
Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and 

distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages  
(https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/09636897231158153

Cell Transplantation
Volume 32: 1 –15
© The Author(s) 2023
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/09636897231158153
journals.sagepub.com/home/cll

Review

Introduction

Stroke, which suddenly occurs when blood vessels clog 
(ischemic stroke) or burst (hemorrhagic stroke), subse-
quently causing considerable brain damage, is the second 
most common cause of deaths globally and the most com-
mon cause of disability1. While ischemic stroke accounts for 
the largest portion of stroke (75%) compared with hemor-
rhagic stroke (10%), the fatality and disability rates are con-
siderably higher with hemorrhagic stroke2. Although tissue 
plasminogen activator (t-PA) and thrombectomy have sub-
stantially improved the prognosis of ischemic stroke3, there 
is a lack of effective treatment for hemorrhagic stroke, espe-
cially intracerebral hemorrhage (ICH). Even with the 
advances in medical technology, the rate of ICH-related mor-
tality has not decreased over the past decades4,5. While 
hematoma evacuation is often applied in the treatment of 
acute ICH, the precise role of surgery in improving the mor-
tality rate and post-stroke mobility remains unclear. The 
International Surgical Trials in Intracerebral Hemorrhage, 
STICH and STICH II, were the two largest randomized trials 
performed to elucidate the efficacy of surgical interventions 
for ICH; however, the outcomes of these trials could not 
demonstrate any significant advantages of surgery for supra-
tentorial hematoma6,7. Based on the data from these trials, 

the American Heart Association and the American Stroke 
Association recommend supratentorial hematoma evacua-
tion as a “life-saving” treatment in patients with severe ICH8, 
suggesting that surgical therapies may reduce mortality but 
not contribute to the amelioration of neurological sequelae. 
Patients with ICH often undergo rehabilitation for neurologi-
cal recovery following acute phase and recover within the 
initial months and soon reach plateau9. Owing to the lack of 
other effective treatments, especially following subacute 
phase, ICH has led to approximately 64.5 million disability-
adjusted life years2, which has resulted in severe socioeco-
nomic problems to both patients and society. Therefore, 
innovative treatment strategies to minimize or reverse the 
neurological sequelae are highly warranted.
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During recent years, cell-based therapies have attracted 
attention for the treatment of neurological disorders includ-
ing ischemic stroke, spinal cord injury, and traumatic brain 
injury10,11. Previous clinical trials have shown promising 
results wherein patients receiving cell therapy showed better 
neurological recovery than the controls12,13. Nevertheless, 
there is limited basic and clinical research on stem cell thera-
pies for ICH. The reason remains unclear, but presumably, 
ischemic stroke is often preceded because of the high propor-
tion of patients. Although several review articles have dis-
cussed stem cell therapies for ischemic stroke, review articles 
describing stem cell therapy for ICH are limited.

Therefore, in this review, we summarize the preclinical 
and clinical data on the efficacy of stem cell therapies for 
ICH, focusing on the advances in this field and providing 
insights into future development of therapies for ICH.

Preclinical Studies

We thoroughly reviewed original articles on the efficacy of 
stem cell implantation in animal models of ICH. A literature 
search on PubMed (https://www.ncbi.nlm.nih.gov/pubmed) 
was performed to identify basic research articles on stem cell 
therapy for ICH. We used the keywords “stem cell” and 
“hemorrhagic stroke” for the initial search. The search was 
restricted to articles written in English and to articles on mes-
enchymal stem cells (MSCs). We included articles from 
2006 to 2020. However, articles related to subarachnoid 
hemorrhage and intraventricular hemorrhage were excluded. 
Hemorrhage in these diseases occurs outside the brain paren-
chyma, resulting in different brain damage mechanisms. We 
further reviewed some articles cited within the papers 
selected from our preliminary search. Article selection and 
data collection were performed by one of the authors (S.T.). 
Finally, we selected 39 studies that aligned with the aims of 
this review, and they have been listed in Table 1.

Based on collected data, the heterogeneity of the experi-
mental methods is illustrated in Fig. 1, which included differ-
ent animals, methods of hemorrhagic procedure, cell sources, 
transplantation routes, and transplantation timings. 
Understanding the different methodologies is important, as 
the mode of action of stem cells is different among these 
methods, which may influence the results of the clinical 
trials.

