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Introduction

(Macro)autophagy is responsible for the degradation of long-lived 
proteins and for the elimination of either damaged or function-
ally redundant intracellular structures under stress conditions.1 
In starvation, amino acids produced by autophagic proteolysis 
are recycled and used, at least in part, for the production of ATP 
to maintain cell survival. Amino acids are feedback inhibitors 
of autophagy so that autophagic flux decreases with increasing 
amino acid concentration.

Ever since the discovery that amino acids inhibit autophagy 
by means of their ability, at least in part, to stimulate MTOR-
mediated signaling in the absence of insulin,2 the nature of 
the amino acid sensor has remained enigmatic.1,3-7 In most cell 
types, among the various amino acids, leucine, but not the other 
branched-chain amino acids valine and isoleucine, is most potent 
in inhibiting autophagy and in stimulating MTOR signal-
ing.2,8-11 Metabolism of leucine is not required12 and nonmetabo-
lizable analogs of leucine can mimic its effect.8,11 Therefore, any 
proposed mechanism of amino acid sensing must account for the 
high leucine specificity.

Very recently, it has been demonstrated that the v-ATPase in 
the lysosomal membrane, in addition to its role in proton pump-
ing, functions as an intralysosomal amino acid sensor in MTOR 
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signaling.13 A rise in the intralysosomal amino acid concentra-
tion causes a conformational change of the ATPase which results 
in increased binding of Ragulator, a scaffolding protein complex 
that anchors RRAG to the lysosomal surface. This promotes 
the translocation of the MTORC1 protein complex (formed 
by MTOR and binding partners involved in the regulation of 
autophagy) to the extralysosomal surface, upon which MTOR 
becomes activated. In this mechanism, the rate of transport of 
amino acids out of the lysosomes controls the concentration of 
amino acids within the lysosomal lumen, and thus the extent of 
MTORC1 activation.13

In other recent studies, it has been shown that leucyl-tRNA 
synthetase (LARS) can also act as an amino acid sensor.14,15 The 
enzyme directly binds to RRAG GTPase in a leucine-dependent 
manner and functions as a GTPase-activating protein for RRAG 
GTPase to activate MTORC1. Leucylation of the tRNA is not 
required: it is sufficient that leucine binds to the leucine-binding 
domain of LARS and activates the enzyme.15

We have previously hypothesized that glutamate dehydro-
genase (GLUD/GDH), in addition to its role in amino acid 
catabolism, may also be involved in amino acid sensing.1,16,17 This 
mitochondrial enzyme is known to be specifically activated by 
leucine.18 In pancreatic β-cells the ability of leucine (but not of 
valine or isoleucine) to stimulate production of insulin has been 
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accumulation of LC3-II in a concentration-dependent manner 
upon nutrient starvation (Fig. 2A). Similarly, leucine prevented 
the accumulation of GFP-LC3 punctate structures (Fig. 2B). To 
verify that the inhibitory effect of leucine on autophagy was spe-
cific, we repeated the starvation experiments in the presence of 
the amino acid valine. The inhibitory effect of leucine on autoph-
agy upon nutrient starvation could not be recapitulated by valine, 
as judged by the degree of LC3-II accumulation (Fig. 2A) and 
of GFP-LC3 puncta (Fig. 2B). From these results, we concluded 
that leucine indeed strongly inhibits starvation-induced forma-
tion of autophagosomes.

We next investigated whether the regulation of autophagy 
by leucine is dependent on the expression of GLUD1. For this 
purpose, we assessed the effect of leucine on autophagy in both 
control cells and in GLUD1-depleted cells (Fig. 3). Again, in 
nutrient-starved control cells, the presence of leucine was suffi-
cient to inhibit the biosynthesis of autophagosomes as judged by 
the number of GFP-LC3 puncta (Fig. 3A). In agreement, leucine 
normalized the autophagic flux to the level observed in cells cul-
tured in complete medium, as shown by the absence of LC3-II 
accumulation (Fig. 3B) and impaired degradation of SQSTM1 
(Fig. 3C). Finally, leucine also prevented starvation-induced 
long-lived protein degradation (Fig. 3D). Importantly, we found 
that knockdown of GLUD1 abolished the inhibitory effect of 
leucine on the accumulation of GFP-LC3 puncta (Fig. 3A). The 
increase in autophagosomes correlated with a sustained autopha-
gic flux and lysosomal activity as determined by the accumula-
tion of LC3-II in bafilomycin A

