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Neuroinflammation is a common factor in neurodegenerative diseases, and it has been

demonstrated that galectin-3 activates microglia and astrocytes, leading to inflammation.

This means that inhibition of galectin-3 may become a new strategy for the treatment

of neurodegenerative diseases. Based on this motivation, the objective of this study

is to explore an integrated new approach for finding lead compounds that inhibit

galectin-3, by combining universal artificial intelligence algorithms with traditional drug

screening methods. Based on molecular docking method, potential compounds with

high binding affinity were screened out from Chinese medicine database. Manifold

artificial intelligence algorithms were performed to validate the docking results and further

screen compounds. Among all involved predictive methods, the deep learning-based

algorithmmade 500 modeling attempts, and the square correlation coefficient of the best

trained model on the test sets was 0.9. The XGBoost model reached a square correlation

coefficient of 0.97 and a mean square error of only 0.01. We switched to the ZINC

database and performed the same experiment, the results showed that the compounds

in the former database showed stronger affinity. Finally, we further verified through

molecular dynamics simulation that the complex composed of the candidate ligand and

the target protein showed stable binding within 100 ns of simulation time. In summary,

combined with the application based on artificial intelligence algorithms, we unearthed

the active ingredients 1,2-Dimethylbenzene and Typhic acid contained in Crataegus

pinnatifida and Typha angustata might be the effective inhibitors of neurodegenerative

diseases. The high prediction accuracy of the models shows that it has practical

application value on small sample data sets such as drug screening.

Keywords: artificial intelligence, deep belief network, molecular dynamic simulation, galectin-3,

neurodegenerative disease

INTRODUCTION

Neurodegenerative diseases (ND) cause the progressive death of central neurons, leading to brain
dysfunction and the development of diseases, such as Huntington’s disease (HD) (Macdonald
et al., 1993), Alzheimer’s disease (AD) (McKhann et al., 1984) and Parkinson’s disease. ND
often result from the aberrant deposition of aggregated host proteins (Voet et al., 2019).
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GRAPHICAL ABSTRACT | Graphical abstract of the role of Gal3 in HD pathogenesis. The level of Gal3 expressed by microglia is low under normal conditions. In HD

patients, mutant Huntingtin (mHTT) continues to accumulate due to Huntingtin (HTT) mutations and NFκB is activated. NFκB triggers Gal3 aggregation, while Gal3

feedback promotes NFκB activation. mHTT causes lysosome damage, but Gal3 prevents the damaged lysosome from being cleared. NLRP3Inflammasome and

proinflammatory factors (such as IL1β) increase in number, causing neuronal death and repair of damage.

At present, the mechanism of ND is not clear, but inflammation
is considered to be a common factor (Saijo et al., 2010).
Galectin-3 (Gal3) is an important member of the galectin
family (Romero and Gabius, 2019). Gal3 is a key molecule
linking inflammation and decreased insulin sensitivity (Li
et al., 2016). Recently, more and more studies have shown
that Gal3 is closely related to ND. Gal3 plays an important
role in regulating inflammation (Henderson and Sethi, 2009).
Extensive research on Gal3 in the central nervous system
has shown that Gal3 promotes inflammation (Shin, 2013).
Inhibition of Gal3 can help reduce inflammation in ND (Ramirez
Hernandez et al., 2020). In the brains of AD patients, Gal3
promotes the activation of microglia (Ramirez et al., 2019),
and inhibition of Gal3 may be a potential pharmacological
method for the treatment of AD (Boza-Serrano et al., 2019). The
latest research found that the brain Gal-3 content of patients
and mice with HD is higher than normal. Inflammation can
be controlled and the accumulation of mutant Huntingtin is
reduced by inhibiting Gal3 (Siew et al., 2019). From the signal

transmission process (Graphical Abstract), it can be identified
that inhibition of Gal3 may become a new drug target for
HD treatment.

Understanding the basic laws of target protein-drug
interactions is the basis of molecular targeted drug design,
which plays a vital role in drug discovery and drug design
(Rahman et al., 2020). Gal3 is one of the most potential target
proteins for treating ND. Molecular docking method and active
ingredient screening techniques are used to screen out drug
molecules that have inhibitory effects on the target protein
from drug database (Abdolmaleki et al., 2017). Traditional
Chinese medicine is a medicine with great modern potential
(Wen et al., 2019). Greater than 85 percent of patients diagnosed
with COVID-19 in China have received Chinese medicine for
adjuvant treatment (Yang et al., 2020). Therefore, discovering
and designing the Chinese medicine prescription inhibitors of
Gal3 is expected to have curative effects ND treatment. With the
continuous improvement of computer performance, artificial
intelligence (AI)-based methods are increasingly applied to
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FIGURE 1 | The flowchart of experiment design. The experiment is mainly divided into three parts, including virtual screening, artificial intelligence algorithms and

molecular dynamics simulation. The range of candidates is gradually compressed.

