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Objective: To build and assess a pre-treatment dual-energy CT-based clinical-radiomics
nomogram for the individualized prediction of clinical response to systemic chemotherapy
in advanced gastric cancer (AGC).

Methods: A total of 69 pathologically confirmed AGC patients who underwent dual-
energy CT before systemic chemotherapy were enrolled from two centers in this
retrospective study. Treatment response was determined with follow-up CT according
to the RECIST standard. Quantitative radiomics metrics of the primary lesion were
extracted from three sets of monochromatic images (40, 70, and 100 keV) at venous
phase. Univariate analysis and least absolute shrinkage and selection operator (LASSO)
were used to select the most relevant radiomics features. Multivariable logistic regression
was performed to establish a clinical model, three monochromatic radiomics models,
and a combined multi-energy model. ROC analysis and DeLong test were used to
evaluate and compare the predictive performance among models. A clinical-radiomics
nomogram was developed; moreover, its discrimination, calibration, and clinical
usefulness were assessed.

Result: Among the included patients, 24 responded to the systemic chemotherapy.
Clinical stage and the iodine concentration (IC) of the tumor were significant clinical
predictors of chemotherapy response (all p < 0.05). The multi-energy radiomics model
showed a higher predictive capability (AUC = 0.914) than two monochromatic radiomics
models and the clinical model (AUC: 40 keV = 0.747, 70 keV = 0.793, clinical = 0.775);
however, the predictive accuracy of the 100-keV model (AUC: 0.881) was not statistically
different (p = 0.221). The clinical-radiomics nomogram integrating the multi-energy
radiomics signature with IC value and clinical stage showed good calibration and
discrimination with an AUC of 0.934. Decision curve analysis proved the clinical
usefulness of the nomogram and multi-energy radiomics model.
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Conclusion: The pre-treatment DECT-based clinical-radiomics nomogram showed
good performance in predicting clinical response to systemic chemotherapy in AGC,
which may contribute to clinical decision-making and improving patient survival.
Keywords: dual-energy CT, radiomics, response prediction, systemic chemotherapy, gastric cancer
INTRODUCTION

Gastric cancer (GC) remains one of the most common malignant
tumors in the world, and its morbidity and mortality rank fifth and
third, respectively. There weremore than amillion new cases and an
approximated 784,000 deaths worldwide in 2018 (1); moreover,
most GC cases are diagnosed at an advanced stage (2). It is therefore
essential to select an effective treatment regimen for advanced
gastric cancer (AGC) to maximize the overall therapeutic benefits.
Chemotherapy can improve survival and quality of life for patients
present with unresectable, locally advanced, or metastatic GC (3).
Furthermore, the overall survival of AGC patients who are treated
with systemic chemotherapy was 8 months longer than with
optimal supportive care alone (4–8). However, tumor response
rate of most treatment regimens is less than 40% and chemotherapy
drugs can cause serious side effects in some patients (9, 10). Hence,
pre-treatment prediction of tumor response to systemic
chemotherapy may translate into more precise patient selection
and individualized medicine, which are of great clinical significance.

Dual-energy CT (DECT) is a milestone imaging tool that
generates a rich amount of DECT quantitative information. The
virtual monochromatic images (VMI) derived from DECT have
been used in the diagnosis and prediction of tumors, including
classification of parotid neoplasms, the evaluation and
characterization of cervical lymphadenopathy, prediction of
lymph node metastasis in GC, and classification of clear cell renal
cell carcinoma (11–15). In terms of predicting the treatment
efficacy, Tang et al. demonstrated that iodine concentration (IC)
on DECT could evaluate efficacy response of GC to neoadjuvant
chemotherapy (16). However, to our knowledge, the application
and potential advantages of multi-energy virtual monochromatic
image datasets in predicting therapeutic response of GC have not
been explored. Theoretically, there is a rich amount of quantitative
information in the variation of energy-dependent attenuation in
different tissues. Given the dynamic and heterogeneous nature of
tumor (17, 18), performing radiomics analysis on monochromatic
images may improve the predictive capabilities (11).

