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Abstract

Migraine is a common neurological episodic disorder with a female-to-male prevalence 3- to 4-fold higher, suggesting
a possible X-linked genetic component. Our aims were to assess the role of common variants of gamma-
aminobutyric acid A receptor (GABAAR) genes, located in the X-chromosome, in migraine susceptibility and the
possible interaction between them. An association study with 188 unrelated cases and 286 migraine-free controls
age- and ethnic matched was performed. Twenty-three tagging SNPs were selected in three genes (GABRE,
GABRA3 and GABRQ). Allelic, genotypic and haplotypic frequencies were compared between cases and controls.
We also focused on gene-gene interactions. The AT genotype of rs3810651 of GABRQ gene was associated with an
increased risk for migraine (OR: 4.07; 95% CI: 1.71-9.73, p=0.002), while the CT genotype of rs3902802 (OR: 0.41;
95% CI: 0.21-0.78, p=0.006) and GA genotype of rs2131190 of GABRA3 gene (OR: 0.53; 95% CI: 0.32-0.88,
p=0.013) seem to be protective factors. All associations were found in the female group and maintained significance
after Bonferroni correction. We also found three nominal associations in the allelic analyses although there were no
significant results in the haplotypic analyses. Strikingly, we found strong interactions between six SNPs encoding for
different subunits of GABAAR, all significant after permutation correction. To our knowledge, we show for the first
time, the putative involvement of polymorphisms in GABAAR genes in migraine susceptibility and more importantly
we unraveled a role for novel gene-gene interactions opening new perspectives for the development of more
effective treatments.
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Introduction

Migraine is a common and often debilitating neurological
disorder. The knowledge of its underlying pathophysiology is
still limited, although it is considered as a peculiar response of
the central nervous system (CNS) to a variety of environmental
and genetic components [1,2]. Mutations or polymorphisms in
genes involved in ion channel and neurotransmitter pathways,
vascular functions and hormonal mechanisms are considered
key factors for migraine susceptibility [3]. Experimental
pharmacology and human genetic data support a model for
migraine based on a neuronal hyperexcitability and activation
of the trigeminovascular system [4,5].

Migraine prevalence is in general, 3- to 4-fold higher among
women [6] and several hypotheses have been raised for this

female predominance [7,8]. We have also shown in the
Portuguese population that gender is a critical risk factor for
migraine and a gender-biased transmission is observed [9].
This can be explained by a migraine susceptibility locus on the
X-chromosome [10], Xq24-28, which was identified in an
Australian study in two large families [11].

Gamma-aminobutyric acid (GABA) is the main inhibitory
neurotransmitter in the CNS, being released in approximately
one third of all synapses [12,13]. . GABA plays an important
role in neuronal proliferation, migration, differentiation and in
the regulation of pain, perception and memory pathways
[14,15]. Consequently, an impaired GABAergic transmission
has been implicated in a wide range of neurological and
psychiatric disorders [16–18]. GABA agonists have also been
used as prophylactic drugs for migraine [19–21]. GABA binds
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to different receptors, including the GABA-A receptor
(GABAAR), a pentameric complex of multiple subunits – α1-α6,
β1-β3, γ1-γ3, δ, ε, π and θ – encoded by several different
genes [22]. GABAARs are ionotropic transmembrane chloride
channels, which mediate fast inhibitory neurotransmission.
Alterations in their trafficking, synaptic accumulation or function
have a crucial role in the regulation of neuronal excitability [23].

In the Xq24-28 locus there is a cluster of GABAAR subunit
genes, GABRE, GABRA3 and GABRQ encoding ε, α and θ
subunits. A previous study has investigated the association
between the GABRQ and GABRE genes and migraine
susceptibility, but no associations were found with the SNPs
tested [24].

This study aimed (i) to unravel the role of GABRE, GABRA3
and GABRQ genes as migraine susceptibility factors through
an association study approach in a Portuguese sample (ii) to
explore the impact of variants in gender-related migraine
susceptibility and (iii) to assess a possible interaction between
GABAAR genes in migraine. In this study we found an
association between GABAAR genes and migraine
susceptibility and importantly we disentangled three gene-gene
interactions between these genes, which can be relevant to
understand the disease’s pathways.