1
-treated cells (Fig. 3B) and by 

the degradation of SQSTM1 (Fig. 3C), which could no longer 
be suppressed by leucine in GLUD1-depleted cells. Similarly, 
the rate of starvation-induced long-lived protein degradation in 
GLUD1-depleted cells was shown to be insensitive to leucine 
addition, but remained sensitive to 3-MA (Fig. 3D), an inhibitor 
of autophagosome formation by interfering with the activity of 
PIK3C3 (the class III PtdIns3K).33 Taken together, these results 
strongly suggest that GLUD1 is required for the inhibitory effect 
of leucine on autophagy.

Leucine requires GLUD1 for promoting MTORC1 activ-
ity. Of all amino acids, leucine is not only the most effective 
in inhibiting autophagy but it can also stimulate MTORC1. 
Because leucine apparently requires GLUD1 in order to repress 
autophagy, we addressed whether this was due to its ability to 
reactivate the MTORC1 pathway. Here we showed that the pres-
ence of leucine, at least in part, preserved MTORC1 activation 
in starved control cells (Fig. 4). However, this stimulatory effect 
was abolished upon GLUD1 knockdown. Valine, which does 
not control autophagy, was not able to stimulate the MTORC1 
pathway in either condition. These results suggest that leucine 
inhibits autophagy, at least in part, by activating MTORC1 in a 
GLUD1-dependent fashion.

Enhanced ROS production upon GLUD1-depletion contrib-
utes to autophagy induction. In addition to the gatekeeper func-
tion of MTORC1 in the regulation of autophagy, there is ample 
evidence suggesting that the intracellular levels of ROS may play 
a key role in the initiation of autophagy.26-31 Because GLUD1 
activity results in the production of reducing equivalents, we 

ascribed to stimulation of GLUD.19,20 Moreover, a combination 
of glutamine (a glutamate donor) and leucine, which maximizes 
the flux through GLUD, is most effective in stimulating phos-
phorylation of RPS6KB/S6K in β-cells19 and hepatocytes,21 and 
in inhibiting autophagic proteolysis in hepatocytes,22,23 Jurkat 
cells24 and HeLa cells.25

In the present study, we describe experiments with HeLa cells 
in which GLUD1, the major isoenzyme, was knocked down. 
The data strongly suggest that GLUD1 does, indeed, contribute 
to the control of autophagy by amino acids, especially leucine. 
In addition, we showed that GLUD1, at least in part, controls 
autophagy by virtue of its ability to modulate MTOR signaling 
and to protect against the production of reactive oxygen species 
(ROS), known to be involved in the initiation of autophagy.26-31

Results

Knockdown of GLUD1 promotes autophagy and inhibits 
MTORC1 activity. To evaluate a potential role for GLUD1 
in the regulation of autophagy, we employed an RNA interfer-
ence approach in HeLa cells, resulting in 80% to 90% reduc-
tion of GLUD1 protein (Fig. 1A). We then assessed the effect 
of GLUD1 knockdown on the conversion of cytosolic LC3-I to 
the lipid-bound LC3-II upon autophagosome formation. The 
amount of LC3-II reflects the number of autophagosomes and 
is widely accepted as a reliable measurement of autophagic flux.32 
Because the steady-state level of autophagosomes is dependent 
on both “de novo” synthesis and consumption in the lysosomal 
compartment, the effects on autophagic flux are best determined 
in the presence of bafilomycin A

1
, which blocks the fusion and 

subsequent content degradation of autophagosomes in the lyso-
some. Silencing GLUD1 led to a significant increase of LC3-II, 
both in the presence and absence of bafilomycin A

1
 (Fig. 1A). In 

agreement, we observed diminished levels of the autophagy cargo 
protein SQSTM1/p62 in GLUD1-depleted cells, indicative of 
increased autophagic degradation (Fig. 1B). We next evaluated 
the effect of GLUD1 depletion on cellular LC3 distribution in 
HeLa cells stably transfected with GFP-LC3. In line with the 
results obtained with western blot analysis, GLUD1 knockdown 
led to a marked increase in GFP-positive punctate structures 
compared with control cells (Fig. 1C), indicating that GLUD1 is 
involved in the regulation of autophagy.