Animal Models

Thirty-four (87.2%) of the 39 studies used rat models of 
ICH, 4 used mice, and 1 used monkeys (Macaca fascicu-
laris) (Fig. 1A). Male animals were used as the ICH model in 
31 studies, whereas females were used in 5 studies. While the 
age of animals was not accurately described in most studies, 
based on their body weights, most animals could be adjudged 
as young. Suda et al.36 described the efficacy of bone marrow 
mononuclear cells (BM-MNCs) in elderly rats but did not 

specify the precise age. Cell therapy guidelines for stroke 
recommend the use of animals of both sexes and different 
ages to match the situation envisioned for clinical use53,54.

Basal ganglia were the most frequently used targets of 
ICH although some articles also described striatum or cau-
date nucleus as the targets. Bacterial collagenase injection 
was the most commonly (29/39 studies; 74.4%) used method 
for the induction of ICH, followed by whole blood injection 
(9/39 studies; 23.1%) and hemoglobin injection (1 study; 
2.6%) (Fig. 1B). The bacterial collagenases used for ICH 
models were subdivided into types IV, VII, I, and animal ori-
gin free A (AFA); of these, collagenase types IV (0.1–1 U 
titer) and VII (0.075–0.5 U titer) were used most frequently. 
In general, for any given type of collagenase, the higher the 
titer, the larger the hematoma produced. Mello et al.51 showed 
that administering 0.1 U of collagenase IV led to the devel-
opment of moderate ICH, whereas 0.25 U caused severe ICH 
in animal models. In addition, type VII collagenase is con-
sidered stronger than type IV collagenase. An autologous 
blood-induced ICH model has also been reported, in which 
50–100 µl of blood was injected into rats and 1.5 ml into 
monkeys. Although both collagenase and autologous blood 
models are frequently used in preclinical experiments, it is 
difficult to accurately mimic ICH in humans using these 
models. In the collagenase model, ICH is caused by the 
bleeding of cerebral vessels disrupted by collagenase, and it 
mimics the pathophysiology of human ICH. However, col-
lagenase also disrupts other circumambient structures, and as 
such, the tissue damage can be greater than that in human 
ICH. In addition, it is difficult to control the hematoma vol-
ume in the collagenase model because the cerebral vessels 
are unselectively injured. Meanwhile, in the autologous 
blood model, the hematoma size is relatively easy to control, 
facilitating the generation of more uniform models. However, 
in human physiological conditions, hematoma is caused by 
the external environment as opposed to originating in cere-
bral arteries. Furthermore, autologous blood may, at times, 
contain added anticoagulants. Irrespective of the added anti-
coagulants, the coagulation cascade is activated before fur-
ther injections. These conditions do not accurately reflect the 
pathophysiology of human ICH. Moreover, unlike its patho-
genesis in humans, ICH is not associated with hypertension 
in animal models. We found only two studies that used spon-
taneously hypertensive rats for generating the ICH model to 
mimic human conditions. Thus, reproducing the exact patho-
physiology of human ICH seems extremely difficult.

Stem Cell Sources

Of the 39 studies reviewed, 22 (56.4%) used xenogenic, 
16 (41.0%) used allogeneic, and 1 study used autologous 
stem cells. Among the studies on xenogenic stem cells, 11 
did not use immunosuppressants, and it was unknown 
whether they were adopted in the remaining studies. 
Furthermore, there was no mention of the utilization of 
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immunosuppressants in 15 of the 16 studies involving 
allogeneic stem cells. Nevertheless, 10 xenogenic cell 
studies and 12 allogeneic cell studies reported that the 
implanted cells differentiated into neural cells around the 
injured brain. This may be attributed to the low immuno-
genicity of the MSCs55.

Bone marrow (BM)-derived MSCs (BM-MSC) were the 
most frequently used source of stem cells (24/39 studies; 
61.5%), followed by birth-associated tissue [such as umbili-
cal cord (UC), placenta, Warton jerry, and amnion 
membrane]-derived MSCs (10/39 studies; 25.6%), and adi-
pose tissue–derived MSCs (AD-MSCs) (Fig. 1C). While 
BM-MSCs and AD-MSCs obtained from patients can be 
used as autologous grafts, allograft is also frequently exam-
ined. Birth-associated tissue-derived MSCs can be obtained 
from healthy volunteers non-invasively, and these cells show 
greater cell proliferation and lower immunogenicity than the 
adult tissue-derived MSCs56–58. Further comprehensive 
examination is required to elucidate the most appropriate 
source of cells for the treatment of ICH.

