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Keywords.

Human cases of avian influenza A
(H5N1) virus infection were first docu-
mented in Hong Kong in 1997 [1, 2];
the virus reemerged in 2003 to spread in-
tercontinentally and become entrenched
in poultry in other parts of Asia and
Egypt. Sporadic human cases with an
estimated case fatality rate close to 60%
continue to occur [3]. Influenza A(H1N1)
pdm09 virus first emerged in 2009 as a
novel swine-origin strain that rapidly led
to a pandemic [4] and remains a common
circulating strain. Human infections with
the novel avian influenza A(H7N9) virus,
first reported in China in March 2013 and
subsequently declining after closure of
live poultry markets, have reemerged
since October 2013 in mainland China
and spread to Hong Kong in December
2013 [5]. All 3 types of influenza viruses
continue to pose significant threats to
human health globally.
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The retrospective cohort study pub-
lished by Wang et al in this issue of Clinical
Infectious Diseases [6] compares the demo-
graphic features, risk factors, presenting
clinical characteristics, and outcomes
of patients hospitalized in China and
Vietnam with laboratory-confirmed avian
A(H7N9), avian A(H5N1), or A(HIN1)
pdm09 virus infection. The authors have
combined and compared data derived
from selected studies with somewhat dif-
fering designs and time frames. For exam-
ple, data from Vietnamese patients with A
(HIN1)pdmO09 or with A(H5N1) infec-
tion from April 2009 onward are not in-
cluded [6], and population-based data
on baseline comorbidities were not avail-
able for Vietnam. Such disparities might
have resulted in populations with differ-
ences in variables of interest being com-
bined or missing for analysis. Secular
changes in case management are also
potential confounders with regard to out-
comes such as intensive care unit admis-
sion and mortality. In the current report,
the frequency of mechanical ventilation
was slightly higher in patients with A
(H7N9), all of whom were admitted with-
in the past year, than in A(H5N1) pa-
tients, whereas the case fatality rate was
substantially higher for A(H5N1).

The analysis of risk factors compares
their proportions in the general Chinese
population to those in the hospitalized

influenza patients. The findings confirm
prior studies highlighting the older age
and male predominance of A(H7N9) pa-
tients [7], the broad similarities in clinical
and laboratory features of severely ill A
(H7N9) and A(H5N1) patients [8, 9],
and the findings that obesity, asthma, and
chronic obstructive pulmonary disease
are significant risk factors in hospitaliza-
tion for A(HIN1)pdmO09 virus infections
[4]. The finding that chronic heart disease
was associated with an increased risk of A
(H7N9) hospitalization is unsurprising,
given the older age of these patients and
chronic heart disease’s strong association
with seasonal influenza complications,
although only 11% of patients with A
(H7N9) reportedly had chronic heart dis-
ease [6]. Recent retrospective analyses ex-
amining the effects of influenza-specific
interventions have highlighted the impor-
tance of influenza infections as predispos-
ing to serious cardiovascular events. Both
seasonal influenza vaccine receipt [10] and
neuraminidase inhibitor treatment for
clinically diagnosed influenza [11, 12]
have been associated with significant re-
ductions in subsequent acute cardiac
and stroke diagnoses.

Both viral and host factors contribute
to disease severity and outcomes across
influenza subtypes. The younger age, in-
frequent presence of comorbidities (11% of
cases), and higher mortality of A(H5N1)
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patients (55%) presumably reflects the
greater intrinsic virulence of A(H5N1) vi-
ruses, although these viruses also show
substantial genetic diversity and differenc-
es in virulence and treatment response in
ferrets [13] and perhaps in patients [14].
Although the absolute risk of severe dis-
ease is thankfully much lower for A
(HIN1)pdmo09 infection compared with
A(H5N1) and A(H7N9), younger age
was also a risk factor for increased likeli-
hood of hospitalization and mortality, rel-
ative to seasonal influenza, during the first
year of the pandemic [15]. Of note, the pat-
tern of excess deaths in those aged <65
years may continue up to a decade after in-
troduction of a pandemic strain [16], con-
sistent with recent reports of severe A
(HIN1)pdmO09 virus infections in the
United States (http://emergency.cdc.gov/
HAN/han00359.asp) and elsewhere.

