Finally, the development of pre-treatment biomarkers con-
tinues to be an important goal for precision medicine. Such pre-
treatment biomarkers can help inform clinical judgment and lead
to better outcomes by identifying progression events sooner,
limiting usage of ineffective and costly ICB regimens, and
improving patient quality of life by potentially transitioning to the
next line of therapy before asymptomatic progression becomes
symptomatic progression. We note that biomarkers considering
HLA-LOH and HLA diversity alone have produced contradictory
results in predicting ICB outcomes9,14,15,69. Such HLA-I defi-
ciencies are thought to limit tumor antigen presentation to CD8+

T cells but do not account for the potential role of cytotoxic
CD4+ T cells. We propose that measuring the availability of
potential tumor antigens and the infiltration of CD4+ and CD8+

T cells with cytotoxic phenotypes may aid in resolving the con-
tradictory findings of these studies and provide a more complete
picture of the tumor immune microenvironment. Overall, this
study highlights the potential and utility of integrating tumor
extrinsic and intrinsic features for predicting immunotherapy
response in NSCLC.

Methods
Ethics statement. The use of de-identified molecular and clinical data in this study
complies with all relevant ethical regulations. De-identified data were obtained
from the Tempus Database. All data were de-identified in accordance with the
Health Insurance Portability and Accountability Act (HIPAA) using Safe Harbor
guidelines. The study protocol was submitted to the Advarra Institutional Review
Board (IRB), which determined the research was exempt from IRB oversight.

NSCLC ICB cohort and clinical endpoints. De-identified patient records were
selected from the Tempus Database. For inclusion in this study, patients were
required to (1) have a diagnosis of metastatic NSCLC with non-squamous his-
tology, (2) have received an ICB regimen, (3) have a documented progression event
after treatment initiation, or have at least 90 days of follow up from treatment
initiation, (4) completed next-generation DNA and RNA sequencing on an ICB-
naive biopsy, and (5) have no actionable EGFR or ALK alterations. The primary
clinical endpoint was real-world time to progression (TTP), defined as the time
from the initiation of the ICB regimen to the first progression event, censored on
the last known clinical encounter38. Patients who ended treatment due to an
adverse event, non-compliance, or another non-progression-related reason were
censored at the time of treatment stop.

Clinical data abstraction. Clinical features for this study were derived from
unstructured physician progress notes. The physician notes were abstracted using a
standardized enriched curation process. A data dictionary and template were
developed and reviewed with a panel of oncologists. The data dictionary included
every field, the associated value sets, the definition of the fields, and scenarios to
clarify for abstraction. Each patient case was curated by two abstractors, blinded to
each other’s curation. Discordances were reviewed by a third abstractor and
escalated to a lung oncologist if adjudication was necessary. Two oncologists
reviewed a random selection of patients from the final curated dataset to ensure
validity.

DNA and RNA sequencing. Formalin-fixed, paraffin-embedded (FFPE) patient
samples were profiled using Tempus xT targeted panel (596 genes), Tempus xO
targeted panel (1700 genes), or Tempus xE whole-exome DNA sequencing, as well
as Tempus xT whole-transcriptome RNA sequencing. Each sample underwent
expert pathologist assessment for tumor cellularity and other quality measures. All
tumor samples had at least 20% tumor content. Total nucleic acid was extracted
from the FFPE tissue sections and digested by proteinase K. RNA was purified from
the total nucleic acid by DNase-I digestion. A matched normal sample of blood or
saliva was also obtained when possible. Germline DNA was extracted from either
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650 μl of saliva or 200 μl of blood. DNA and RNA sequencing were performed as
previously described34–36.