Transplantation Routes, Dosages, and Timings

Intravenous (19/39 studies; 48.7%) and intracerebral routes 
(17/39 studies; 43.6%) are the most commonly used routes 

of transplantation, followed by intracerebral ventricle (5/39 
studies; 12.8%), intra-arterial (2/39 studies; 5.1%), and intra-
nasal (one study; 2.6%) routes (Fig. 1D). Studies on the com-
parison of cell transplantation routes are seldom reported. 
Zhang et al.15 reported intravenous, intra-arterial, and intra-
cerebral ventricle cell transplantations in the acute phase 
after hemorrhagic insult. They transplanted the same amount 
of cells (2 × 106 BM-MSCs) four times (days 1, 3, 5, and 7) 
through different routes. The results showed that intracere-
bral ventricle transplantation achieved the best functional 
recovery, followed by intra-arterial transplantation, whereas 
the recovery in the intravenous transplantation group was 
identical to that in the sham-treated group. The authors also 
found that the transplanted cells were engrafted in the ipsilat-
eral brain through intracerebral ventricle and intra-arterial 
methods but not via the intravenous method. The cells were 
mostly distributed in the ipsilateral cortex, bleeding foci, and 
hippocampus and showed neuronal or glial transformation. 
Xie et al.40 have reported that intracerebral and intravenous 
transplantations of human umbilical cord–derived stem cells 
are effective when these are transplanted 1 day after hemor-
rhage. Although it is not clear which route can achieve the 
best recovery of the neurological function, Hess and 
Borlongan59 have proposed that intravenous transplantation 
may be beneficial in the acute phase of stroke owing to its 

Figure 1. Charts outlining the parameters used in animal studies on stem cell therapy against ICH. The animal species (A), hemorrhagic 
methods (B), implanted cell sources (C), implanting routes (D), and implant timings (E) are summarized. ICH: intracerebral hemorrhage.
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immunomodulatory effect, whereas intracerebral transplan-
tation is favorable in the chronic phase wherein inflamma-
tion is mostly settled.

The dose of implanted cells administered varies depend-
ing on the route of implantation; the median doses of the 
cells were 2.5 (0.5–8) million for the intravenous, 0.5 (0.1–5) 
million for intracerebral, 0.5 (0.2–2) million for intracerebral 
ventricular, 1.5 (1–2) million for intra-arterial, and 1 million 
for the intranasal routes. Especially, the cell doses adminis-
tered through the intravenous and intracerebral routes were 
significantly different (P < 0.01, Wilcoxon rank-sum test), 
and this difference may be associated with the difficulty in 
the migration of intravenously implanted cells into the 
injured brain lesions. Thus, it is important to adjust the dose 
of cells administered depending on the route of implantation 
to ensure functional improvement. In three of the six studies 
that included a group with unfavorable functional out-
comes15,19,23,32,48,51, the cell doses administered were less than 
the median value mentioned above.

The cells were administrated within 1 day after ICH onset 
in most of the studies (25 of the 39 studies; 64.1%) (Fig. 1E). 
Although the dose of cells administered influences the speed 
of functional recovery, the timing proved even more impor-
tant; the sooner the cells were administrated after the onset of 
ICH, the faster was the improvement in the functional out-
comes. There was a weak correlation between the time of 
implantation and the time required for functional recovery (ρ 
= 0.64, Spearman’s rank correlation coefficient).

Factors Enhancing the Effect of Stem Cell 
Therapy

Previous studies have shown that combination therapy involv-
ing stem cell implantation or stem cell modifications, such as 
gene transduction, with preconditioning may be more effica-
cious than stem cell therapy alone in the treatment of ICH.