One counterintuitive observation in
the current report was an apparent pro-
tective effect of smoking on hospitaliza-
tion across all 3 virus subtype cohorts.
One possible hypothesis is that nicotine-
related anti-inflammatory effects might
alter influenza severity in humans. Chron-
ic infusion of nicotine at doses chosen to
model plasma levels of those found in
smokers has been associated with re-
duced lung inflammation and increased
survival, but also increased viral replica-
tion in influenza-infected mice [17]. In
contrast, smoking has been linked to in-
creased influenza severity in most earlier
epidemiologic studies [18-20], although
not in all [21], and also in reports from
the 2009 pandemic [22-24]. In one mu-
rine model of influenza, chronic cigarette
smoke exposure was associated with
higher lung viral loads and worse disease,
in part mediated by reductions in pulmo-
nary T-cell interferon-y production [25].
Another study found greater pulmonary
inflammation and mortality, although
not viral replication, in influenza-infected
mice given short-term exposures to
cigarette smoke compared with nonex-
posed mice [26]. Smoking is a risk factor
associated with community-acquired

pneumonia [20], underlying cardiopul-
monary conditions such as chronic bron-
chitis, and often with male sex, which
may account in part for the somewhat
higher prevalence (25%) of smoking
among the A(H7N9) patients compared
to the A(H5N1) and A(HIN1)pdmO09 pa-
tients in the current report [6]. Although
further data on the interactions of tobac-
co smoke, its constituent components,
and its associated health consequences
with influenza infection are needed,
smoking cessation remains a healthcare
priority for many reasons.

Another key issue, not addressed in the
current paper, is the presence of host ge-
netic factors that may be related to influ-
enza disease susceptibility and/or severity
[27]. One specific allele in the interferon-
induced transmembrane 3 (IFITM3) gene
has been linked to increased severity of A
(HIN1)pdm09 virus infections [28]. An
estimated 25% of the Han Chinese popu-
lation is homozygous for this allele. The
CC genotype of the single-nucleotide
polymorphism (SNP) rs12252-C allele
has been found in 69% of Chinese pa-
tients with severe influenza A(HIN1)
pdmo09 virus infection compared with
25% in those with mild infection. Specif-
ically, the CC genotype was estimated to
confer a 6-fold greater risk for severe in-
fection than the CT and TT genotypes
[29]. Interestingly, Wang et al have iden-
tified the rs12252-C genotype as a prima-
ry genetic correlate of severe A(H7N9)
pneumonia and excessive proinflamma-
tory mediator blood levels [30]. Another
recent study has shown that an allele of
rs1130866, a SNP in the surfactant pro-
tein B gene (SFTPB), was associated
with severe influenza A(HIN1)pdmo09
infection in patients in Hong Kong in
whom the CC genotype was overrepre-
sented in comparison to the general Han
Chinese population (odds ratio = 3.232)
[31]. The carriage frequencies of alleles re-
lated to human leukocyte antigen binding
efficiencies to influenza epitopes and T-
cell responses have also been linked to A
(HIN1)pdmo09 virus mortality [32]. The

frequency of a 32-bp deletion in the
CCR5 gene (CCR5A32) was reported as
unexpectedly high at 56% in Caucasian
patients with critical illness caused by in-
fluenza A(HIN1)pdm09 [33]. The strong
familial clustering of A(H5NI1) cases
among blood relatives also suggests under-
lying host genetic susceptibility [34]. Stud-
ies of sufficiently large numbers and
clearly defined phenotypes such as severe
viral pneumonia will likely find other host
genetic determinants that contribute to in-
fluenza severity and potentially might lead
to new therapeutic options.

In addition to age and presence of co-
morbidities, other factors including the
type of virus exposure and initial inocu-
lum size, frequency of bacterial coinfec-
tions, and timely disease recognition
and access to quality care are likely im-
portant factors in affecting both clinical
presentation and ultimate outcome in in-
fluenza. Retrospective analyses show that
the time from symptom onset to antiviral
treatment had a substantial impact on
mortality in hospitalized A(HIN1)pdm09
patients in China [35] and elsewhere and
also in A(H5N1) patients [14]. In this re-
gard, the emergence of oseltamivir resis-
tance during therapy in some critically ill
patients has been linked to poor outcomes
during A(H5N1), A(HIN1)pdm09, and,
recently, A(H7N9) infections [36]. Access
to high-quality critical care is certainly es-
sential to survival, but some interventions
might contribute to worse outcomes. Ret-
rospective analyses suggest that the ad-
ministration of systemic corticosteroids,
a commonly used intervention given for
influenza-associated pneumonia and
acute respiratory distress syndrome, ap-
pears to be associated with increased risks
of secondary infections and mortality [37].

In summary, A(H5N1), A(HINI1)
pdm09, and A(H7N9) continue to be
the major influenza infections of global
concern. This report also reminds us of
the health threats posed by other emer-
gent influenza viruses, again reinforced
by the recent finding of a lethal avian
HI10N8 subtype infection in an older
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Chinese woman [38, 39]. Careful analysis

of those affected by emergent influenza vi-

ruses, as in the report by Wang et al [6], is

essential to improving risk assessment and

case detection and management.
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