Radiomics can noninvasively analyze tumor biology,
distinguish the subtle differences that human eyes cannot
discern, quantify tumor heterogeneity, and monitor tumor
development and response to treatment (19–23). Through
extensive extraction of quantitative features, radiomics can
delineate tumor heterogeneity metrics, which may reflect
pathophysiological characteristics associated with treatment
response (23–25). In fact, pre-treatment radiomics with other
CT techniques has been proven to non-invasively predict
treatment responses of GC (26–29).

Therefore, we aimed to establish and assess a clinical-
radiomics nomogram from pre-treatment DECT scans to
2

predict clinical response to systemic chemotherapy in patients
with AGC, and to verify whether radiomics performed on multi-
energy VMI datasets is more helpful in predicting response.
MATERIALS AND METHODS

Patients
This multi-center, retrospective study was approved by the
institutional review board, and the requirement for informed
consent was waived due to the retrospective study design. A total
of 69 consecutive patients from two independent institutions (49
from the Zhengzhou University First Affiliated Hospital between
March 2014 and November 2019 and 20 from Shanghai Jiao
Tong University Ruijin Hospital between November 2017 and
February 2019) were collected. The inclusion criteria were as
follows: (1) histologically confirmed primary gastric
adenocarcinoma; (2) no prior history of radiotherapy,
chemotherapy, or other treatments that might affect the blood
supply to the tumor; (3) no serious heart and renal insufficiency
and other important viscera lesions; (4) received baseline contrast-
enhanced DECT examinations within 1 week before
chemotherapy; (5) treated with systemic chemotherapy due to
metastatic, unresectable, and recurrent GC or tumors surrounding
major vessels on CT examination (cT4a~bNxM0~1); (6) ECOG
PS 0–2. The exclusion criteria were as follows: (1) patients with co-
malignancy; (2) incomplete clinical data at baseline; (3) motion
artifacts on CT; (4) lesions with cystic changes or cavitation; and
(5) intolerance to chemotherapy. Baseline clinicopathological data,
including age, sex, and clinical stage, were obtained from
retrospective electronic records.

Systemic Chemotherapy Regimen and
Treatment Response Evaluation
In our study, enrolled patients were mainly treated with
capecitabine plus oxaliplatin (XELOX) regimen or S-1 plus
oxaliplatin (SOX) regimen.

In detail, patients were given capecitabine at a dose of 1,000
mg/m2 (or S-1: 60 mg/m2) orally twice daily from day 1 to day
14. Furthermore, oxaliplatin (130 mg/m2) was given
intravenously for 2 h on day 1. Cycles were repeated every 21
days, and the toxicity of chemotherapy was evaluated after each
cycle. At least six cycles of treatment were given unless there was
disease exacerbation, unacceptable toxicity, or death occurred.

Evaluation of Treatment Response
Post-treatment CT images were obtained within 3 weeks after
completion of chemotherapy. The treatment response was
assessed by the change of the sum of the maximum diameters
September 2021 | Volume 11 | Article 740732
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for all target lesions in the pre- and post-chemotherapy
CT images.

The short-term therapeutic response was evaluated with the
standard of Response Evaluation Criteria in Solid Tumors
(RECIST v. 1.1) (30). Based on current study purpose, we
classified patients with complete response (CR, complete
disappearance of all target lesions and no new lesions) or
partial response (PR, a reduction ≥30% in the sum of the
diameters of target lesions) as responders, while others with
stable disease (SD, neither partial response nor progressive
disease) or progressive disease (PD, a ≥20% size increase or
new disease) were classified as non-responders (Figures 1 and 2).

CT Image Acquisition
All patients fasted for 8 to 12 h before examination and took
800–1000 ml of warm water before the CT scan, where the
patients were placed in a supine position with head first and
breath-hold.