various stages of drug discovery (Chen et al., 2018a; Schneider
et al., 2020; Senior et al., 2020). Machine learning methods are
used to predict biologically active properties (Kaiser et al., 2018;
Correia et al., 2020). SVM and other methods were used to
establish four quantitative prediction models of the inhibitory
activity value of HIV-1 integrase inhibitors (Xuan et al., 2013).
The DeepTox algorithm shows good accuracy in predicting
the toxicity of compounds (Mayr et al., 2016). Drug-drug
interactions prediction (Zhang et al., 2019), biomolecular
properties prediction (Hessler and Baringhaus, 2018) and
quantum mechanical property prediction are combined with AI
that is used in pharmacodynamic research of new synthetic drug
candidates, which can greatly save costs. The combination of AI
and traditional Chinese medicine may be a new development
trend of modern Chinese medicine in the future (Liu et al., 2017).

Based on the discovery of Gal3 as a key target protein
in a new pathogenesis closely related to HD, the purpose

of this study to screen potential compounds that inhibit
Gal3 has been determined. The contribution of our study
is 2-fold. Methodologically, we have added AI algorithms
to establish a compound activity value prediction model
based on traditional drug screening methods, including
molecular docking and molecular dynamics (MD) simulation
(Kumar et al., 2020), accelerating the process of new drug
discovery. Screening drug molecules from traditional
Chinese medicine (TCM) database is an innovation and
beneficial supplement to screening from the general database.
Practically, the underlying relationship between compound
activity values and input molecular properties can be
acquired through algorithm models. Target variable is an
important evaluation index of drugs, which can provide
researchers with reference, and the high accuracy of the
model improves reliability. Figure 1 provides the flowchart of
experiment design.
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MATERIALS AND METHODS

Molecular Docking Screening
Molecular docking is a virtual screening tool and can identify lead
compounds from large small molecule databases, which reducing
the number of experimental screening compounds and thus
shortening the research cycle (Elmezayen et al., 2020; Pant et al.,
2020). Molecular docking can be used to investigate the possible
weak interactions between small molecule ligands and large
molecule receptors and to calculate their affinity (Liu et al., 2019).
The sequence of Gal3 was obtained fromUniProt knowledgebase
[(Identifier: P17931) (Bateman et al., 2017), and the crystal
structure was obtained from RCSB Protein Data Bank (PDB ID:
6QLR) (Burley et al., 2019; Kumar et al., 2019), with a resolution
of 0.97 Å. Through preprocessing operation, including removing
crystal water molecules in the composite crystals, replenishing
missing hydrogen atoms and optimizing energy by using the
CHARMm27 force field (Brooks et al., 2009), a receptor protein
with high confidence binding site was presented. The binding
site was defined with the pro-ligand. A total of 18,776 molecule
compounds obtained from the TCM database (TCM Database
@Taiwan) (Chen, 2011) and 148,120 molecule compounds from
ZINC database (http://zinc.docking.org/) (Irwin and Shoichet,
2005) were used as ligands for molecular docking, respectively.
The original ligand in the complex was used as the control
ligand, which was used as a reference for docking results. All
involved experiments were implemented on LigandFit module
in Discovery Studio Client v17.2.0.16349 (DS). Ligandfit has the
functions of automatic search and confirmation of the active site
of the receptor molecule, conformationally flexible multi-ligand
docking, and evaluation of interaction scores based on force fields
(Venkatachalam et al., 2003).

Artificial Intelligence-Based Prediction
Models
Data Collection and Processing
Relevant information (structural formula and IC50) of the small
molecules reported that have inhibitory effect on Gal3 were
collected from literatures, invention patents, and drug generation
companies. Chemdraw was used to draw the structural formula
of molecules(Mills, 2006). In addition, from open source small
molecule databases such as PubChem (Kim et al., 2019),
ChEMBL (Gaulton et al., 2017) and ZINK, we have downloaded
the corresponding three-dimensional structure containing Gal3
inhibitors. All collected compounds were saved as Mol format
files and converted to SDF format through Chem3D. The sample
with clear IC50 value could be kept, and 56 molecular samples
were included. Chem3D software was used to minimize the
molecular posture energy of all molecule samples. All qualified
molecular samples were also subject to molecular attitude energy
minimization processing. The IC50 value was changed to pIC50
as target variable by equation (1). All collected and sorted
sample molecules were imported into DS to calculate molecular
properties of 204 types that used as the input feature set.

pIC50= 6− log10 (IC50) (1)