PD-L1 immunohistochemistry. PD-L1 status for the NSCLC ICB cohort was
preferentially determined by clinical Tempus testing with the 22C3 anti-PD-L1
antibody (Agilent). Slides were scored by a pathologist using the tumor proportion
score (TPS), which is the percentage of tumor cells with complete or partial
membrane staining. Samples with a TPS <1% are considered PD-L1 negative,
1–49% are considered PD-L1 low, and ≥50% are considered PD-L1 high. For
patients without Tempus 22C3 staining, PD-L1 IHC status was assessed from the
abstracted clinical notes. For patients with recorded TPS scores, the same thresh-
olds as described above were used. If no TPS score was available, but a PD-L1 IHC
status was recorded, that status was used. PD-L1 IHC was performed on samples
collected prior to ICB treatment start in all cases with known sample collection
dates. Seven patients with abstracted PD-L1 IHC results had an unknown sample
collection date. If there were multiple PD-L1 IHC tests recorded, the result from
the test closest in time to the start of ICB treatment was used.

TCGA LUAD cohort. FASTQ files from RNA sequencing data for the TCGA
LUAD cohort were downloaded from the Genomic Data Commons70 and pro-
cessed through the Tempus RNA pipeline as described below. The clinical data for
the cohort was obtained from cBioportal71.

Tumor mutational burden. TMB was calculated by dividing the number of non-
synonymous mutations by the megabase size of the panel, as previously
described36. All non-silent somatic coding mutations, including missense, indel,
and stop-loss variants with coverage >100× and an allelic fraction >5% for targeted
gene panels and coverage >30× and an allelic fraction >10% for the whole exome,
were counted as non-synonymous mutations.

HLA loss of heterozygosity. HLA-LOH status was determined as previously
described72,73. Briefly, we assessed HLA-LOH status for all patients with a matched
normal sample. Four-digit class, HLA-I typing was performed on the matched
normal samples using Optitype (version 1.3.4)74 and a custom HLA reference file
for each patient was generated. All reads mapped to the HLA locus, as well as
unmapped reads were extracted from the tumor and normal BAM files and
remapped to the patient’s HLA reference. After accounting for potential germline
variants present in the sample’s HLA, the alignments were updated and allele-
specific coverage was determined. Changes in coverage between alleles, in the
context of the expected tumor purity and copy states in the flanking genome, were
assessed to determine if any reduction in allele coverage was consistent with a
clonal loss of a specific HLA allele.

Transcriptomic analysis. Transcript-level quantification to GRCh37 was per-
formed using Kallisto (version 0.44). Transcript counts were then corrected for GC
content and length using quantile normalization and adjusted for sequencing depth
via a size factor method. Normalized counts in protein-coding transcripts covered
by the exome panel were then summed to obtain gene-level counts. Subsequent
expression analyses were performed on log10-transformed counts.

Single-cell multi-omics sequencing. Samples for single-cell multi-omic sequen-
cing were previously frozen dissociated tumor cells (DTCs) (Discovery Life Sci-
ences, Huntsville, AL). DTCs were thawed and washed with FACS buffer (PBS,
0.04% BSA). Up to 1 million cells were suspended in 45 μl cell staining buffer
(BioLegend Cat. No. 420201). The cells were blocked with Human 5 μl TruStain
FcX (Fc Receptor Blocking Solution, Cat. No. 422301) for 10 min on ice. An
antibody pool was created by combining equal volumes of each Totalseq-C anti-
body, including the anti-Human-CD45 antibody (Cat# 368545, BioLegend), anti-
Human-CD3 antibody (Cat# 300479, BioLegend), anti-Human-CD4 antibody
(Cat# 300567, BioLegend), anti-Human-CD8 antibody (Cat# 344753, BioLegend),
anti-Human-CD20 antibody (Cat# 302363, BioLegend), and FITC-conjugated anti-
Human-CD45 antibody (Cat# 304006, BioLegend), into a pool. The final con-
centration of each antibody in the pool was 1 μg/μl as per the manufacturer’s
recommendations. 1 μl (=1 μg) of mixed Totalseq-C+ FITC-anti-CD45 antibody
pool was then added to the 50 μl volume and the mixture was incubated for 30 min.
on ice. Cells were washed by spinning at 400xG for 3 min, removing the upper
liquid portion avoiding the pellet, and finally resuspension of the cell pellet in
500 μl cell staining buffer (first 2 washes). The third wash was with FACS buffer
(PBS+ 0.04% BSA) including DAPI (10 min RT incubation). Finally, the cells were
resuspended in FACS buffer without DAPI pior to cell sorting.