CT scans were performed using multi-vendor Dual-Energy
CT (Discovery CT750 HD scanner, GE Healthcare, Milwaukee,
WI, USA; SOMATOM Force scanner, Siemens Healthineers,
Forchheim, Germany). The patients underwent contrast-
enhanced DECT scans, including the arterial phase (AP) and
venous phase (VP). After unenhanced CT was performed, the
main contrast agent (Ultravist 370, Bayer Schering Pharma,
Thüringen. Germany) was infused intravenously through the
antecubital vein at a rate of 3.0 ml/s (1.5 ml/kg) using a pump
Frontiers in Oncology | www.frontiersin.org 3
injector. AP and VP contrast-enhanced CT images were achieved
after a post-injection delay of 30 and 70 s, respectively. The
scanning parameters were summarized as follows (1) Discovery
CT750 HD: using fast tube voltage switching between 80 and 140
kVp, tube current: 375 mA, pitch: 1.375:1, rotation time: 0.6 s,
detector width: 40 mm, collimation: 128*0.6 mm, FOV: 400 ×
400 mm; reconstruction algorithm: STAND; reconstructed
section thickness:1.25 mm slice thickness: 5 mm. (2)
SOMATOM Force: tube voltage: 100/Sn150 kVp; effective tube
current-time product: 200/125 mAs; FOV: 374 × 374 mm;
rotation time: 0.5 s; pitch: 0.6; reconstructed section thickness:
1.25 mm slice thickness: 5 mm; kernel: Qr40; collimation:
128*0.6 mm.

Image Analysis
The CT images were transferred to dedicated workstations with
dual-energy software (Syngo.via, Version VB10, Siemens
Healthineers, Forchheim, Germany; ADW 4.7, GE Healthcare,
Milwaukee, WI, USA).

A 15-year experienced gastrointestinal radiologist interpreted
the dual-energy images with the knowledge that all patients had
GC confirmed by endoscopic biopsy. Clinical lymph node
staging (cN) and distant metastasis staging (cM) were
evaluated according to the 8th edition of AJCC guidelines (31),
and the distant metastatic sites were recorded. The maximal
thickness (the largest short diameter perpendicular to the longest
axis on the maximal cross-section) of the primary tumor was
FIGURE 1 | Case 1. Portal phase DECT images of a 34-year-old female with GC patient who responded to chemotherapy. (A–C) Diffuse thickened gastric wall was seen
at the gastric body (arrow). (D–F) Slightly thickened gastric wall was seen at the gastric body, and the lesion was significantly regressed (arrow). (A–C) were monochromatic
images of 40, 70, and 100 keV before chemotherapy, respectively. (D–F) were monochromatic images of 40, 70, and 100 keV after chemotherapy, respectively.
September 2021 | Volume 11 | Article 740732
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measured. The Borrmann classification of the tumor was also
assessed (32). A free-hand, VP-based individualized region of
interest (ROI) was manually delineated on iodine-based material
decomposition images in the largest cross-sectional area by the
reader, and then the ICs (mean value, units of 100 mg/ml) of the
lesion in the ROI was recorded. Meanwhile, circular ROIs were
carefully placed at the same slice to avoid calcified plaques and
subsequently obtain the aortic ICs. Finally, the iodine ratio of the
lesion to aorta was taken as normalized iodine concentration
(NIC = IC lesion/IC aorta).

Tumor Segmentation and Feature
Extraction
We conducted lesion segmentation and radiomics feature
extraction with a prototypical software (Syngo Frontier,
Radiomics 1.0.9a, Siemens Healthineers, Germany). Venous
phase images were previously reported as the best phase for
GC visualization (14, 27, 33) and therefore were used for tumor
segmentation. In order to seize the energy-dependent changes in
tissue attenuation, we selected monochromatic images of 40, 70,
and 100 keV as typical dual-energy datasets for feature extraction.
The volumes of interest (VOI), referred to whole tumor regions in
three dimensions on venous phase contrast-enhanced DECT
images, was delineated by a radiologist with 7 years of
experience and reviewed by a radiologist with 10 years of
experience to minimize possible bias (Supplemental Appendix 1;
Frontiers in Oncology | www.frontiersin.org 4
Figure S1). The software provides a variety of options to
customize image pre-processing before radiomic feature
extraction, including wavelet filtering, Laplacian of Gaussian
filtering, and non-linear intensity transforms including logarithm,
exponential, square, and square root operations. The extracted
features were reproducible and matched the benchmarks of
image biomarker standardization initiative (IBSI) (34).