Material and Methods

Subjects
A sample of 188 unrelated migraine patients (153 females

and 35 males) from the out-patient neurology clinic, at Hospital
de Santo António (HSA), Porto, was sequentially enrolled in
this study. The sample included 111 migraine without aura
(MO) and 77 with migraine with aura (MA). Patients with
familial and sporadic hemiplegic migraine were excluded.

Control subjects (n=286; 217 females and 69 males), with no
personal history of migraine, were ascertained among healthy
blood donors and from the Department of Obstetrics and
Gynecology. Controls were from the same ethnic and
geographical origin (north of Portugal) as cases, and were age-
matched to these. A diagnostic interview was performed both in
cases and controls, based on the operational criteria of the
International Headache Society (IHS), using the same
structured questionnaire.

Samples were ascertained between 1999 and 2004 and thus
the first edition of these criteria (ICHD-I) was used; as no major
differences in common migraine diagnosis were introduced by
the 2004 IHS criteria revision we did not expected changes in
this cohort clinical diagnosis. Nevertheless, we have revised
the clinical diagnosis of all patients applying the second edition
(ICHD-II) and no differences in patients’ diagnosis were found
(data not shown). All subjects provided a written informed
consent prior to participation and the project was approved by
the Ethics Committee of HSA.

SNP selection and genotyping
Genomic DNA was extracted from peripheral blood

leukocytes, using the standard salting out method [25] or from
saliva, using ORAGENE kits and DNA extraction was

performed according to the manufacturer’s instructions (DNA
Genotek, Inc.).

Single-nucleotide polymorphisms (SNPs) were selected
based on a data dump from the International HapMap Project;
tagging SNPs were selected using Haploview 4.1, using r2 as a
measure of linkage disequilibrium (LD) at a threshold of 0.80,
with a minor allele frequency (MAF) ≥ 0.10, by an aggressive
tagging approach (a multimarker method) [26]. Twenty-three
tagging SNPs (Table 1) were selected in order to achieve the
maximum genotypic information and multiplexed into 2 assays.
The method chosen for genotyping SNPs variants was
SNaPshot (Applied Biosystems).

PCR primers and SNaPshot SBE primer sequences for the
23 variants studied are presented as supplementary data
(Table S1 a) and b)).

Multiplex PCR amplification was performed in a final volume
of 10µL containing 5.0µL of multiplex PCR Master Mix (Qiagen)
enzyme, 1.0µL of a suitable amplification primer mix, 1.0µL of
DNA (10ng/µL), and 3.0µL of water. Initially the primer mix
contained the forward and reverse amplification primers of all
SNPs, at a concentration of 2µM. In the optimization phase,
when necessary, adjustments to the concentrations were
performed in order to obtain balanced peaks. The cycling
conditions used were: an initial denaturing at 95°C for 15 min,
followed by 30 cycles of 30 sec at 94°C, 90 sec at 55°C and 90
sec at 72°C, followed by a final extension step of 10 min at
72°C. For PCR product purification, incubation with ExoSAP-IT
was performed, according to the manufacturer’s instructions.
This enzymatic purification was performed in two steps: first, 15
min at 37°C, to remove remaining primers and nucleotides and,
second, 15 min at 85°C to inactivate the enzymes.

The SNaPshot extension reactions were carried out in a final
volume of 5.0µL, containing 1.5µL of the purified PCR product,
1.0µL of SNaPshot Multiplex Mix (Applied Biosystems) having
the fluorescent ddNTPs, 1.0µL of an SBE-primer mix and 1.5µL
of water.

After primer extension, the unincorporated fluorescently
labeled ddNTPs were removed by adding 1 µL of SAP (USB
Corporation) and subjected to an incubation at 37°C for 90 min,
followed by 15 min at 85°C for enzyme inactivation. Detection
was carried out using 1.0 µl of SNaPshot products mixed with
8.85 µl of formamide and 0.15 µl of GeneScan-120 LIZ size

Table 1. Tagging SNPs selected for each gene.

 Gene

 GABRA3 GABRQ GABRE

Tagging SNPs rs10218364  rs2266858
 rs2131190  rs1158605
 rs5925155  rs2256882
 rs6627595 rs5925196 rs5925077
 rs10482215 rs5924752 rs1061418
 rs2201169 rs3810651 rs1139916
 rs6627588 rs5924753 rs5970170
 rs5970223  rs1003794
 rs7391474  rs2266856
 rs3902802   
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standard (Applied Biosystems). Fragments were separated by
capillary electrophoresis on an automated sequencer (ABI-
PRISM 3130 XL Genetic Analyzer - Applied Biosystems) and
analyzed with GeneMapper analysis software version 4.0
(Applied Biosystems). To confirm particular genotypes some
SNPs were additionally genotyped by automated-sequencing
or restriction fragment length polymorphism (RFLP) analysis.