Because MTORC1 is the main repressor of autophagy under 
nutrient-rich conditions, we examined whether the increase in 
autophagy observed upon GLUD1 depletion was due to compro-
mised MTORC1 activity. Indeed, silencing of GLUD1 reduced 
the phosphorylation of RPS6/S6 and EIF4EBP1/4E-BP1  
(Fig. 1D), two direct downstream substrates of MTORC1, indi-
cating that GLUD1 negatively regulates autophagy, at least in 
part, through modulation of MTORC1 activity.

Leucine inhibits autophagy in a GLUD1-dependent fashion. 
The activity of GLUD1 is specifically regulated by the amino 
acid leucine, which has been extensively studied as a potent sup-
pressor of autophagy in many different cell types. In the first 
series of experiments, we confirmed the inhibitory effect of leu-
cine on starvation-induced autophagy (Fig. 2). Leucine inhibited 
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Although the enzyme catalyzes a reversible reaction, the occur-
rence of hyperammonemia in hyperinsulinism/hyperammonia 
syndrome, when GLUD is overactivated,38 suggests that in vivo 
the enzyme operates in the direction of deamination of glutamate.

A possible connection between GLUD and the regulation of 
autophagy and MTOR may be related to NADPH, one of its 
reaction products.1 The mitochondrial respiratory chain is an 
important producer of ROS39 and can potentially harm the cell 
by oxidizing lipid, DNA and proteins. Autophagy can protect 
against these deleterious effects. There is ample evidence that 
autophagy is initiated by ROS in a manner that is sensitive to 
antioxidants26,28-31 and amino acids,27,31 perhaps because of the 
oxidation of a critical cysteine residue in ATG4.31 NADPH, 
derived from the GLUD reaction, may be used to scavenge ROS 
through, e.g., the glutathione-glutathione reductase system, and/
or to prevent ROS production at complex I of the mitochondrial 
respiratory chain.40 It should be pointed out that this mechanism 
is MTORC1-independent and accounts for the disparity between 
the degree of MTORC1 activation and inhibition of autophagy 
(Figs. 3 and 4). This is in agreement with the fact that in the 
presence of amino acids, complete inhibition of MTORC1 by 
rapamycin never fully restores autophagic activity (see ref. 1 for 
a review).

GLUD can react with both NADP+ and NAD+ 38 and the rate 
of their utilization is kinetically determined by their concentra-
tions in the mitochondria.41 In case the enzyme would react with 
NAD+, NADPH can still be formed by transfer of hydrogen from 
NADH to NADP+, catalyzed by the energy-linked nicotinamide 
nucleotide transhydrogenase, which then also results in suppres-
sion of mitochondrial ROS production.40 The data of Figure 5 
appear to support the view that GLUD can protect against ROS 
and in this way can contribute to the control of autophagy.

Another mechanism by which GLUD may contribute to 
amino acid sensing is related to the production of 2-oxogluta-
rate which, upon further metabolism, produces GTP in the suc-
cinylCoA synthetase reaction.1 This GTP may then be used to 
activate RHEB (Ras homolog enriched in brain) and RRAG, 
which would lead to autophagy inhibition, as hypothesized 
previously.1,16,17

Involvement of GLUD in amino acid sensing may have its 
implications for the interpretation of some data on autophagy 
published in the past. For example, autophagy has been shown 
to be stimulated pharmacologically by the green tea component 
epigallocatechin gallate,42 a compound which, in addition to 
having other effects,43 is also a powerful inhibitor of GLUD.44 
Chloroquine, often used in autophagic flux measurements 
because of its ability to raise the intralysosomal pH,32 is also 

evaluated whether GLUD1, in addition to its ability to promote 
MTORC1 activity, could also influence the formation of ROS. 
Initial experiments with the ROS probe DHE indicated that 
ROS production was higher in GLUD1-depleted cells (Fig. 5A, 
left). Since DHE mainly detects cytosolic superoxide produc-
tion,34,35 further experiments were performed with MitoSOX, the 
mitochondrial targeted form of DHE. The results presented in 
Figure 5A (right panel) show that mitochondrial ROS (mROS) 
production was also higher in GLUD1-depleted cells. These data 
indicate that flux through GLUD1 indeed contributes to the low-
ering of mROS production.