Seyfried et al.19 have reported the beneficial effects of 
mannitol injection followed by intra-arterial infusion of 
MSCs. Compared to treatment with MSCs alone, the combi-
nation therapy with MSCs and mannitol led to an increased 
number of newly generated neuronal cells around the lesion 
and better functional recovery. This finding may be attrib-
uted to the ability of mannitol to increase vascular endothe-
lial permeability by opening the blood–brain barrier (BBB). 
Furthermore, Zhang et al.39 have shown the efficacy of 
hematoma aspiration before the intracerebral administration 
of MSCs. Hematoma aspiration along with MSC administra-
tion leads to a reduced expression of p53, which promotes 
apoptosis, and consequently leads to better outcomes than 
MSC treatment alone. Vaquero et al.32 demonstrated that 
treatment using MSCs with a platelet-rich plasma-derived 
scaffold, containing platelet-derived trophic factors that 
enhance endogenous neurogenesis, may have better long-
term outcomes than the treatment with MSC alone.

Regarding gene transduction, hepatocyte growth factor 
(HGF)21, glial cell line–derived neurotrophic factor 
(GDNF)26,47, and microRNA-126a-3p (miR-126) have also 
been reported52. While HGF-transduced MSCs improve the 
neurological function in ICH by nerve fiber remyelination 
and axonal regeneration, the GDNF-transduced MSCs 
improve the neurological recovery by preventing apoptosis, 
promoting neuronal replacement, and enhancing other neu-
rotrophic factors. Furthermore, miR-126-modified MSCs 
improved angiogenesis and ameliorated functional outcomes 
of ICH by repairing the BBB and damaged nerves.

Various studies have reported the efficacy of precondi-
tioned MSCs. For instance, Lee et al.35 have shown that 
MSCs primed with fasudil, a Rho-kinase inhibitor, signifi-
cantly improved the functional outcomes compared with the 
non-primed MSCs through the upregulation of GDNF. Sun 
et al.37 used hypoxia-preconditioned MSCs to enhance neu-
rotrophic factors and neurogenesis, whereas Min et al.46 used 
apocynin, a nicotinamide adenine dinucleotide phosphate 
oxidase inhibitor, for MSC preconditioning. The apocynin-
preconditioning enhanced the therapeutic efficacy of the 
MSCs by enhancing the cerebrovascular integrity and neuro-
protective effects. Collectively, these reports suggest that 
stem cell therapy for hemorrhagic stroke can be improved 
using appropriate enhancers.

Takamiya et al.60 recently reported that MSCs com-
pounded with a biodegradable scaffold (CellSaic) resulted 
in better functional recovery than MSCs alone in a chronic 
ICH model. CellSaic released higher amounts of trophic 
factors such as BDNF, HGF, vascular endothelial growth 
factor (VEGF), and GDNF; extracellular vesicles (exo-
some) were also released in CellSaic. Takamiya et al. 
found better cell engraftment with immunohistochemistry 
and neuronal integrity with animal single-photon emission 
computed tomography (SPECT). These results indicate 
that combined cell product can upregulate the function of 
MSCs.

Mechanisms Underlying Stem Cell Therapy for 
Hemorrhagic Stroke

Based on previous studies, the mechanisms underlying the 
effects of stem cell therapy in hemorrhagic stroke can be 
classified as follows: neurogenesis, angiogenesis, anti-brain 
edema, anti-inflammation, and neuroprotection (summarized 
in Table 2).

MSCs May Promote Reorganization of the 
Neural Circuits

Neurogenesis is the most common mechanism that can be 
subdivided into exogenous and endogenous neurogenesis. 
Exogenous neurogenesis is the direct differentiation of the 
implanted stem cells, whereas endogenous neurogenesis 
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Table 2. Potential Therapeutic Mechanisms of Stem Cells in Preclinical ICH Models.