Algorithm 1: AdaBoost

1. Initialize weights distribution of training samples:
D1 = (ω11,ω12, ...ω1i...,ω1N) ,ω1i = 1/N, i = 1, 2....,N

2. Form = 1, 2, · · · ,M multiple iterations:
(1) Training the weighted Dm sample set to obtain the base

learner Gm (x)
(2) Calculating the maximum error of the training set: Em =

max | yi − Gm (xi) |
(3) Calculating the relative error of each sample:

emi =
|yi−Gm(xi)|

Em
(4) Calculating the regression error rate:

em =
∑N

i=1 ωmiemi

(5) Calculating the weight coefficients of weak learners:
αm = em

1−em
(6) Updating the weight distribution of the sample set:

ωm+1,i =
ωmi
Zm

αm
1−em

Zm =
∑N

i=1 ωmiα
1−emi
m

Dm+1,i =
(

ωm+1,1,ωm+1,2, ...ωm+1,i...,ωm+1,N
)

3. Output the ultimate strong learner
f (x) =

∑M
m=1 (ln

1
αm

)αmGm (x)
end

We performed AdaBoost, random forest, XGBoost, deep belief
network and other models to build models for predicting
pIC50 values. These models are widely used AI-based machine
learning models, with fast convergence speed and advantages
in processing small sample data, which is very suitable for our
small-scale data experiments.

AdaBoost Model
The kernel of adaptive boosting algorithm (AdaBoost) is to build
a strong learner by connecting multiple weak learners (Huang
et al., 2020). AdaBoost algorithm adjusts the weight of samples
in the training set of each round by increasing the weight of
the samples that were incorrectly predicted in the previous
round (Ratsch et al., 2001). The iteration continues until the
predetermined error rate is reached or the specified maximum
number of iterations is reached (Figure 2). The ultimate strong
learner is combined by linearly weighting and summing all base
learners, and the base learner with small error rate has a larger
weight coefficient. Details of the AdaBoost algorithm is presented
in Algorithm 1. In this study the optimal number of decision trees
was set as 15 based on some initial trials.

Ridge Regression Model
Ridge regression (RR) works well on condition that the number
of independent variables is more than the sample size. As shown
in equation 2, the RR model adds a penalty term of the L2
norm to the objective function of the ordinary linear regression
mode (Yang and Wen, 2018), which contributed to the biased
estimation of the regression coefficient β. Generally, RR is a
regression method that solves the ill-conditioned matrix problem
at the cost of giving up unbiasedness and reducing accuracy. The
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FIGURE 2 | The flow chart of AdaBoost algorithm. Multiple weak learners are combined into one strong learner.

alpha parameter was set to 0.05 in the case study.

J (β)=
(

y− Xβ
)T

+λβTβ

⇒ β=
(

XTX+λI
)−1

XTy (2)

SVM Model
Support vector machine (SVM) can be divided into support
vector classification (SVC) and support vector regression (SVR)
in practical applications (Chang and Lin, 2011). SVR is designed
to fit each training sample and retain all the main features
that characterize the algorithm to minimize errors. The kernel
function is used to replace the linear term in the linear
equation to make the original linear algorithm non-linear, which
is used to achieve non-linear regression (Figure 3). SVR has
high accuracy and strong generalization ability to solve small
sample data. It has better applicability for the diversity of
drug molecular characteristics and less sample data. In this
study, the SVR algorithm was used to quantitatively predict the
inhibitory activity of Gal3 inhibitors. All data were plotted in
28-dimensional space, and the error tolerance parameter was set
to 0.39.

Elastic Net Model
Elastic net (EN) is a linear regression model trained using L1, L2
norms as prior regular terms (Zou and Hastie, 2005). EN is very
effective in cases where multiple features are interconnected. The
cost function of elastic network is as shown in Equation 3. When
r is equal to 0, it is RR, when r is equal to 1, it is Lasso regression
(LR). EN is compromised in RR and LR.

J (θ) =MSE (θ)+γα
∑n

i=1 |θi| +
1−γ
2 α

∑n
i=1 θ2i (3)

Random Forest Model
Random forest (RF) algorithm uses bootstrapmethod to generate
training set (Breiman, 2001). Through random row and column
(samples and features) sampling, seven decision trees were
constructed to form a decision tree forest. The final prediction
result was obtained by weighted average or voting. RF can achieve
parallel learning and has a good filtering effect on noise and
abnormal data (Athey et al., 2019). The model training process
is given in Algorithm 2.
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FIGURE 3 | The flow chart of SVR algorithm. All data are plotted in n-dimensional (n = 28) space, n represents the number of features of the data.