Furthermore, cytosolic and mitochondrial ROS were mea-
sured in the presence or absence of amino acids to determine 
whether the GLUD1-dependent inhibitory effect of amino acids 
on autophagy was mediated by ROS. As shown in Figure 5B 
and C, a complete mixture of amino acids significantly lowered 
cytosolic ROS and mROS production in control cells, but not 
in GLUD1-depleted cells. Also the relative effect of the com-
bination of leucine and glutamine (to maximize flux through 
GLUD1) on ROS production was much lower in the GLUD1-
depleted cells (Fig. 5C). Taken together, these data indicate that 
amino acids, and especially leucine, lower mROS by enhancing 
the flux through GLUD1.

To determine whether the elevated level of mROS observed 
in GLUD1-depleted cells contributes to the increased autopha-
gosome formation, we performed short-term starvation experi-
ments in the presence or absence of the general ROS scavenger 
N-acetylcysteine (NAC) and the mitochondrial specific ROS 
scavenger MitoQ.36 Addition of these scavengers to control 
cells slightly affected the degree of LC3-II accumulation in the 
presence of bafilomycin A

1
 (Fig. 5D). In contrast, the observed 

increase in autophagosome formation in GLUD1 knockdown 
cells was highly sensitive to both scavengers (Fig. 5D), indicating 
that the increased production of ROS upon GLUD1 depletion 
promotes the initiation of autophagy. These results are in line 
with a very recent report by Li et al.37 in which it is shown that 
NAC stimulates MTOR activity.

Discussion

Collectively, our data suggest a dual mechanism by which 
GLUD1 flux modulates autophagy, both by relaying cellular 
amino acid availability to MTORC1 and by generating reduc-
ing equivalents that interfere with the accumulation of ROS. 
Involvement of GLUD in amino acid sensing provides an expla-
nation for the leucine specificity in the control of both processes, 
because this amino acid acts as an allosteric activator of GLUD.18 

Figure 1 (See opposite page). Knockdown of GLUD1 stimulates autophagy and inhibits Mtorc1 activity. (A) Immunoblot analysis of GLUD1, Lc3-I 
and Lc3-II levels in HeLa cells transfected with control (ct) sirNA or GLUD1 sirNA. the cells were cultured in complete medium. Where indicated,  
200 nM of bafilomycin A1 (BAf) was present for 2 h to block the lysosomal degradation of Lc3-II. Immunoblotting of ActB was used as a loading con-
trol. the Lc3-II/ActB ratio was determined using Bio-1D quantification software. columns: mean; bars: seM (n = 3); *p < 0.05. (B) Immunoblot analysis 
of sQstM1 levels in HeLa cells transfected with control (ct) sirNA or GLUD1 sirNA. cells were cultured in complete medium. Immunoblotting of ActB 
was used as a loading control. the sQstM1/ActB ratio was determined using Bio-1D quantification software. columns: mean; bars: seM (n = 3); *p < 
0.05. (C) representative images of Gfp-Lc3 staining in HeLa Gfp-Lc3 cells following a 72 h transfection with control (ct) sirNA or GLUD1 sirNA. Where 
indicated, 200 nM of bafilomycin A1 (BAf) was present for 2 h. the number of Gfp-Lc3 dots per cell was scored on 50 to 100 cells. columns: mean; bars: 
seM (n = 3); *p < 0.05. (D) Immunoblot analysis of phospho-rps6 (p-rps6), rps6, phospho-eIf4eBp1 (p-eIf4eBp1) and eIf4eBp in HeLa cells transfected 
with control (ct) sirNA or GLUD1 sirNA, cultured in complete medium. columns: mean; bars: seM (n = 3); *p < 0.05.
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Figure 2. Leucine, not valine, inhibits autophagy. (A) Immunoblot analysis of Lc3-I and Lc3-II levels in HeLa cells cultured in complete medium or 
eBss supplemented with 1, 5 or 10 mM of leucine or valine for 4 h. Immunoblotting of ActB was used as a loading control. the Lc3-II/ActB ratio was 
determined using Bio-1D quantification software. columns: mean; bars: seM (n = 3); *p < 0.05. (B) representative images of Gfp-Lc3 staining in HeLa 
Gfp-Lc3 cells cultured in complete medium or eBss supplemented with 10 mM of leucine or valine for 4 h. the number of Gfp-Lc3 dots per cell was 
scored on 100 cells. columns: mean; bars: seM (n = 3); *p < 0.05.