Statistical analysis
Power to detect association was estimated with the Genetic

Power Calculator (http://pngu.mgh.harvard.edu/~purcell/gpc/),
assuming a codominant genetic model with a high-risk allele
frequency of 0.1, a relative risk for a homozygous genotype of
2.25 and 1.5 in heterozygosity. Analysis of Hardy-Weinberg
equilibrium (H–W) was performed using SNPator software [27].

To compare allele frequencies between cases and controls,
the SNPator software was also used. A chi-square (χ2) test was
performed and odds ratio (OR) were estimated with 95%
confidence intervals (CI). The significant level was set at
α=0.05.

A backward-stepwise multivariable-logistic regression was
performed (with the most frequent homozygote as the
reference group), to evaluate association between SNP’s
genotypes and the occurrence of migraine; this was only done
in the female group. To correct for multiple comparisons a
Bonferroni correction was performed, taking into account
α=0.016 (considering that the SNPs for each of the three genes
were simultaneously analyzed in the logistic regression). These
analyses were performed with PASW Statistics v 18.0
software.

Significant results found were further evaluated using
multifactor dimensionality reduction (MDR) software (version
2.0). MDR is a non-parametric and genetic model-free
approach that can identify SNPs involved in disease
susceptibility [28]. A single-locus analysis for main effects was
conducted with MDR and we also performed a gene-gene
interaction analysis [29]. We used a ten-fold cross-validation to
avoid false-positives [30]. The significant results obtained were
corrected for multiple testing using the permutation test
implemented on the MDR Permutation Tool (version 1) [31].

Haplotype frequencies were compared between cases and
controls using Haploview 4.1, with default settings.
Frequencies of haplotypes analyzed were above 1% according
to the Haploview threshold.

To correct for multiple comparisons, regarding the estimation
of allelic and haplotypic frequencies, permutations tests were
performed in Haploview using 10,000 permutations.

For the prediction of putative functional roles of the
associated SNPs, we employed the SNP Function Prediction
(FuncPred) [32] bioinformatic tool (http://snpinfo.niehs.nih.gov/
snpfunc.htm). This analysis also predicted possible functions
for SNPs in LD (r2 ≥ 0.8) in the European population to the
queried associated SNPs. PROVEAN [33], SIFT [34], and
Polyphen-2 [35] were used to evaluate the impact of SNPs
causing non-synonymous amino-acid modifications.

Results

The demographic data of our sample are presented in Table
2. We obtained a case:control ratio of 1:1.5 and no significant
differences were found regarding gender between patients and
controls (p>0.05). The power of our sample to detect
association was 64% (for a nominal α=0.05). A prevalence of
16% for migraine had been previously estimated in the
Portuguese population [36]. Cases and controls were in Hardy-
Weinberg equilibrium for all the tagging SNPs selected. The
correlation between GABAAR SNPs was small, denoting the
weak LD between them (Figure S1). Taking into account that
GABAAR genes are located in the X-chromosome our analysis
was stratified by gender and genotypic analyses were only
performed in the female group.

Allelic frequencies
Regarding allelic frequencies we found an enrichment of the

T allele of rs5925077 of GABRE gene (OR: 2.13; 95% CI:
1.16-3.90; p=0.014) and of the C allele of rs2201169 of
GABRA3 gene (OR: 2.26; 95% CI: 1.05-4.85; p=0.033) among
the male patients; however the results did not retained
statistical significance after permutation-based correction.
Additionally, in the female group we have found an increased
risk conferred by the G allele of GABRA3 rs2131190, for
migraine susceptibility (OR=1.53, 95%CI: 1.01-2.30; p =
0.043), but that did not remain significant after multiple testing
correction. Allelic frequencies for the 23 studied variants are
presented as supplementary material (Table S2).