Algorithm 2: Random forest

1. Training set Dffeature =
{(

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xn, yn
)}

2. For t = 1, 2, . . . , T do
(1) Random sampling m sample points, constructing a

training set Dt

(2) Using Dt to train a decision tree
(3) Least squares regression tree as an example

Choosing the optimal segmentation variable i and the
Segmentation Point s:

mini,s
[

minc1
∑

xj∈R1(i,s)

(

yj − c1
)2

+minc2
∑

xj∈R1(i,s)

(

yj − c1
)2

]

The selected pairs (i, s) were used to divide the region and
determine the corresponding output values: R1 (i, s) =
{

x|xi ≤ s
}

,R2 (i, s) =
{

x|xi > s
}

cκ = 1
Nκ

∑

xj∈Rκ (i,s) yj, x ∈ Rκ , κ = 1, 2

Continue to iterate steps a and b for satisfying the
condition

The input space was divided into K regions:
f (x) =

∑K
κ=1 cκ I (x ∈ Rκ )

end

Gradient Boosting Regression Model
Gradient boosting regression (GBR) is an algorithm that
improves by learning from mistakes. Each calculation of it is to
reduce the residual error of the previous time and establish a

Algorithm 3: Gradient boosting regression

1. Initialize F0 (x) = arg minγ

∑

n
i=1L(yi, γ )

2. Form = 1, 2, · · · ,M :
(1) For i = 1, 2, · · · ,N compute pseudo-residuals: rim =

−
[

∂L(yi , F(xi))
∂F(xi)

]

F(x)=Fm−1(x)

(2) Fit a base regression tree to the targets rim giving terminal
regions
Rjm, j = 1, 2, · · · , Jm

(3) compute multiplier γjm :
= arg minγ

∑

xi∈Rjm
L(yi, Fm−1 (xi) + γ )

(4) Update: Fm (x) = Fm−1 (x) +
∑Jm

j=1 γjmI (XǫRjm)

3. Output
f̂ (x) = fM(x)
end

new model in the direction of the negative gradient (Chen et al.,
2018b). The least square error was used as the loss function of
regression prediction, and the number of decisions was set to 7.
The sub-models are integrated as the final predictive model. The
algorithm flow is given in Algorithm 3.

K-Nearest Neighbor Model
K-nearest neighbor (KNN) randomly divides the matrix into a
training subset and a test subset, and returns the divided samples
and labels. The Euclidean distance between the samples was
calculated and sorted according to the distance (Abdel-Basset
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Algorithm 4: XGBoost

1. Training set D =
{(

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xm, ym
)}

2. Loss function MSE (mean square error):

L (θ) =
∑

i

(

yi −
¯
yi

)2

where, yi is the real value, ȳi is the predicted value.

3. For k= 1, 2, . . . , K do
(1) The definition of the predicted model:

ȳi =
K
∑

k=1
fk (xi) , fk ∈ F

K is the number of trees, F includes all possible trees, fk is a
specific tree,
fk (xi) represents the predicted value of xi on the kth tree.
(2) Minimizing objective function Lobj (θ) to acquire fk.

Lobj (θ) =
∑n

i L (θ) +
∑K

k=1 �
(

fk
)

�
(

fk
)

is the complexity of tree fk.
4. Output fk

e n-dimensional d

et al., 2020). The average value of the k (k= 4) samples closest to
the target to be predicted was selected as the regression prediction
value of the new sample.

XGBoost Model
XGBoost (XGB) algorithm improves the accuracy of the
algorithm by adding the number of decision trees (Lai et al.,
2020). The detailed process is shown as Algorithm 4. We used
the xgb.DMatrix function. The representationmethod of the data
in libsvm is a sparse matrix, which is very suitable for a large
number of features and sparse. When there are missing values
in the sample, XGB can automatically learn the split direction.

Deep Belief Network
Compared with traditional artificial neural networks, deep
learning-based frameworks with huge numbers of multiple
hidden layers maintain two-way fidelity of information
transferring between different levels of abstraction during model
learning (LeCun et al., 2015). Deep learning algorithms are
widely used in drug design research such as protein structure
prediction and disease diagnosis (Li et al., 2020; Senior et al.,
2020). Deep belief networks (DBN) is the foundation of deep
learning. In this study, we trained a quantitative prediction
model of the inhibitory activity value of Gal3 inhibitors using a
simple fully connected neural network with three hidden layers
(Figure 4). The activation function was configured as rectified
linear unit (ReLu) (Agarap, 2018). Furthermore, we introduce
the Dropout method was to reduce the amount of calculation
and increase the robustness of the model, by randomly pruning
some neural units in the hidden layer with a predetermined
probability (Zhang et al., 2018).