Figure 3 (See opposite page). Knockdown of GLUD1 prevents the inhibition of autophagy by leucine. (A) the number of Gfp-Lc3 dots per cell was 
scored on 50 to 100 cells following a 72 h transfection with control (ct) sirNA (upper histogram) or GLUD1 sirNA (lower histogram) and a 4 h treatment 
with complete medium (cM), starved medium (eBss) and starved medium supplemented with 10 mM Leucine (eBss+Leu). columns: mean; bars: 
seM (n = 3); **p < 0.01. (B) Immunoblot analysis of Lc3-I and Lc3-II levels in HeLa cells transfected with control (ct) sirNA or GLUD1 sirNA for 72 h and 
cultured in eBss supplemented with 10 mM leucine or valine for 4 h. Where indicated, 200 nM of bafilomycin A1 (BAf) was present for 2 h to block the 
lysosomal degradation of Lc3-II. Immunoblotting of ActB was used as a loading control. the Lc3-II/ActB ratio was determined using Bio-1D quan-
tification software. columns: mean; bars: seM (n = 3); **p < 0.01. (C) Immunoblot analysis of sQstM1 levels in HeLa cells transfected with control (ct) 
sirNA (upper histogram) or GLUD1 sirNA (lower histogram) and cultured for 4 h in complete medium or eBss supplemented with 10 mM leucine.  
Immunoblotting of ActB was used as a loading control. the sQstM1/ActB ratio was determined using Bio-1D quantification software. columns: 
mean; bars: seM (n = 3); **p < 0.01. (D) Measurement of the degradation of long-lived proteins degradation in HeLa cells transfected with control (ct) 
sirNA (upper western blot and histogram) or GLUD1 sirNA (lower western blot and histogram) for 72 h and cultured in complete medium or eBss 
supplemented with 10 mM leucine or 10 mM 3-methyladenine (3-MA). columns: mean; bars: seM (n = 3); *p < 0.05.
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known to inhibit GLUD.45 This may lead to overestimation of 
the autophagic flux.

The interpretation of our data on GLUD is not compatible 
with previous studies on redox regulation of MTOR activity in 
which chemical compounds were used to manipulate the cel-
lular redox state.46 For example, British anti-Lewisite (BAL), 
a strong reducing agent, inhibits, rather than stimulates, 

MTOR.46 However, it must be stressed that the effect of BAL  
on MTOR activity is probably unrelated to the physiological 
redox regulation of MTOR activity, because this compound 
inhibits mitochondrial electron transport between cytochrome 
b and c.47 The possibility that AMPK (which stimulates  
autophagy1) is activated under these conditions cannot be  
ruled out.

Figure 4. Knockdown of GLUD1 prevents the stimulation of Mtorc1 signaling by leucine. Immunoblot analysis of phospho-eIf4eBp1 (p-eIf4eBp1), 
eIf4eBp1, phospho-rps6 (p-rps6) and rps6 in HeLa cells transfected with control (ct) sirNA or GLUD1 sirNA and cultured in complete medium or eBss 
supplemented with 10 mM leucine or valine for 4 h. columns: mean; bars: seM (n = 3); *p < 0.05.

Figure 5 (See opposite page). flux through GLUD1 inhibits induction of autophagy by promoting the elimination of ros. (A) cellular ros produc-
tion in HeLa cells transfected with control (ct) sirNA or GLUD1 sirNA was measured with DHe as probe as described in Materials and Methods (left 
histogram). Mitochondrial ros production in HeLa cells transfected with control (ct) sirNA or GLUD1 sirNA was measured with MitosoX as probe as 
described in Materials and Methods (right histogram). columns: mean; bars: seM (n = 3); *p < 0.05. (B) cellular ros production in HeLa cells transfected 
with control (ct) sirNA (left histogram) or GLUD1 sirNA (right histogram) was measured with DHe as probe as described in Materials and Methods. cells 
were incubated in the absence (dotted lines) or presence (continuous lines) of amino acids for 45 min after which DHe was added for another 15 min. 
(C) Mitochondrial ros production in HeLa cells transfected with control (ct) sirNA or GLUD1 sirNA was measured with MitosoX as probe as described 
in Materials and Methods. the extent of MitosoX oxidation was determined after 60 min of incubation with the dye. columns: mean; bars: seM (n = 8); 
**p < 0.01. Background fluorescence at t = 0 amounted to MfI = 13.3 ± 0.5. (D) Immunoblot analysis of Lc3-I and Lc3-II levels in HeLa cells transfected 
with control (ct) sirNA or GLUD1 sirNA for 72 h and cultured in eBss supplemented with 10 mM N-acetylcysteine (NAc) or 0.5 μM MitoQ for 24 h. 
Where indicated, 200 nM of bafilomycin A1 (BAf) was present for 2 h to block the lysosomal degradation of Lc3-II. Immunoblotting of ActB was used 
as a loading control. the Lc3-II/ActB ratio was determined using Bio-1D quantification software. columns: mean; bars: seM (n = 3); **p < 0.01.
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Materials and Methods