Samples were sorted using the SH800S cell sorter (Sony Biotechnology). Live
cells were gated on DAPI− cells sorted as CD45+ and CD45− populations and
collected in RPMI. The sorted CD45+ and CD45− cells were pelleted and
resuspended to recover a target of 3000 cells after 10X droplet formation. Cellular
suspensions were barcoded using a Chromium Single Cell Controller instrument
(10x Genomics) and 10X Genomics Chromium Single Cell A Chip Kit (P/N
120236, 10X Genomics) to generate single-cell Gel Beads-in-Emulsion (GEMs) for
reverse transcription. Single-cell RNA-Seq libraries were prepared using the

Chromium Single Cell 5’ Library and Gel Bead Kit (P/N 1000020, 10x Genomics)
as per the manufacturer’s instructions. For each sample, four libraries were
generated: CD45− 5’ gene expression library, CD45+ 5’ gene expression library,
CD45+ TCR library, and CD45+ cell surface protein library.

Single-cell multi-omic analysis. Raw sequencing files were processed through the
CellRanger pipeline (version 3.1.0) and then analyzed using Scanpy (version 1.6)
and Scirpy (version 0.4). Cells with detectable gene expression in less than 200
genes, >6% mitochondrial genes for immune cells, >20% mitochondrial genes for
tumor cells, or more than 2500 genes were removed from downstream analyses, as
were any genes expressed in <3 cells. Scrublet75 was used for doublet detection and
removal. Gene expression values were normalized to 10,000 counts per cell and log-
transformed. Protein expression values were normalized using the centered log-
ratio normalization.

Data from the CD45+ fraction was then filtered on the CD4+ and CD8+ T cell
populations, based on protein expression of CD45, CD3, CD4, CD8, and CD20 and
RNA expression of CD68. Data from the CD45− fraction was filtered to remove a
minor population of contaminating immune cells. Genes from the T cell receptor
and HLA loci were removed from the gene expression data. The gene expression
data was then batch corrected using BBKNN (version 1.5.1)76, filtered on highly
variable genes, and scaled to unit variance. Leiden clustering was performed using
Scanpy with a resolution of 0.7 for the CD8 cells and 0.8 for the CD4 cells. Cell
cycle status was assessed using the score_genes_cell_cycle function in Scanpy with
the gene list from Tirosh et al.69 PAGA graphs were generated with the paga
function in Scanpy with 6 neighbors and the first 20 principal components.
Differential expression analysis was performed using the rank_genes_groups
function in Scanpy with the Wilcoxon Rank-Sum test.

To assess HLA expression, we first performed HLA typing using ArcasHLA
(version 0.2.5)77 and then quantified HLA expression using scHLAcount (version
0.1.0)78. Gene-level raw counts were then normalized by library size and log-
transformed.

For the T cell receptor analysis, cells without a paired TRA and TRB, or with
multiple TRA or TRB chains were removed. A TCR clonotype was defined as a
group of cells with identical TRA and TRB CDR3 sequences. An expanded clone
was considered as any clone consisting of more than one cell. Shannon entropy was
calculated using the alpha_diversity function in scirpy and Hutcheson’s t-test was
performed using the ecolTest R package (version 0.0.1).