Molecular Dynamics Simulation
Molecular docking methods can narrow the scope of searches
from large compound databases. Combining the molecular
docking score and the target value predicted by artificial
intelligence-based models, four optimal compounds (6318, 5372,
22157, 7649) ligands were finally screened as candidates for MD
simulation. MD simulation can simulate and analyze the ligand-
receptor movement process, and obtain some key information
from the process to verify their stability (Song et al., 2019).
SwissParam was chosen as the tool for generating topology files
(Zoete et al., 2011), the mol2 file of candidates were submitted to
obtain topology files with parameters such as atom type, charge
and bonding conditions. The four candidate small molecules
were combined with the processed Gal3 receptor protein and
divided into four groups A, B, C, and D for MD simulation.
CHARMM27 force field was used to describe the receptor protein
(Sapay and Tieleman, 2011). Using TIP3P water molecule model,
adding water as the solvent of the complex system, while adding
NaCl and sodium ions to maintain the electrical neutrality of the
system. The steepest descent method was used to optimize the
energy of 5,000 steps to make the system reach near the lowest
point of energy. After the optimization, it entered the equilibrium
stage, and the positions of proteins and ligands needed to be
restricted. First, balance for 10 ns under the constant number
of atoms, constant volume and constant temperature (NVT)
ensemble, and the system temperature rose from 0 to 310K.
Then it was equilibrated for 10 ns under the constant number
of atoms, constant pressure and constant temperature (NPT)
ensemble, and the temperature was kept at 310K, which was used
to simulate the physiological environment in the human body.
The V-rescale method is used for temperature coupling, and the
Parrinello-Rahman method is used for pressure coupling. After
the equilibrium stage was over, the restriction was released, and
each combination was subjected to 100 ns MD simulation under
the NPT ensemble. In the simulation process, periodic boundary
conditions (PBC) were used in all directions to eliminate possible
boundary effects. The time step was set to 2fs, and the coordinate
file and the energy file were recorded every 2ps.

RESULTS AND DISCUSSION

Molecular Docking
Compounds from the TCM database were used for high-
throughput virtual screening against Gal3, and the top 10
compounds were shown in Table 1. According to the docking
scores of screenings, 6318, 5372, 7649, and 22157 (Table 1) were
selected for further analysis. 2D diagram of these molecules
in docking results showed potential interactions between key
residues and ligands, including hydrogen bonds, van der Waals,
salt bridge, Pi-Pi stacked, etc (Figure 5). These four TCM
compounds have a common property, a carboxylate group in
their chemical structures. Based on the docking poses of Gal3 in
Figure 6, the α, β-unsaturated carbonyl groups of 6318 formed
two hydrogen bonds (2.4 and 2.5 Å) with LYS176 and ARG144 of
Gal3, respectively. Themethoxy of 6318 formed a hydrogen bond
(2.2 Å) with ARG162. The carboxylate group of 5372 formed a
2.1 Å hydrogen bond with LYS176. 7649’s benzoic acid groups
interacted with LYS176 and ARG144 through three hydrogen
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FIGURE 4 | Deep Belief Network generated by applying dropout. The mean square error is used as the loss function. The neural network weights are updated by an

Adam optimizer with a learning rate of 0.0006. Rectified Linear Units and Dropout methods are utilized.

TABLE 1 | Docking score, predicted activity value of top ten TCM candidates, top two ZINC candidates and control ligand.

Index Name Predicted value (pIC50) Docking Score

ABR RR SVR EN RF GBR KNN XGB DBN

6318 Chinese Hawthorn 7.119 6.830 6.791 6.851 6.665 6.839 6.693 7.093 6.162 125.276

22157 Longbract Cattail Pollen 7.155 7.519 7.532 7.440 6.696 6.937 6.554 7.093 5.743 116.132

5372 Carnation 6.951 7.023 7.148 7.128 7.061 7.037 6.887 6.380 5.591 119.682

7649 Staphyleaceae 6.650 7.956 8.281 8.099 6.886 6.779 6.942 6.510 6.629 116.693

2246 Amur Adonis 6.951 6.873 6.967 7.012 6.816 7.002 6.938 6.380 5.537 117.959

14992 White Mulberry Fruit 5.658 4.901 4.750 4.933 5.768 6.088 5.838 5.929 2.528 114.298

2670 Java Brucea 5.793 4.861 4.774 4.926 5.849 6.444 6.257 5.598 3.829 106.878

8713 Whiteflower Leadword 7.143 7.048 7.057 7.083 6.726 6.937 6.552 7.211 2.044 110.309

22676 Common Threewingnut 6.076 8.094 7.947 7.853 5.767 5.723 6.177 5.866 3.541 110.031

210 Fresh Common Ginger 6.509 5.143 5.171 5.100 6.347 6.011 6.020 6.769 2.963 106.732

ZINC000019363537 Tetraethylenepentamine 5.301 4.622 4.630 4.538 5.319 5.133 5.742 5.438 0.611 102.451