Reagents and antibodies. For cell treatments, bafilomycin A
1
 

(B1793), 3-methyladenine (M9281), N-acetylcysteine (A7250), 
leucine (L8912) and valine (V0500) were all purchased from Sigma. 
MitoQ ([10-(4,5-Dimethoxy-2-methyl-3,6-dioxo-cyclohexa-
1,4-dienyl)-decyl]-triphenyl-phosphonium methanesulfonate) 
was a kind gift of Dr. M.P. Murphy (MRC, Cambridge, UK). 
Dyes used for ROS detection were dihydroethidium (DHE) and 
MitoSOX, both purchased from Invitrogen (D1168 and M36008, 
respectively). The following antibodies were used for immunob-
lotting: anti-LC3B (Sigma, L7543), anti-SQSTM1 lck ligand 
(BD Biosciences, 610833), anti-β-ACTB/β-actin (Millipore, 
MAB1501), anti-phospho-EIF4EBP1/4EBP (Cell Signaling, 
9459), anti-EIF4EBP (Cell Signaling, 9452), anti-phospho-RPS6/
S6 ribosomal protein (Cell Signaling, 2211), anti-RPS6 ribosomal 
protein (Cell Signaling, 2317), anti-mouse IgG-HRP (Bio-Rad, 
170-6516), anti-rabbit IgG-HRP (Amersham, NA9340V).

Cell culture. The human cervical cancer cell line HeLa was 
grown in RPMI 1640 supplemented with 10% fetal bovine 
serum and 1% penicillin-streptomycin at 37°C under 5% CO

2
. 

The HeLa-GFP-LC3 cell line was obtained from Dr. Aviva M. 
Tolkovsky (University of Cambridge, UK), and cultured in 
RPMI 1640 supplemented with 10% fetal bovine serum and 
500 μg/ml geneticin at 37°C under 5% CO

2
. For serum and 

amino acid deprivation, cells were cultured in Earle’s Balanced 
Salt Solution, fortified with 25 mM HEPES, pH 7.4. To test the 
effect of leucine and valine on autophagy, cells were cultured in 
Earle’s Balanced Salt Solution with 25 mM HEPES plus 10 mM 
leucine or 10 mM valine, unless otherwise indicated.

GFP-LC3 assay. The assay was performed in HeLa cells sta-
bly transfected with rat GFP-LC3. Prior to analysis, cells were 
treated as described in the text. Autophagy was then measured 
using a confocal microscope (LSM 510/Zeiss) by counting the 
number of GFP-LC3 puncta per cell with Imaris 6.3 software. At 
least 50 to 100 cells were counted per experiment.

Western blot analysis. Cellular extracts were prepared in  
10 mM Tris pH 7.4, 1% SDS, 1 mM sodium vanadate, treated 
with benzon nuclease (Sigma, E1014) for 5 min at room tempera-
ture, and boiled for 3 min. Fractions (20 μg) of the cellular extracts 
were subjected to SDS-PAGE. After electrophoresis, proteins 
were transferred to a protean nitrocellulose transfer membrane 
(Amersham Biosciences, RPN303E). Before blocking membranes 
(with 5% nonfat milk protein in PBS/0.1% Tween-20), protein 
loading was assessed by Ponceau staining. Blots were then incu-
bated with primary antibodies using the manufacturer’s protocol 
followed by the appropriate horseradish peroxidase-conjugated 
secondary antibody (anti-mouse IgG-HRP, Bio-Rad, 170-6516; 
anti-rabbit IgG-HRP, Amersham, NA9340V). Immunostained 
proteins were revealed using a chemoluminescent substrate 
(Millipore). Densitometric analysis on the immunoblots was 
quantified by Bio-1D software. The experiments were repeated 
at least three times, and representative autoradiograms are shown.