Finally, 1691 radiomics features were extracted from each
patient in each single-energy image set, including 17 shape
features, 324 first-order features, and 1,350 texture features
Supplemental Appendix 2; Table A1.

Feature Selection and Radiomics Model
Establishment
To prevent overfitting or selection bias in our radiomics model,
univariate logistic regression analysis (p < 0.05) and LASSO
regression were used to screen out the most relevant informative
radiomic features of chemotherapy response. Tenfold cross-
validation was performed to determine the optimal value of
regularization parameter l at minimum MSE. Based on the
selected features, the radiomics model was established by
multivariate logistic regression algorithm. Three single-energy
(40-keV, 70-keV, and 100-keV) radiomics models and a multi-
energy (combined three single-energy features) radiomics model
were established. The process of LASSO is shown in
Supplemental Appendix 3; Figure S2.
FIGURE 2 | Case 2. Portal phase DECT images of a 40-year-old female patient with GC who did not respond to chemotherapy. (A–C) An irregular wall-thickening
lesion at the gastric body was present (arrow). (D–F) There was no obvious change (slightly regression) in the lesions of gastric body (arrow). (A–C) were
monochromatic images of 40, 70, and 100 keV before chemotherapy, respectively; (D–F) were monochromatic images of 40, 70, and 100 keV after chemotherapy,
respectively. Note: After completion of chemotherapy, the patient was diagnosed with aggravated peritoneal metastasis.
September 2021 | Volume 11 | Article 740732
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Clinical Model and Nomogram
Establishment
Univariate and multivariate logistic regression analysis were used
to determine the independent clinical predictors related to
chemotherapy response.

The candidate factors of univariate logistic regression analysis
included age, gender, clinical stage, cN stage, cM stage, distant
metastatic sites, location, Borrmann classification, thickness, and IC
and NIC value. Odds ratio and 95% confidence interval (CI) were
calculated. The significant variables (p-value < 0.05) in the
univariable analysis were considered in the multivariate logistic
regression analysis. Then, the independent clinical predictive factors
were determined and the clinical model was established. In addition,
a combination model (ComModel) was established by combining
the selected clinical predictor with multi-energy radiomics model to
explore the added value of the additional dual-energy information.
Meanwhile, the ComModel was visualized as a nomogram to
predict individualized probability of response.

Evaluation and Comparison of Model
Performance
Evaluation of the model contained discrimination, calibration,
and clinical usefulness. The receiver operating characteristic
(ROC) curve analysis was used to evaluate the discrimination
performance of each model, while the DeLong test was used to
compare the differences in area under the curve (AUC) among
different models. Calibration curves were carried out to describe
calibration performance according to agreement between
predicted and actual probability of response. Decision curve
analysis (DCA) was employed to estimate the clinical
usefulness of the model based on the net benefit at different
threshold probabilities. The radiomics flowchart of our study is
shown in Figure 3.

Statistical Analysis
Feature selection, model construction, and performance
evaluation were performed on R software package (version
Frontiers in Oncology | www.frontiersin.org 5
3.6.3). Other statistical analyses were conducted with SPSS25.0
software (IBM, USA). A two-tailed p-value<0.05 was considered
statistically significant.

Normality of distribution of continuous variables was tested
using a Kolmogorov–Smirnov test. The differences in continuous
variables were assessed by using analysis of variance (ANOVA),
and categoric variables were compared using the c2 test.
RESULTS

Clinical Characteristics
The general demographic characteristics, clinicopathological
characteristics, and dual-energy parameters of the patients are
shown in Supplemental Appendix 4; Table A2. A total of 69
(median age 56 years, range 23–84 years) patients with AGC
were analyzed in this study. The number of AGC patients with
stage IV disease was 47 (68.1%). There were 10 patients (14.5%)
presented with diffuse lesions (lesion location ≥2). Fifty-eight
patients (84.1%) demonstrated evidence of lymph node
involvement. Distant metastases were found in 40 patients
(58.0) and 14 of them (20.3%) presented with liver metastasis.