ZINC000019364225 Trientine 5.818 5.455 5.276 5.313 5.577 5.836 5.759 5.598 0.529 90.915

Control J4N 6.180 6.838 6.902 6.899 6.542 6.034 6.979 6.510 4.962 56.381

bonds (1.7, 1.6, and 1.7 Å). The carboxylate group of 22157 had
H-bonding interactions with ARG144 and ASN160 (1.7 and 2.4
Å), and the β-ketone carboxyl group engaged with ASP148 and
LYS176 through two H-bonds. The hydrogen bond interaction of
the compounds with LYS176 and ARG144 indicated that these
were two key residues. The same experiment had been done with
ZINC database and the results showed that the binding affinity
was weaker than that from the TCM database.

Prediction Results of Models
During the whole validation process, the prediction accuracy
on testing sets is used to quantify the performance of different
prediction algorithms. Both Mean Square Error (MSE) and
square correlation coefficient (R-square) are set as the metric for
prediction accuracy. MSE is the expectation of the square of the

difference between the predicted value and the true value, which
is used to evaluate the predicted result. The smaller the MSE,
the stronger the model’s ability to fit the experimental data. R-
square represents the quality of a fit through changes in data. The
normal value range is 0 to 1. The closer to 1 indicates that the
variable of the equation (input feature) has a stronger ability to
explain Y (pIC50). Table 2 lists the R square and MSE values of
all prediction models.

Feature Selection
In this study, we obtained only 56 samples, but the feature
dimension is as high as 204. Theoretically, this can easily
lead machine learning models to get over-fitting. We used the
following methods to perform feature dimensionality reduction
to search for representative features. Firstly, Pearson correlation
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FIGURE 5 | Two-dimensional image of molecular docking results. (A) 6318, (B) 2007_5372, (C) 2007_7649, (D) 2007_22157.

coefficient has very good applicability in the characterization
of correlation. Figure 7A is a heat map of Pearson correlation
coefficients between all features, the deeper the red, the stronger
the correlation. It can usually be considered to have a strong
correlation when the correlation is >0.9, and parameters would
be eliminated. Then, principal component analysis (2D PCA and
3D PCA) achieved dimensionality reduction by integrating the
original single variable to obtain a new set of comprehensive
variables (Figures 8A,B). What’s more, the elements with sample
feature variance <0.05 were eliminated by calling the Variance
Threshold library function, and the Lasso function was used
to select the variables of the sample data based on the penalty
method. Finally, the original coefficients were compressed, and
the insignificant variables were directly discarded. Figure 7B
is a heat map of Pearson correlation coefficients between the
remaining 28 features after eigenvalue preprocessing. These 28
indicators were set as input features for all involved machine

learning models. Through a 5-fold cross-validation method, the
predictive ability of the sample model is evaluated. Correlation
between predicted values and actual values (pIC50) of ABR,
RR, SVR, EN, RF, GBR, KNN, XGB models were shown
in Figure 9.

RR and EN Model
For ridge regression, elastic net and lasso regression models,
model regularization is introduced to reduce the over-fitting, but
the method of restraining weight is different. The R-square of
the RR model and the EN model on the training sets were 0.87
and 0.85, respectively, but the R-square of the EN model on the
test sets was 0.84, which was significantly better than 0.79 of the
RR model (Figures 9B,D). This might be because only a few key
features are related to pIC50 in all features, and the RR model
retains those irrelevant features, which increases the fitting error.
In this study, the number of features was much larger than the
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FIGURE 6 | Docking pose of (A) 6318, (B) 2007_5372, (C) 2007_7649, (D) 2007_22157.

number of samples. The EN model could reduce the weight of
non-key features to zero, and only retained a few key features, so
it showed better fitting results.

ABR, RF, GBR, and XGB Model
The R-square of the ABR, RF, GBR, and XGB models on the
training sets were all higher than 0.9 (Table 2), which was better
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TABLE 2 | R-square and mean squared error (MSE) values of all trained models.

ABR RR SVR EN RF GBR KNN XGB DBN

R2_train 0.990 0.869 0.850 0.851 0.920 0.991 1.000 0.970 0.935

R2_test 0.923 0.795 0.848 0.837 0.848 0.859 0.770 0.901 0.900

MSE_train 0.002 0.056 0.064 0.064 0.036 0.001 0.000 0.014 0.025

MSE_test 0.027 0.087 0.064 0.069 0.052 0.049 0.080 0.034 0.045

FIGURE 7 | Feature ranking results are derived from the Pearson algorithm. (A) 204 features, (B) 28 features.