Genotypic analyses
Statistically significant results from the backward stepwise

multivariable logistic regressions performed are presented in
Table 3. The AT genotype of rs3810651 of GABRQ gene
showed an increased risk for migraine (OR: 4.07; 95% CI:
1.71-9.73, p=0.002), still significant after Bonferroni correction.
On the other hand the CT genotype of rs3902802 and the GA
genotype of rs2131190 of GABRA3 gene were associated with
a decreased risk for migraine (CT-OR: 0.41; 95% CI: 0.21-0.78,
p=0.006; GA-OR: 0.53; 95% CI: 0.32-0.88, p=0.013), that also
remained significant after Bonferroni correction.

Using MDR we performed a single-locus analysis and found
that the best model for rs3810651 showed a testing balance
accuracy (TBA) of 0.54 and a cross validation (CVC) of 10/10
in the female group. After permutation testing, this model was
still significant (p=0.025), which confirmed the logistic

Table 2. Demographic and clinical data of patients with
migraine and controls.

Characteristics
Patients with migraine
(n=188) Controls (n=286)

Gender, F/M 153/35 217/69
Age at observation, mean (SD), y 36.14 (12.84) 36.42 (12.35)
Age at onset, mean (SD), y 11.67 (8.15) n/a
Family history of migraine, % 87 n/a
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regression analysis results and the importance of this SNP in
migraine susceptibility.

We have also performed a haplotype-based analysis, but no
differences were found between cases and controls for any of
the haplotypes evaluated (data not shown).

Gene-gene interaction
Results from the multilocus MDR analyses are summarized

in Figure 1. We observed consistency in the CVC measures
throughout all models (10/10). Based on CVC, TBA and
permutation p-values, we found strong and significant
interactions. In the female group we observed two significant
models of interaction – one between rs5970223 * rs5924753
that showed a TBA of 0.62 (p=0.0074), while the other
interaction, rs3810651 * rs1139916, showed a TBA of 0.62
(p=0.0045). In the male group an interaction between
rs10482215 * rs2266858 was found with a TBA of 0.70
(p=0.020). To reinforce these results we also performed a
backward stepwise multivariable logistic regression including

the interaction terms and the results were consistent between
the two methods (data not shown).

Functional in silico analysis
To explore the functional impact of the SNPs found to be

associated with migraine we have performed a bioinformatics
analysis. From this analysis important results have emerged
involving the three migraine associated SNPs. The nucleotide
variation of rs5925077 was predicted to alter transcription
factors’ binding (TFB) sites with a higher number of TFB sites
when the T allele was present. Also, we found that rs1139916
was predicted to result in alterations in the recognition sites for
splicing regulatory factors. Specifically, the C variant was
predicted to modify exonic splicing enhancer (ESE) sites.
Additionally, we found that rs1139916 and rs3810651 are non-
synonymous SNPs resulting in alterations in the amino acid
sequence of the receptor. rs3810651 is responsible for a
phenylalanine to isoleucine (Phe478Ile) change in the θ subunit
(GABRQ), while rs1139916 causes a serine to alanine
(Ser102Ala) substitution in the ε subunit (GABRE). The

Table 3. Results from multivariable logistic regression found in the female group.

Gene SNP Genotypic frequencies N. (%) OR (95% C.I.) p
  Cases Controls   
GABRA3 rs2131190    0.018
 GG (ref) 115 (75.2) 143 (65.9) 1  
 AG 36 (23.5) 67 (30.9) 0.53 (0.32-0.88) 0.013*
 AA 2 (1.3) 7 (3.2) 0.25 (0.05-1.29) 0.10
 rs7391474    0.008
 TT (ref) 88 (57.5) 143 (65.9) 1  
 GT 59 (38.6) 65 (30.0) 1.42 (0.42-4.75) 0.57
 GG 6 (3.9) 9 (4.1) 0.61 (0.18-2.07) 0.43
 rs3902802    0.02
 TT (ref) 125 (81.7) 168 (77.4) 1  
 CT 25 (16.3) 46 (21.1) 0.41 (0.21-0.78) 0.006*
 CC 3 (2) 3 (1.4) 1.12 (0.20-6.31) 0.90