According to the results of response assessment, patients were
divided into responder (n = 24) and non-responder (n = 45) groups.
Baseline characteristics of the two groups are summarized in
Table 1. Clinical Stage, Borrmann classification, and IC were
found to be significantly different between groups. Furthermore,
univariate and multivariate logistic regression analyses
demonstrated that clinical stage and IC value were independent
clinical predictors of response to chemotherapy for AGC (Table 2).

Radiomics Feature Selection
Based on LASSO regression, we obtained 8, 4, 6, and 11 most
significant radiomics features with non-zero coefficients as the
predictive radiomics features from the 40-keV, 70-keV, 100-keV,
and multi-energy groups, respectively. The distribution of the
selected radiomics features of the corresponding model
FIGURE 3 | Radiomics workflow of the present study. The radiomics procedure consists mainly of five steps: volume of interest segmentation, feature extraction,
feature selection, model evaluation, and nomogram evaluation.
September 2021 | Volume 11 | Article 740732
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coefficients is shown in Supplemental Appendix 5, Tables A3
and A4.

Evaluation and Comparison of Model
Performance
Radiomics model: The 100 keV radiomics model had the better
predictive value among the three monochromatic radiomics
models, with an AUC of 0.881 (95% CI 0.791–0.971). The AUC
was 0.747 (95% CI: 0.628–0.866) for the 40-keV radiomics model
and 0.793 (95% CI 0.678–0.908) for the 70-keV radiomics model.
The AUC of the multi-energy radiomics model was 0.914 (95% CI
0.846–0.982) (Figure 4A).

Clinical model: Clinical stage and IC were included in themodel.
The AUC of the clinical model was 0.774 (95% CI 0.628–0.866).

Combined model: A combined clinical-radiomics model
(ComModel) was established incorporating multi-energy radiomics
features, clinical stage, and IC value while presented as a nomogram
(Figure 4B). The AUC of ComModel was 0.934 (0.877–0.991).

The AUC of the multi-energy radiomics model predicting
response probability was superior to two monochromatic
radiomics models and the clinical model. The ComModel
achieved best discrimination among all models with an AUC
of 0.934. Besides, there was no significant difference between
Frontiers in Oncology | www.frontiersin.org 6
ComModel, the 100-keV model, and the multi-energy model
(p = 0.138 between the multi-energy model and ComModel, p =
0.073 between ComModel and the 100-keV model, p = 0.221
between the 100-keV model and the multi-energy model). ROC
curves and detailed performances of the six models are illustrated
in Figure 4C and Table 3. A comparison of discrimination of
these models is demonstrated in Table 4.

Evaluation of Clinical-Radiomics
Nomogram Performance
The calibration curves of the nomogram (Figure 5A) showed a
good fit between predictive probability of response and actual
response rate. Non-significant statistics of the accompanied
Hosmer–Lemeshow test (p = 0.280) implied that the nomogram
was adequately calibrated without departure from the ideal fit. The
decision curve analysis (Figure 5B) demonstrated good
performance of the multi-energy radiomics model and the
nomogram in terms of clinical decision-making, which added
more benefits than either a treat-all or treat-none scheme. In
addition, the analysis showed that the nomogram and multi-
energy radiomics model had a similar clinical application value,
and their prediction performance was better than that of the
clinical model.
TABLE 1 | Baseline characteristics of responder and non-responder groups.

Characteristics Responder (n = 24) Non-responder (n = 45) p

Age (years) 57.25 ± 12.44 53.22 ± 14.10 0.250
Sex 0.352
Female 9 12
Male 15 33

ECOG 0.136
PS 0 11 29
PS 1–2 13 16

Clinical Stage 0.018*
III 12 10
IV 12 35

cN stage 0.768
N0 5 6
N1 10 17
N2 5 11
N3 4 11

Metastatic sites 0.597
Absent 12 17
Liver 4 10
Lung 0 2
Othera 8 16

Location 0.879
Upper 11 19
Middle 3 9
Lower 6 11
Diffuse 4 6

Borrmann type <0.001*
I–II 2 8
III 20 15
IV 2 22

Thickness (cm) 2.165 ± 0.723 2.520 ± 0.855 0.093
IC (100 mg/ml) 24.857 ± 3.153 21.780 ± 3.379 0.001*
NIC 0.078 ± 0.044 0.127 ± 0.067 0.257
September 2021 | Volume 11 | Article
*p-value < 0.05. Data (%) are the proportion of sample size or mean value ± SD.
aperitoneum, distant lymph node, adrenal gland, ovary; N, lymph node; IC, iodine concentration; NIC, normalized iodine concentration.
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DISCUSSION