FIGURE 8 | The results of the n-dimensional principal component analysis. (A) 2D PCA, (B) 3D PCA.
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FIGURE 9 | Correlation between predicted value and actual value of machine learning model. Training set (blue dots) and testing set (red dots) are shown. The

confidence interval is 95%. (A) ABR, (B) RR, (C) SVR, (D) EN, (E) RF (F) GBR, (G) KNN, (H) XGB.
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FIGURE 10 | The changes in the R-square values of all models when the number of feature variables is increased.

than the RR and EN models. This was because they all used
integrated learning methods and used different strategies to
combine individual learners into a committee, which improved
the generalization ability of the model. Based on bagging
integration method, the prediction result of RF was obtained
by parallel calculation of all decision trees. It made the model
susceptible to large deviations due to the influence of individual
wrong decision trees, so the R-square on the training sets was
only 0.92 (Figure 9E). The R-square of the ABR and GBRmodels
on the training sets were both close to 1 (Figures 9A,F). This was
most likely because they used the Boostingmethod to upgrade the
weak learner to a strong learner and the sample size was relatively
small. ABR continuously optimized the sample weights of each
round of training, the trained model with the testing sets mean
square error (MSE) of 0.027 and R-square of 0.92 (Table 2), which
showed the best performance. XGB added a regular term to the
cost function that reduced the variance of the model and avoided
overfitting. With the help of the variable importance indicator
feature_importances_, we obtained the weight of the importance
of the XGB model variable. It could be seen that ALogP_MR and
ES_Count_aaaC were the top two eigenvalues. The distribution
of predicted values around actual values of the XGB model were
plotted in Figure 9H, and the R-square on the training sets and
the test sets reached 0.97 and 0.9, respectively.

SVR and KNN Model
Before ensemble learning and neural network algorithms showed
superior performance, SVM algorithm basically occupied a
dominant position, especially in the field of classification. For
Gal3 inhibitor studies, there were actually fewer samples available
for reference. Even so, since SVR basically did not involve
probability measurement and the law of large numbers, the
model still showed high prediction accuracy, and the R-square
on the test sets was close to 0.85 (Figure 9C). However, the
shortcoming of SVR was also exposed. When the feature
dimension was much larger than the number of samples, the SVR
model tended to ignore the correlation of mutual characteristics,
so the R-square on the training sets was only 0.85. After

repeated calculation and verification, the linear kernel was finally
selected, and the error tolerance was set to 0.39 to ensure
that the model had sufficient generalization ability to avoid
overfitting. The fitting curve of the KNN model was perfect,
and the R-square on the training sets had reached 1, which was
suspected of overfitting. The number k of favorable features was
filtered through the built-in function of Scikit-learn, and it was
verified that the model performs best when k was equal to 4.
When the independent variable dimension was small, the KNN
model could significantly reduce the error. But as the variable
gradually increased, the mean value of the dependent variable
corresponding to the closest value to the target might deviate
from the actual value exponentially. The above reasons caused the
model accuracy to be significantly reduced. The R-square on the
test sets was only 0.77, which was the worst performance among
all models (Table 2).

Deep Belief Network
The total number of sample data we obtained was only 56, far
less than the number of 204 feature dimensions. In view of this
situation, traditional machine learning models usually removed
most of the features during the preprocessing process. Although
a model with higher prediction accuracy could be obtained, this
actually consumed the credibility of the model. DBN could avoid
this problem as much as possible, allowing more features to
participate in training. Although it took thousands of times the
training time, the trained model had better prediction reliability
and more convincing. Using the Dropout method, the dropout
rates of the first, second and third layers of the neural network
were 0.4, 0.6, and 0.3, respectively, and a total of 500 modeling
attempts were made. The R-square of the best trained model on
the training sets and test sets were 0.94 and 0.9, respectively. We
had tried in the previous machine learning model. When the
parameter threshold was set to 0.01 and alpha was set to 0.001,
59 features are retained. However, the accuracy of all models was
significantly reduced. The R-square on some model test sets was
even lower than 0.5 (Figure 10). Through comparison, it could
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FIGURE 11 | Changes of RMSD and total energy in molecular dynamics simulation. (A) RMSD changes of complex, (B) RMSD changes of protein, (C) RMSD

changes of ligands, (D) Total energy changes between protein and ligands.

be found that the DBN model still showed high accuracy under
low sample set and high feature dimension.