GABRQ rs5924753    0.08
 TT (ref) 42 (27.5) 63 (29.0) 1  
 CT 74 (48.4) 105 (48.4) 0.35 (0.14-0.88) 0.03
 CC 37 (24.2) 49 (22.6) 0.35 (0.11-1.17) 0.09
 rs3810651    0.01
 AA (ref) 46 (30.0) 91 (41.9) 1  
 AT 78 (51.0) 88 (40.6) 4.07 (1.71-9.73) 0.002*
 TT 29 (19.0) 38 (17.5) 3.29 (0.99-10.94) 0.05
 rs5925196    0.09
 TT (ref) 109 (71.3) 142 (65.4) 1  
 AT 36 (23.5) 70 (32.2) 0.69 (0.42-1.15) 0.15
 AA 8 (5.2) 5 (2.3) 2.32 (0.69-7.74) 0.17

GABRE rs2256882    0.05
 AA (ref) 125 (81.7) 165 (76.0) 1  
 AG 22 (14.4) 51 (23.5) 0.08 (0.01-0.72) 0.02
 GG 6 (3.9) 1 (4.6) 0.12 (0.02-1.03) 0.05

(ref) indicates the genotype reference category.
OR − odds ratio; CI − confidence interval
After Bonferroni correction, significance level was set to 0.016; * Significant values.
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FuncPred analysis included a Polyphen [37] prediction where
both mutations were classified as benign. To be additionally
thorough, the effect of these missense mutations was also
evaluated using other tools. PROVEAN scored the two
substitutions as neutral, SIFT - using either homologues or
orthologues for the protein alignment - predicted that both
variations should be tolerated, and in Polyphen-2 (a newer
development of Polyphen), rs3810651 was still categorized as
benign, but rs1139916 was now classified as possibly
damaging.

Discussion

While many unanswered questions remain around migraine
pathophysiology, some evidence point to the involvement of
GABA and it receptors in this process [38]. Consequently
GABAAR genes are seen as potential candidates for migraine
therapies.

We analyzed the distribution of allelic, genotypic and
haplotypic frequencies of twenty-three SNPs localized in the
GABRE, GABRA3 and GABRQ genes to explore the role of
these genes in migraine susceptibility using a case-control
approach.

Our findings confirm the involvement of GABAAR genes in
migraine’s susceptibility. In our sample we found three nominal
significant allelic associations, two in the male group
(rs5925077 and rs2131190) and the other in the female group
(rs2201169); however none of them remained significant after
permutation-based correction.

Regarding the genotypic analyses a set of interesting results
reinforced the role of two genes (GABRA3 and GABRQ) in
migraine. The CT and the AG genotypes of rs3902802 and
rs2131190, were associated with a decrease in the risk for
migraine, emerging as possible protective factors, while the AT
genotype of rs3810651 reflected an increased risk for migraine.
All associations resisted to Bonferroni correction. These data
suggest that multiple alleles play a role in migraine
susceptibility and that the presence of risk alleles and/or
absence of protective variants may influence the onset of the
disease symptoms.

All genes investigated in this study have a chromosomal
location on Xq28, supporting the implication of this genomic
region in migraine pathogenesis. Also, it is imperative to note
that the differences observed between genders cannot be
solely explained by the influence of GABAAR genes.
Hormones, namely estrogens - involved in pain pathways - and
progesterone which might decrease the occurrence of migraine
[39], should also be taken into account. Another noteworthy
aspect is that men might be protected by testosterone, since
this hormone seems to have a protective role in pain
development [39]. These facts may also explain the differential
gender ratio found for this disorder and it would be important to
assess to what extent our results reflect a true gender-specific
effect versus a low representation of males in our sample.

We also employed a MDR analysis for the detection of
gene–gene interactions, which is a useful data reduction
method for detecting multilocus genotype combinations that
predict risk for complex diseases [40]. It combines cross-
validation and permutation testing to minimize false positive

Figure 1.  Gene-gene interaction dendrograms showing significant results and a strong interaction effect between SNPs
of GABRE-GABRQ and GABRA3-GABRQ and GABRE-GABRA3 (darker lines suggest a synergistic relationship: the
shorter the lines, the stronger the interaction).  
doi: 10.1371/journal.pone.0074087.g001
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results [28]. With the MDR analysis we confirmed the evidence
of gene-gene interaction between GABAAR genes in migraine
susceptibility. Previously, we had already found a strong gene-
gene interaction in migraine susceptibility using this same
method [41]. In complex diseases, interaction is a ubiquitous
phenomenon that contributes to the development of the
disorder [42], so it is expected that multiple genes, each with a
weak or moderate effect, will have a greater joint contribution to
disease risk than a single gene [43].