Author

Neurogenesis

Angiogenesis

Anti-brain edema

Anti-
inflammation

Neuroprotection 
(anti-apoptosis/
degeneration)Exogenous Endogenous BBB permeability

Water 
transportation

Seyfried et al.14 SYN, TUJ1, DCX  
Zhang et al.15 NeuN, GFAP, CNP  
Kim et al.16 vWF, EBA MPO TUNEL
Seyfried et al.19 SYN, TUJ1, DCX  
Liao et al.20 GFAP, NSE, MAP2 vWF, α-SMA MPO, CD11b, 

ROS, MMP
FJB

Liu et al.21 MBP, MAG, GAP-43  
Otero et al.22 NeuN, GFAP DCX, nestin  
Seyfried et al.23 GFAP, MAP2 SYN, TUJ1, DCX  
Feng et al.24 MVD  
Otero et al.25 NeuN, GFAP DCX, nestin  
Yang et al.26 NF TUNEL
Otero et al.27 NeuN, GFAP DCX, nestin Apostain assay
Wang et al.28 GFAP, NF Caspase 3, p-Akt, 

bcl-2
Bao et al.30 MAP2 vWF MPO, CD68, IL-

1β, IL-2, IL-4, 
IL-6, TNFα

TUNEL

Vaquero et al.32 NeuN, GFAP DCX, nestin  
Chen et al.33 Evan’s blue MPO, IL-1β, IL-6, 

TNFα, Iba1, 
IL-10, IFN-γ, 
TGF-β

TUNEL

Kim et al.34 TUJ1 Laminin MPO, CD11b, 
TNFα, COX-2

TUNEL

Lee et al.35 GFAP, MAP2, NF vWF  
Suda et al.36 DCX MVD MMP-9, iNOS AQP4 MPO, IL-1β, 

HMGB1, S100β
FJB

Sun et al.37 DCX, NeuN  
Wang et al.38 Evan’s blue, 

occludin
 

Zhang et al.39 p53
Xie et al.40 GFAP, MAP2 vWF  
Zhou et al.41 DCX vWF MPO, CD68 Caspase 3
Cui et al.42 GAP-43, ERK1/2, 

JNK
IL-1β, IL-6, 

TNFα, IL-10
 

Cui et al.43 GAP-43, ERK1/2, 
Akt

 

Ding et al.44 NeuN iNOS, zo-1, 3-NT CD68, IL-1β, 
TNFα, iba-1

TUNEL

Choi et al.45 Occludin, zo-1 FJB
Min et al.46 Occludin, zo-1 FJB
Deng et al.47 GFAP, NSE, MAP2 SYN, GAP-43, 

PSD95
 

Huang et al.48 DCX IL-6, IFN-γ, IL-1α  
Kuramoto et al.49 CD11b  
Zhang et al.50 AQP4 IL-1β, IL-6, TNFα TUNEL, Annexin 

V-FITC Apoptosis 
Detection Kit

Wang et al.52 CD31 Evan’s blue, 
MMP-9, zo-1, 
claudin-5, PAR-1, 
VE-cadherin

TUNEL

ICH: intracerebral hemorrhage; BBB: blood–brain barrier; BDNF: brain-derived neurotrophic factor; CNP: 2′,3′-cyclic nucleotide phosphodiesterase; SYN: synaptophysin; 
DCX: doublecortin; GFAP: glial fibrillary acidic protein; vWF: von Willebrand factor; EBA: endothelial barrier antigen; MPO: myeloperoxidase; TUNEL: terminal transferase 
dUTP nick end labeling; NSE: neuronal specific enolase; MAP2: microtubule-associated protein 2; α-SMA: α-smooth muscle actin; ROS: reactive oxygen species; MMP: matrix 
metalloproteinase; FJB: fluoro-jade B; MBP: myelin-basic protein; MAG: myelin-associated glycoprotein; GAP-43: growth-associated protein-43; COX: cyclooxygenase; MVD: 
micro vessel density; NF: neurofilament; p-Akt: phospho-Akt; IL: interleukin; TNFα: tumor necrosis factor-α; IFN-γ: interferon-γ; TGF-β: transforming growth factor-
β; iNOS: inducible nitric oxide synthase; AQP4: Aquaporin-4; S100β: S100 calcium binding protein B; HMGB1: high-mobility group protein box-1; ERK1/2: extracellular 
signal-regulated kinase; zo-1: zonula occludens-1; JNK: c-Jun N-terminal kinase; 3-NT; 3-nitrotyrosine; PSD95: postsynaptic density protein 95; PAR-1: protease activated 
receptor-1; VE: vascular endothelial.
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involves the generation of self-neuronal cells produced by 
the stimulation of the implanted stem cells.