Immunofluorescence staining. Multiplex immunofluorescence staining was per-
formed on FFPE sections as previously described79. In brief, slides were depar-
affinized and re-hydrated, followed by antigen retrieval. Slides were first stained
with a cocktail of Tagged primary antibodies against CD8a (Clone: EPR10640(2),
UltraTag: UT015, Cell Idx), CD4 (Clone: EPR6855, UltraTag: UT014, Cell Idx),
Granzyme B (Clone: EPR20129-217, UltraTag: UT021, Cell Idx), panCK (Clone:
AE1/AE3, UltraTag: UT016, Cell Idx), and HLA-DR (Clone: EPR3692, UltraTag:
UT019, Cell Idx), and diluted with antibody diluent (PBS/1% BSA/0.2% Tween 20/
15 mM Sodium Azide) for 1 h (UltraPlex detection system, Cell IDx). Slides were
then washed with wash buffer and a cocktail of anti-Tag detection antibodies
(UltraPlex detection system, Cell IDx), anti-UT015 (clone: CXC015, Flour: CL490,
Cell Idx), anti-UT014 (clone: CXC015, Flour: CL550, Cell Idx), anti-UT021 (clone:
CXC021, Flour: CL650, Cell Idx), anti-UT016 (clone: CXC016, Flour: CL480XL
[megastoke dye], Cell Idx), and anti-UT019 (clone: CXC019, Flour: CL750, Cell
Idx), were diluted with antibody diluent (PBS/1% BSA/0.2% Tween 20/15 mM
Sodium Azide) and added to the slide and incubated for 1 h. As a negative control,
slides were incubated with the secondary anti-Tag detection cocktail alone. Slides
were then mounted using Fluoroshield with DAPI (Immunobiosciences) and
coverslips applied prior to scanning at 20× using the Leica Versa scanner. Analysis
was performed on the Aperio ImageScope, (v12.4.2.5010) using the Leica Quan-
titative Algorithm (v1).

Gene signatures. Gene lists for the Leiden cluster gene signatures were generated
by taking the top 25 ranked differentially expressed genes for each cluster using the
rank_genes_group Scanpy function. The gene score was then calculated by taking
the arithmetic mean of the log-transformed RNA expression of the gene list. Scores
were mean-centered and scaled prior to use in survival analyses.

The cytotoxic score was calculated by taking the arithmetic mean of 25 genes
that are highly expressed in either CD4+ or CD8+ cytotoxic T cells. The genes are
NKG7, CXCL13, GZMH, HAVCR2, CCL5, GZMK, CCL4, GZMA, CCL3, CST7,
CCL4L2, ACP5, TNFRSF9, TIGIT, GZMB, PDCD1, PRF1, LYST, SIRPG, LAG3,
CARD16, TUBA4A, PTMS, CD74, KLRD1.

Immune infiltration estimates. Estimates of immune cell infiltration were gen-
erated using the R package xCell59 (version 1.1.0).

Multimodal model training. The MM score was generated via a Cox proportional
hazards (CoxPH) model using cytotoxic score and the binarized TMB status to
predict TTP on 100 random shuffles of the cohort. The train_test_split function
from sklearn was used to randomly split 75% of patients in each shuffle into the
training set and 25% of patients into the evaluation set. The
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CoxPHSurvivalAnalysis function from the scikit-survival (version 0.17.2)80 pack-
age was used to train the CoxPH models with the alpha parameter set to 1 and
Breslow tie handling. Each patient was scored based on the arithmetic mean of
their out-of-fold scores. The scores were then binarized using the median score of
the cohort as the threshold to create two risk categories.

Survival analysis. Kaplan–Meier plots were generated using the survminer R
package (version 0.4.8). Forest plots were generated using the survivalAnalysis R
package (version 0.1.3). The log-rank test was used to compare survival curves and
hazard ratios were calculated using a Cox proportional hazards model.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Patient demographics data are available in Supplementary Data 1 and 2. The raw
sequencing data are not publicly available due to data privacy regulations and
commercial restrictions on the use of such data. As such, the genomic data analyzed here,
including the de-identified clinical data, DNA variant data, RNA expression data and
single-cell multiomic profiling data, is available and may be obtained in accordance with
Tempus’s data sharing policy (https://vivli.org/ourmember/tempus/) as part of an
external data access request (Accession ID: T21.02) linked here: https://doi.org/10.25934/
PR00007504. The approximate time for processing a data access request is one month
and inquiries about the process can be directed to publications@tempus.com. The TCGA
data used in this study are available on the NIH Genomic Data Commons (https://portal.
gdc.cancer.gov/projects/TCGA-LUAD) and the cBioPortal (https://www.cbioportal.org/
study/summary?id=luad_tcga_pan_can_atlas_2018). The remaining data are available
within the Article, Source Data, and Supplementary Information and Data files. Source
data are provided with this paper.

Code availability
Requests for code used to generate the figures from Source Data are subject to a non-
commercial data software agreement and review by Tempus and can be directed to
publications@tempus.com. All other code used in this study is previously published and
specified in the “Methods” section.
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