In this study, we built a DECT-based clinical-radiomics
nomogram for systemic chemotherapy response prediction in
Frontiers in Oncology | www.frontiersin.org 7
AGC using datasets from two centers. The constructed
nomogram, which combined clinical stages, IC, and DECT-
derived radiomics features, demonstrated satisfactory
discriminative ability, and can be used to stratify patients who
TABLE 2 | Clinical predictors for response to chemotherapy in patients with AGC.

Characteristic Univariable analysis p-value Multivariable analysis p-value

OR (95% CI) OR (95% CI)

Age (years) 1.023 (0.984–1.062) 0.249
Sex 0.354
Male Reference
Female 1.650 (0.573–4.753)

ECOG 0.139
PS 0 Reference
PS 1–2 2.142 (0.781–5.873)

Clinical stage 0.021* 0.029*
III Reference Reference
IV 0.286 (0.098–0.829) 0.251 (0.072–0.869)

cN stage
N0 Reference –

N1 0.706 (0.170–2.923) 0.631
N2 0.545 (0.111–2.673) 0.455
N3 0.436 (0.084–2.269) 0.324

cM stage 0.329
M0 Reference
M1 0.607 (0.223–1.653)

Location
Upper Reference –

Middle 0.576 (0.128–2.588) 0.472
Lower 0.942 (0.272–3.260) 0.925
Diffuse 1.152 (0.266–4.993) 0.850

Borrmann type
I–II Reference –

III 4.500 (0.806–25.122) 0.086
IV 0.350 (0.041–2.977) 0.336

Thickness (cm) 0.551 (0.272–1.119) 0.099
IC (100 mg/ml) 1.334 (1.108–1.605) 0.002* 1.309 (1.067–1.605) 0.010*
NIC 6.950 (0.248–194.682) 0.254 4.373 (0.077–247.896) 0.474
September 2021 | Volume 11 | Article
*p-value < 0.05. CI, confidence interval; OR, odds ratio; N, lymph node; M, distant metastasis; IC, iodine concentration; NIC, normalized iodine concentration.
A B C

FIGURE 4 | Radiomics score, nomogram developed with the combined model, ROC curve analysis of all models. (A) Waterfall plot for distribution of radiomics
scores for each patient. (B) The developed clinical-radiomics nomogram to predict response to chemotherapy in patients with gastric cancer. (C) ROC curves of all
models for predicting response to chemotherapy. AUC, area under the curve; Clinical-radiomics, nomogram.
740732
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are more likely to benefit from systemic chemotherapy.
Furthermore, our study demonstrates that radiomics features
extracted from the virtual monochromatic images can reflect
heterogeneity of gastric cancer and that radiomics may serve as a
Frontiers in Oncology | www.frontiersin.org 8
promising technique for predicting the response to treatment in
patients with AGC.

Existing radiomics models for predicting response to systemic
chemotherapy used both pre-treatment and post-treatment CT
TABLE 3 | Radiomics, clinical-only, and clinical-radiomics model predictive performance.

Model AUC
(95% CI)

SPE
(%)

SEN
(%)

ACC
(%)

PPV
(%)

NPV
(%)

40 keV 0.747
(0.628–0.866)

60.0 83.3 68.1 52.6 87.1

70 keV 0.793
(0.678–0.908)

88.9 62.5 79.7 75.0 81.6

100 keV 0.881
(0.791–0.971)

84.4 83.3 84.1 74.1 90.5

Full 0.914
(0.846–0.982)

86.6 87.5 86.9 77.7 92.8

Clinical 0.775
(0.665–0.884)

55.6 91.7 68.1 52.4 92.6

ComModel 0.934
(0.877–0.991)

91.1 83.3 88.4 83.3 91.1
September 2021
 | Volume 11 | Article 74
AUC, area under the curve; SPE, specificity; SEN, sensitivity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; Full, multi-energy; ComModel, Clinical-
Radiomics; CI, confidence interval.
TABLE 4 | Comparison of discrimination of all models.