Molecular Dynamics Simulation
To verify the binding stability of the receptor-ligand complexes,
we performed molecular dynamics simulations in 100 ns with
Gromacs 2018 software (Kutzner et al., 2019). Unfortunately,
5372 was detached from the binding site during the molecular
dynamic simulation, although it showed good results in the
molecular docking and AI-based models prediction process.
The escape of 5372 indicated that its binding stability to Gal3
was poor. The RMSD was calculated to evaluate the deviation
of the structure from the original starting structure over the
course of the simulations. In the RMSD results (Figures 11A–C),
the RMSD values of the three candidates and Gal3 complexes
shown an upward trend at initial 10 ns, then tended to stabilize
with a relatively flat curve and maintained around 0.5–0.6 nm.
The protein RMSD change curve is similar to the complex
RMSD change curve. Based on ligand RMSD, 6318 had higher
fluctuation rate than other candidates, which may explain
high ligand gyration value. The RMSD results suggested that
candidates 7649 and 22157 have higher binding stability to Gal3
protein. Besides, the total energy of simulation systems in the
100 ns process was calculated to analyze the energy changes in
the complexes. And the results shown that the energy of protein-
ligand complexes was stable and it had been maintained between

about −510 000 to −500 000 kJ/mol (Figure 11D). The radius
of gyration could give a measure of the compactness of the
structures, and can also give ameasure of the atomicmass relative
the molecular center mass. As shown in Figures 12A,B, protein
gyrate and ligands gyrate were stable in general during the MD
simulation process, and the gyrate of 6318 was higher than other
two ligands (include target protein system), which was consistent
with the RMSD results. MSD revealed the movement of atoms
from the initial position to the final stage of MD simulation,
indicating the movement trend of each ligand or protein. The
low and stable MSD value of the ligand shows the stability of
the binding, while the decrease of the MSD value indicates that
the ligand may be close to the binding pocket. The extremely
high MSD value and the increasing MSD value mean the ligand
has a tendency to escape. In the process of the whole simulation
(Figures 12C,D), although the MSD values of Gal3 and three
ligands both increased, the changes of all measured MSD values
maintained in a low range. It was worth noting that 6318 obtained
much higher ligand MSD value compared to other two ligands,
which indicates the ligand 6318 have a trend of escaping from
the binding pocket. From the SASA calculated results, we can
analyze the hydrophilicity and hydrophobicity of the simulation
system. The solvent accessible area of Gal3 decreased significantly
from 0 to 15 ns, and then remained to a relatively stable area
(Figure 12E). Meanwhile, as shown in Figure 12F, the SASA
values of all ligands were very stable in the simulation process.
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FIGURE 12 | Gyrate, MSD, and SASA changes of proteins and ligands in molecular dynamics simulations. (A) Gyrate of protein, (B) gyrate of ligands, (C) MSD of

protein, (D) MSD of ligands, (E) SASA of protein, (F) SASA of ligands.

This can further indicate the stability of the complex systems.
Finally, the binding postures of three ligands and target protein
in the initial and final conformations were displayed in Figure 13.
The ligands rotated in the same pocket but not detached from the
target protein.

CONCLUSION

The new discovery of Gal3 in the pathogenesis of HD provides a
new target and new method for ND treatment. In order to find
potential inhibitors of Gal3, we have completed the following
work and obtained satisfactory results. Using molecular docking
methods, we initially screened a batch of small molecules with

relatively stable docking from a large drug molecule library.
Multiple artificial intelligence-based models were constructed,
and known Gal3 inhibitors were used as sample sets to train
the models. From the performance parameters of the model,
all models achieved high overall accuracy sensitivity. The R-
square of XGBoost model on the test sets was higher than
other algorithms, and there was no overfitting on the training
sets. We not only screened from the TCM database, but also
used the ZINC database to do the same. The results showed
that the molecules from the TCM database performed better
than the ZINC database in terms of binding stability and
pIC50 value predicted by AI models. Comparing the prediction
results of all models, we completed further screening and
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FIGURE 13 | Changes of the binding posture during MD in microenvironment. Although the conformation of the ligands changed, the position where the ligands bind

to the protein pocket does not change. (A) 6318, (B) 2007_7649, (C) 2007_22157.

narrowed the candidate range. Finally, through MD simulation,
we further verified the stability of the complexes, the final
candidate ligand and the target protein complexes showed
stable binding throughout the simulation time. Combining all
experimental results, the active ingredients 1,2-Dimethylbenzene
and Typhic acid contained in Crataegus pinnatifida and Typha
angustata may become the new drug formulation for ND
treatment. We provide a new strategy with applying AI-based
methods to the drug screening process, which can greatly
reduce the cost of new drug development. Screening drug
molecules from the TCM database is an innovation and
beneficial supplement to screening from the general database. In
summary, this study has explored a highly accurate integrated
architecture to reduce the drug screening process. With the
application of artificial intelligence, medical practitioners exclude
candidates with low probability based on prediction results,
which reduces the risk of downstream decision-making for better
resource planning and allocation. The proposed integration
method shows high accuracy under different algorithm models,
indicating that artificial intelligence-based drug development has
application prospects. Artificial intelligence-based application is
an improvement and supplement to the existing traditional drug
screening based on molecular interaction relationships.
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