The transplanted cells pre-labeled with various methods, 
such as using green fluorescence protein (GFP), might be 
considered to show exogenous neurogenesis when they also 
present a positive signal for neural marker antibodies such as 
anti-NeuN, anti-neurofilament, and anti-microtubule-associ-
ated protein 2. Although the mechanisms underlying cell 
migration to injured lesions remain unclear, Xie et al.40 sug-
gested that the mechanisms might be associated with stromal 
cell-derived factor-1 (SDF-1)/CXCR4 system. SDF-1 is 
expressed in reactive astrocytes and attracts MSCs that 
express CXCR4 in cerebral infarction61–63. In addition, 
sphingosine-1-phosphate (S1P), which is expressed in 
injured cellular membrane, has been reported to help multi-
lineage-differentiating stress-enduring cells migrate through 
the specific receptor (S1PR)64. Thus, some factors derived 
from damaged tissues may influence the effectiveness of 
stem cell therapy.

However, researchers have argued that endogenous neu-
rogenesis is more prominent than exogenous neurogenesis as 
the detectable implanted cells are substantially smaller than 
those initially implanted14,22,23,25,27,32. Growth-associated gly-
coprotein-43 (GAP-43) is reported to play an important role 
in neurogenesis21,42,43. GAP-43 is a protein associated with 
the development and regeneration of neurons and is expressed 
following the phosphorylation of extracellular signal-regu-
lated kinase 1/2 (ERK1/2). Cui et al.43 reported that BM-MSC 
implantation increases phosphorylated ERK1/2 and GAP-43 
levels in the perihematomal brain tissue.

Furthermore, Liang et al.31 suggested that MSCs cause the 
reconstruction of neural networks. The authors showed that, 
while the ipsilateral caudal forelimb area (CFA, primary 
motor area) was not restored by stem cell implantation despite 
the functional improvements, the ipsilateral rostral frontal 
area (supplementary motor area) and contralateral CFA were 
enhanced by the administration of MSCs. These effects may 
be attributed to the reorganization of the neural circuits.

MSCs Improve Angiogenesis After ICH

Angiogenesis is an important mechanism underlying the 
effects of stem cell therapy as the brain tissue around the 
hematoma is usually susceptible to ischemia. Angiogenesis is 
promoted by certain trophic factors, including VEGF. Zhou 
et al.41 showed that MSC implantation increased the number 
of von Willebrand factor–positive cells and the level of VEGF 
in the perihematomal area. Furthermore, Wang et al.52 
reported that MSC administration increases CD31 (endothe-
lial marker), and its effect was enhanced when miR-126-mod-
ified MSCs were used, presumably because miR-126 
regulated the response of endothelial cells to VEGF. Thus, 
angiogenesis owing to the trophic factor secreted from MSCs 
will take on the role of neurological recovery after ICH.

MSCs Ameliorate BBB Permeability

The exacerbation of neurological symptoms by perifocal 
edema after hemorrhagic stroke is known as secondary injury; 
thus, reduction of cerebral edema is an important strategy to 
prevent further disease progression. The reports have shown 
that MSCs decrease the level of inducible nitric oxide syn-
thase, 3-nitrotyrosine (hallmark of ONOO−), and matrix 
metalloproteinase-9 that may disrupt the BBB33,65,66 and 
increase the levels of tight junction markers such as zonula 
occludens-1 and claudin-5. Thus, MSCs ameliorate BBB per-
meability. In addition, Suda et al.36 and Zhang et al.50 have 
suggested that the anti-brain edema mechanism not only pre-
vents the disruption of BBB but also modulates the expres-
sion of aquaporin-4 (AQP-4), a major water channel of the 
central nervous system associated with the pathogenesis of 
brain edema. The authors showed that AQP-4 expression is 
downregulated by MSC administration.

MSCs Reduce Neutrophil Infiltration and 
Inflammatory Macrophages

Inflammation can lead to secondary injuries in ICH. 
Therefore, controlling inflammation is essential to prevent 
neurological deterioration in ICH. Several reports have 
suggested the following anti-inflammatory mechanisms: 
decreased levels of pro-inflammatory cytokines including 
interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, tumor necrotic 
factor α (TNFα), and interferon γ; increasing levels of anti-
inflammatory cytokines such as IL-10; and modulating 
inflammatory cells including neutrophil, microglia, and mac-
rophage16,20,30,33,34,36,41,42,44,48,49,50,67,68. Chen et al. have sug-
gested that TNFα stimulates gene/protein-6 (TSG-6), an 
upstream factor of inflammation, and reduces the infiltration 
of neutrophils and the production of inflammatory macro-
phages69. The authors showed that MSC implantation 
increased the expression of TSG-6.