Model 5 0.17
Model 4 <0.01* 0.02*
Model 3 0.10 0.22 0.11
Model 2 <0.01* 0.01* 0.81 0.17
Model 1 <0.01* <0.01* 0.74 0.02* 0.52

Model 6 Model 5 Model 4 Model 3 Model 2
*p < 0.05. Model (1) corresponds to the model based on selected 40-keV radiomics features, model (2) corresponds to the model based on selected 70-keV radiomics features, model (3)
corresponds to the model based on selected 100-keV radiomics features, model (4) corresponds to the clinical model, model (5) corresponds to the model based on selected multi-energy
radiomics features, and model (6) corresponds to the model combining multi-energy radiomics features and clinical features.
A B

FIGURE 5 | Calibration curves and decision curve analysis of the nomogram. (A) Calibration curves of the nomogram. The x-axis and the y-axis show the
nomogram-predicted response probabilities and the actual probabilities, respectively. The calibration curve presents the calibration of the nomogram in terms of the
agreement between the predicted response to chemotherapy and the observed probabilities of response to chemotherapy. The diagonal gray line presents a perfect
prediction, and the black solid line presents the predictive performance of the nomogram. Better prediction is indicated by a closer fit of the black solid line to the
diagonal gray line. (B) Decision curve analysis for the combined model, multi-energy radiomics model, and clinical model. The y-axis represents the net benefit. The
gray line represents the assumption that all patients have a response to chemotherapy; however, the black line is the opposite. The blue line represents the
combined model. The red line represents the multi-energy radiomics model. The green line represents the clinical model.
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images (35). However, the post-treatment nature could narrow
its extensive utility in clinical therapy decision-making (36).
Thus, pre-treatment images were selected to construct
prediction models in the current study. Using a pre-treatment
predictive model, clinicians can identify the chemosensitivity of
patients, thereby better stratifying patients for more appropriate
treatment regimens (36). As a result, the pre-treatment
predictive model may broaden its application in the clinical
settings and help personalize treatment and improve prognosis
of AGC patients.

Dual-energy imaging extends the capabilities of conventional
CT offering potentials to improve lesion detection and
characterization (33). At present, some scholars have been
committed to the combination of dual-energy CT and radiomics
or texture analysis (13, 37–42). However, most feature extractions
were based on single-energy monochromatic images, 120 kV
equivalent mixed images, or iodine images. There were few
studies on feature extraction based on multi-energy images,
especially in gastric cancer. Li et al. (14) found that the multi-
energy image-based radiomics model could better predict lymph
node metastasis (LNM) for gastric cancer when compared to the
clinical and single-energy model. In terms of monoenergetic
selection for radiomics model construction, 70 keV was used as
it could resemble a 120-kVp conventional single-energy CT
acquisition, while having a higher contrast-to-noise ratio and
less image noise (43–46). Meanwhile, according to basic CT
physics and algorithms, we also selected 40-keV images as the
representative of low-energy dataset (40–70 keV) to reflect the
tissue enhancement characteristics and 100-keV images as
the representative of high-energy dataset (100–140 keV) to reflect
the tissue non-enhanced characteristics. In our comparison of three
monoenergetic radiomics models, the 100-keV model achieved a
better performance. High-energy monochromatic images have
higher image quality and lower background parenchymal noise
(47, 48). Thus, we speculate that the radiomics features based on
low-noise, high-energy images reflecting the tissue non-enhanced
nature are more likely to seize the heterogeneity of tumors. Notably,
the 100-keV model did not significantly differ from the multi-
energy model or the clinical-radiomics nomogram in terms of
response prediction. This finding was consistent with a previous
study that the potential benefits of multi-energy images must be
evaluated on a case-by-case basis (13). From this, the 100-keV
images not only was visually comfortable and extensively useful in
clinical routine display (14), but also showed good performance in
predicting systemic chemotherapy response of AGC.