In order to gain some insight regarding the putative
functional consequences of the SNPs found to be associated
with migraine, we have performed a bioinformatic analysis for
two SNPs that result in alterations in the protein coding
sequence (rs3810651 and rs1139916). The majority of the
software’s used predict that these variants do not have an
impact on protein function, except Polyphen-2 that classifies
rs1139916 as possibly damaging. Although very useful to infer
the effect of non-coding SNPs on protein function,
interpretation of these software predictions should be cautious,
as they mainly rely only on evolutionary conservation of a given
protein position. In particular, for the variants studied here, data
on the predicted topological organization of the θ and ε
subunits can give some clues on the impact of these variants.
The Phe478Ile variant (rs3810651) is located in the major
intracellular loop and we can hypothesize that this substitution
may result in altered protein interactions [44]. Regarding the
Ser102Ala (rs1139916) it is located in the first extracellular
domain of the subunit and this alteration could affect the
binding of extracellular ligands. In both cases the functional
properties of GABAAR may be affected by these variants and
thus contribute to disease. Despite these functionally relevant
locations, experimental validation is required to confirm these
hypotheses.

A connection between the GABA receptor genes and
migraine has been investigated over the last decade, although,
until now, few positive associations were found. A linkage
analysis in 10 families with migraine with aura used markers
from the 15q11-q13 genomic region and hypothesized a
possible relation between GABAAR dysfunction and migraine
[45]. Two association studies exploring that hypothesis did not
find any convincing evidence [46,47]. Also, Chen et al.
investigated the role of one SNP in GABRG2 gene located on
chromosome 5q31.1-q33.1, but no significant differences in
allele frequencies were found [48]. An Australian study [24]
focused on candidate genes in the X-chromosome (GABRE,
GABRQ) and their involvement in migraine but no association
was found with the SNPs tested. In our study we analyzed two
SNPs also studied by the Australian group and for one of these
SNPs (rs3810651) we found a significant association with
migraine. The difference between our results and those found
in the Australian population may be due to allele frequency
variation across populations and could also be influenced by
gene-gene and/or gene-environment interactions.

Our study pinpoints the GABAAR genes as factors that could
modulate the migraine liability, but a comprehensive vision of
the molecular basis of disease is still lacking. Plummer et al.
[49] performed a study aiming to assess the GABAAR genes’
expression profile in migraineurs and controls. The study

demonstrated that GABRA3 was significantly down regulated in
female patients compared with controls which could result in a
decrease of GABAAR activation. These results reinforce our
findings and it would be important to assess the gene
expression, taking into account the patients’ genotypes. Also,
would be important to identify MA and MO specific risk factors
in a larger cohort.

Despite the fact that our sample is not very large, a special
care in obtaining a high case to control ratio to increase power
was taken into account. Moreover, cases and controls were
matched for age at observation and geographic region and
corrections for multiple testing (Bonferroni and permutation-
based corrections) were applied.

In conclusion, we believe that our study provides important
insights into the role of GABAAR genes in migraine
susceptibility and in gender-liability differences. As the first
study to present positive data on the impact of variants in the
GABAAR genes, our results are suggestive for the involvement
of these genes in migraine susceptibility. Nevertheless, further
investigation is necessary, in particular the replication of these
findings in other populations and experimental functional
assays that confirm the impact of these variants in normal
channel function. The multigenic nature of migraine makes the
identification of disease-related genes challenging and gene-
gene interactions may be fundamental mechanisms for the
development of therapies for complex diseases. Further
investigation is necessary taking into to account gene-gene
interaction, as well as, epigenetic mechanisms to increase
knowledge on the genetic basis of this disease and contribute
to the development of more effective treatments.

Supporting Information

Figure S1.  A. Genomic organization of the GABAAR genes
cluster in Xq24-28 with the size of each gene and the distance
between them. B. LD plots showing both D’ and R2 are shown.
These plots are based on genotype data from our control
sample for the 23 variants analyzed in this study. Noteworthy,
the two plots show a correlation between rs3810651 and
rs5924753 in our population contrarily to the HapMap
prevision.
(TIF)

Table S1.  PCR primers and SNaPshot SBE primer
sequences.
(DOCX)

Table S2.  Allele frequencies of SNPs studied in patients with
migraine and controls
(XLSX)
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