MSCs Exert Neuroprotective Effects Related to 
Anti-Apoptotic Pathways

Approximately half of the preclinical studies suggested that 
MSCs have some neuroprotective effects, including anti-
apoptotic or anti-degenerating functions, based on the results 
of apoptosis detection assay or Fluoro-Jade staining; some 
studies have reported detailed pathways. For example, Wang 
et al.28 have demonstrated that the expression of phosphory-
lated Akt and B-cell lymphoma-2 (bcl-2), which are associ-
ated with the anti-apoptotic pathway and reduce cytochrome 
C from mitochondria, is upregulated and the level of caspase 
3 is reduced upon MSC implantation. Zhang et al.50 targeted 
p38 and Jun N-terminal kinase (JNK), which are also com-
ponents of an apoptotic pathway, and found that MSCs 
downregulate phosphorylated p38 and JNK expression.
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Clinical Trials

The number of clinical trials on the efficacy of stem cell ther-
apy for hemorrhagic stroke is limited, and a summary of the 
published trials is shown in Table 370–77.

Overview of the Trials

In the eight trials, 209 of 358 patients with ICH received 
MSCs or mononuclear cells (MNCs), which were mostly 
derived from autologous BM. The mean age of participants 
in each trial ranged from 35 to 57.8 years, and the integrated 
mean age of participants in all trials, calculated with the 
number of participants and individual mean age, was 56.2 
(range: 20–79) years. Compared with those in the preclinical 
studies, participants in clinical trials were considerably old. 
Meanwhile, almost all hematomas were in the basal ganglia, 
similar to those observed in basic research.

Safety of Stem Cell Transplantation for Patients 
With ICH

Safety is a major concern when applying new treatment 
options. There has been no report of tumorigenesis of the 
transplanted stem cells in patients with ICH; however, 
tumorigenesis of human fetal neural stem cells has been 
reported in patients with ataxia telangiectasia78. Therefore, 
extra caution must be exerted, as it is difficult to remove 
cells once they are engrafted into the host brain. The trans-
plantation procedure itself is associated with the risk of 
complications. Intracerebral transplantation is associated 
with the risk of de novo ICH caused by the injection needle, 
and the infection may be more frequent, as patients with 
ICH often experience multiple skin incisions during hema-
toma evacuation and decompression surgery. Intravenous or 
arterial transplantation is associated with the risk of throm-
boembolic complications such as pulmonary embolism and 
ischemic stroke; systemic delivery of cells can exacerbate 
the innate immune response, which may induce a fever or 
graft versus host disease. Intrathecal transplantation can 
cause hydrocephalus due to cell clogging in the cerebrospi-
nal fluid drainage system. However, there are no reports of 
serious adverse events associated with cell therapy in 
patients with ICH. Suárez-Monteagudo et al.70 reported 
intracerebral transplantation of autologous BM-MSCs in 
two patients with chronic striatum and thalamic hemorrhage 
and encountered no surgical complications, such as infec-
tion and bleeding. Furthermore, Li et al.73 treated 60 patients 
via intracerebral transplantation and reported no de novo 
ICH. Bhasin et al.71 reported one case of intravenous trans-
plantation of autologous bone-derived MSCs for frontopari-
etal hemorrhage, with no early or late adverse reactions, 
while Chen et al.72 adopted intrathecal transplantation for 
four patients and observed no major complications.

Minor complications occur in 5% to 6% of participants 
receiving cells through the intracerebral or intrathecal routes, 
wherein the patients developed a low-grade fever73,75 and 
complained of iliac crest pain due to BM aspiration of autol-
ogous BM-MSCs76. Further acquisition of clinical data is 
necessary to elucidate the safety of cell transplantation in 
larger clinical trials.