DECT-derived IC represents iodine deposition in tissues and
is deemed as an alternative measure for tumor vascularity and
perfusion (49). Previous studies have explored the application of
IC in the field of oncology for diagnosis, the prediction of lymph
node metastasis, and the evaluation of therapy response (50–52).
Tang et al. revealed that the tumor IC was in good agreement
with the pathological regression in evaluating the response of GC
to neoadjuvant chemotherapy, and prediction efficacy of IC was
superior to that of tumor thickness (16). In the present study,
univariate and multivariate analysis results showed that IC was
an independent predictor of the response of chemotherapy for
Frontiers in Oncology | www.frontiersin.org 9
GC. Moreover, the IC value of the non-response group was
significantly lower than that of the response group, which may
indicate that the relatively low blood supply of the tumor before
chemotherapy has some difficulties in the targeted organ
transportation of chemotherapy drugs, leading to a lower
sensitivity of chemotherapy than that of the tumor with
relatively rich blood supply before chemotherapy. Although
NIC has been proven to be a relatively stable indicators in
tumor staging and detection of HER2 status (53, 54), its
application and benefits are not entirely clear (55). Previous
study revealed that NIC cannot serve as an independent
predictive factor for lymph node metastasis in GC (51). Similarly,
this study found that NIC was not statistically significant in
univariate logistic analysis (p > 0.05); however, we still included
NIC in the multivariate study and further confirmed it as a non-
independent risk factor. Hence, future studies are prompted to
discuss and validate the value of NIC in tumor prediction.

Tumor thickness plays an important role in predicting the
therapeutic response of GC. Wang et al. revealed that tumor
thickness ratio reduction was a good predictor of pathological
complete response (pCR) after neoadjuvant chemotherapy
(NAC) in patients with GC; however, tumor thickness before
NAC was not helpful in predicting pCR (56). We also found that
pre-treatment tumor thickness was not correlated with systemic
chemotherapy response. Previous studies have suggested that the
clinical staging of GC is closely related to the choice of treatment
strategy and prognosis. At the same time, we have also
demonstrated IC and clinical staging were significantly
associated with systemic chemotherapy response, and an
improvement of predictive power was observed when IC and
clinical staging were added to the radiomics model.

Our study had some limitations. First, this is a pilot study using
functional imaging radiomics to predict response to systemic
chemotherapy. Although data from two centers were included,
the sample size was still limited and lacked a validation group.
However, the construction of our radiomics prediction model was
based on features screened out using 10-fold cross-validation,
ensuring optimal reliability and reproducibility. Furthermore,
future collaboration with other dual-energy CT centers is
underway to enlarge the sample size. Second, the current study
gathered dual-center dual-energy data to increase the statistical
power at the expense of increased variability of different
manufacturers’ scanners; however, we used monochromatic
images derived from the fast kilovolt peak-switching and dual-
source acquisition paradigms to extract radiomics features to
reduce the possible variability. Jacobsen et al. confirmed in a
large phantom study that fast kilovolt peak-switching and dual
source usually provided the most accurate monochromatic
attenuation, and little difference existed in monochromatic error
between the two scan protocols used in our study (57). Meanwhile,
predictive model developed by current research achieved favorable
performance, which further shows the good predictive value of the
radiomics features based on different manufacturers’ dual-energy
CT for chemotherapy response. Future research can attempt to use
uniform dual-energy scanners and standardized imaging
techniques to establish predictive model.
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In conclusion, we developed a pre-treatment dual-energy
CT–based radiomics nomogram for predicting clinical
response to systemic chemotherapy in patients with AGC. Our
preliminary results revealed that integrating multidimensional
data including radiomics, clinical factors, and dual-energy
parameter could benefit risk stratification, optimize candidate
selection for systemic chemotherapy, and, finally, improve
quality of life in patients with advanced gastric cancer.
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