Analysis of degradation of long-lived proteins. This assay 
was adapted from Bauvy et al.52 72 h after siRNA transfection, 
HeLa cells were incubated for 24 h at 37°C with 0.2 μCi/ml 

As mentioned in the Introduction, recent information indi-
cates that the v-ATPase in the lysosomal membrane acts as an 
amino acid sensor and that it responds to the level of amino acids 
within the lysosomal lumen.13 This level is determined by the 
cytosolic amino acid concentration, the rate of proteolysis within 
the lysosome (e.g., by autophagy, which was not considered in 
these studies) and the rate of amino acid transport out of the 
lysosomes. LARS has been proposed as another amino acid sen-
sor,15 in this case of the cytosolic amino acid pool. If, as our stud-
ies imply, GLUD also contributes to amino acid sensing in the 
regulation of autophagy and of MTOR signaling, the question 
arises as to how these various amino acid sensing mechanisms 
fit together. An interesting possibility would be that the efflux of 
amino acids from the lysosomes is redox controlled and becomes 
inhibited by increased reduction. Because GLUD generates 
NADPH in the mitochondria, the reducing equivalents then 
need to be transferred to the cytosol. The isocitrate-2-oxogluta-
rate shuttle mechanism48 can take care of this. As far as we are 
aware, redox control of lysosomal amino acid transport has never 
been studied and remains to be explored. Likewise, the activity of 
LARS may be redox controlled. Finally, it is also possible that the 
three mechanisms of amino acid sensing, v-ATPase, LARS and 
GLUD, act in parallel, independent of each other.

In some of our experiments, we have used the v-ATPase inhibi-
tor bafilomycin A

1
 to monitor the appearance of LC3-II as a mea-

sure of autophagic flux, as recommended in reference 32. Because 
inhibition of the v-ATPase may have interfered with the amino 
acid-sensing mechanism as proposed previously,13 and thus with 
the autophagic process itself, we have checked its effect on MTOR 
activity in control experiments. However, in the presence of amino 
acids, we failed to observe an effect of bafilomycin A

1
 on MTOR 

activity as measured by the phosphorylation of RPS6KB and 
EIF4EBP1 (data not shown). These results differ from the results 
obtained with concanamycin A and salicylhalamide A, two other 
v-ATPase inhibitors,13 but at least indicate that bafilomycin A

1
 in 

our study for some reason had not interfered with the v-ATPase 
amino acid-sensing mechanism proposed by Zoncu et al.13

In our studies we have used starvation to induce autophagy. Of 
course it remains to be seen whether other stimuli of autophagy, 
also acting through MTOR, such as hypoxia49 and ER stress,50 
will be similarly affected by leucine addition and GLUD deple-
tion. Future studies may answer this question.

Upon completion of the present study, an article by Duran 
et al.51 was published, showing that metabolism of glutamine, 
through glutaminase and GLUD, stimulates MTOR signaling 
by enhancing GTP-loading of RRAG and reduces the steady-
state level of autophagosomes within the cell (as predicted in refs. 
1, 16, 17). The effect of leucine in this system could be ascribed 
to an activation of GLUD. Concomitant silencing of both gluta-
minase and GLUD blocked the ability of glutamine and of leu-
cine to decrease the steady-state level of autophagosomes.51 Our 
results on the role of GLUD in the regulation of autophagic flux 
and MTOR signaling are in line with the data of Duran et al.,51 
and further extend their observations by demonstrating that flux 
through GLUD1 exerts control over autophagy by limiting the 
accumulation of ROS.
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were expressed as mean fluorescence intensity (MFI) in the red 
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tion) were excluded from the analysis. High MitoSox staining 
appeared to be due to binding to the DNA of dead cells as dem-
onstrated in control experiments by double staining with Sytox 
Green (Invitrogen, S7020).

Statistical analysis. Data are expressed as means ± standard 
errors of the means (SEM) of at least three experiments. The sta-
tistical significance was assessed by a Student’s t-test. p < 0.05 was 
considered statistically significant.
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