Efficacy of Stem Cell Transplantation in Patients 
With ICH

During the acute phase, in which MSCs are administered 
within 1 month of ICH, favorable results have been 
reported73,75,76. For instance, Li et al.73 reported that intra-
cavity transplantation of autologous BM-MNCs 5 days post 
hematoma evacuation through intracranial drainage tube 
resulted in better neurological recovery than that in the con-
trol group. The authors also reported the recovery of not only 
the mobility but also the intellectual impairment, including 
language and mental activities. Zhu et al.75 transplanted 6.9–
12.8 × 107 (mean: 8.5 × 107) MSCs into both hematoma 
cavity (5 days post evacuation) and subarachnoid space via 
intrathecal transplantation (4-week post evacuation). The 
authors compared 110 patients with MSC transplantation and 
96 controls and found significant recovery, based on the 
National Institutes of Health Stroke Scale (NIHSS), Barthel 
index, and modified Rankin Scale (mRS), in the transplanted 
group. The difference continued for up to 12 months post 
transplantation. Chang et al.76 reported the findings of a 
5-year long-term follow-up in patients with stem cell trans-
plantation. The authors retrospectively investigated patients 
who received autologous BM-MNCs, allogeneic human 
umbilical cord blood cells, or control, and transplanted the 
cells twice (2 and 3 weeks post hemorrhage removal sur-
gery), through the drainage tube inserted into the hemor-
rhagic cavity. The results showed that although the patients 
had similar backgrounds, the NIHSS was lower in both 
transplanted groups than in the control, up to 60 months post 
transplantation. These results suggest that hematoma evacu-
ation with intracavity stem cell transplantation can accelerate 
the recovery; notably, none of these trials were double-
blinded or randomized.

Conversely, during the chronic phase, it is difficult to dis-
cuss the effectiveness of MSCs, as most of the trials were 
open-label studies that included patients with both ischemic 
and hemorrhagic stroke, with a small proportion of patients 
with hemorrhage. However, several studies have shown 
promising results, including motor functional recovery and 
its mechanisms. Interestingly, Suárez-Monteagudo et al.70 
reported that one patient who received 1.7 × 107 cells into 
the perilesional area 6 years after hemorrhage showed func-
tional recovery and increased motor area, as examined via 
transcranial magnetic stimulation, in the contralateral cortex 
but not in the ipsilateral area. In contrast, Bhasin et al. 
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reported that the laterality index of blood oxygen level-
dependent (BOLD) increased in the ipsilateral premotor cor-
tex71. Chen et al. transplanted olfactory ensheathing cells, 
neural progenitor cells, umbilical cord mesenchymal cells, 
and Schwann cells through selected routes, including intra-
cranial parenchymal implantation, intrathecal implantation, 
and intravenous administration. Some patients showed 
increased Barthel Index 1–2 years post transplantation. There 
has been only one study in which autologous BM-MSCs 
were intravenously implanted in patients with chronic ICH 
in a double-blinded manner and the patients showed 
improved functional results compared with the control 
group77, although the number of patients was small and 
detailed data were lacking.

Summary of Clinical Trials and Future 
Perspective

The number of clinical trials of ICH is considerably less than 
those on ischemic stroke, which hinders the clinical applica-
tion of stem cell therapy. Further trials to determine the 
safety, effectivity, and underlying action mechanisms of stem 
cell therapy are highly warranted.

In contrast to basic studies, most clinical trials have been 
focused on functional recovery, hence failed to elucidate the 
molecular mechanisms of the disease. Understanding the 
modes of action such as changes in glucose metabolism and 
binding potential of benzodiazepine receptors could facili-
tate the discovery of effective treatment methods79.

Future clinical trials should focus on the following: (1) 
clarifying the therapeutic mechanisms underlying stem cell 
therapy using functional imaging including positron emis-
sion tomography (PET) and SPECT; (2) designing a combi-
nation therapy to enhance the therapeutic effect of MSCs; 
and (3) conducting trials to better understand different trans-
plantation procedures for different phases of ICH.

Conclusions

The results from studies using animal models suggest the 
effectiveness of stem cell therapy for ICH; therefore, pre-
clinical studies should be conducted to apply these findings 
in a clinical setting. Understanding the data obtained from 
previous preclinical studies will facilitate future research to 
address knowledge gaps.

Early clinical studies suggest that stem cell therapy is safe 
and effective against ICH; however, further studies are war-
ranted for clinical application stem cell therapy.
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