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Uterine corpus endometrial carcinoma locally infiltrates
numerous immune cells and other tumor immune microenvi-
ronment components. These cells are involved in malignant
tumor growth and proliferation and the process of resistance
toward immunotherapies. Here, we aimed to develop a tumor
immune microenvironment-related prognostic signature for
high-risk grade III endometrial carcinoma based on The Can-
cer Genome Atlas. The signature was systematically correlated
with immune infiltration characteristics of the tumor micro-
environment. The seven-gene Riskscore signature was robust
and performed well in training, testing, and Gene Expression
Omnibus-independent cohorts. A nomogram comprising the
gene signature accurately predicted patient prognosis, with
our model performing better than other endometrial cancer-
related signatures. Analysis of the IMvigor210 immuno-
therapy cohort revealed that subgroups with a low Riskscore
had a better prognosis than subgroups with a high Riskscore.
Subgroups with a low Riskscore exhibited immune cell infil-
tration and inflammatory profiles, whereas subgroups with a
high Riskscore experienced progressive disease. The receiver
operating characteristic curve indicated that risk score, neoan-
tigen, and tumor mutation burden models together accurately
predicted treatment response. Taken together, we developed
a tumor microenvironment-based seven-gene prognostic
stratification system to predict the prognosis of patients
with high-risk endometrial cancer and guide more effective
immunotherapy strategies.

INTRODUCTION
Uterine corpus endometrial carcinoma (UCEC) is one of the three
most common gynecological malignancies and the fourth most com-
mon cancer type affecting women in developing countries.1 In 2015,
the number of new endometrial cancer cases in China was expected to
be 63,400, with an estimated death toll of 21,800.2 Approximately
three- quarters of the patients with UCEC are diagnosed early, with
a 5-year survival rate of more than 70%.3–5 However, the prognosis
of patients with high-risk UCEC, including FIGO (International
Federation of Gynecology and Obstetrics) grade III endometrioid
cancer, clear cell carcinoma, serous carcinoma, and mixed adenocar-
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cinoma, is still poor in addition to the risk of metastasis and recur-
rence being very high. The 5-year survival rate is only 17%.6–9

The tumor microenvironment (TME) is comprised of tumor cells,
stromal cells, endothelial cells, immune cells, and extracellular matrix
secreted by tumor-associated cells. TME components interact with
tumor cells to regulate their growth and development.10

In recent years, increasing evidence has shown that the occurrence,
development, and metastasis of malignant tumor cells are all related
to the TME.11–13 The tumor immune microenvironment (TIME), as
part of the TME, plays an important role in tumor progression.14 In
addition, it suppresses immune cells, allowing for immune evasion
and tolerance of tumor cells, which in turn affects tumor occurrence
and progression. Given the abundance of immune cells and cytokines
found in UCEC,15 it can be inferred that the TME plays a major role
in UCEC development and immunotherapy response.

In this genomic era, a large number of genome-sequencing technolo-
gies and data have emerged,16 and researchers began to focus on
the prognosis prediction of UCEC using The Cancer Genome
Atlas (TCGA)-UCEC cohort.17–20 Wang et al.17 constructed an
autophagy-related long-noncoding RNA signature to predict the
prognosis of UCEC. Jiang et al.18 and Liu et al.19 constructed a glycol-
ysis-related gene signature to predict the prognosis of UCEC. Howev-
er, these studies are limited to the analysis of specific genes and prog-
nosis in all TCGA-UCEC samples and lack external verification.
Therefore, the prediction of the prognosis of high-risk UCEC accu-
rately remains a challenge.

In this study, we included all high-risk grade III tumor samples in
TCGA-UCEC, comprising mixed-type, serous, and endometrioid
e Authors.
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Identification of molecular subtype based on TIME genes

(A) NMF cluster consensus map. (B) OS curve of UCECmolecular subtypes. (C) PFS curve of UCECmolecular subtypes. (D) Comparison of molecular subtypes based on 22

immune cell types. (E) Comparison of MCPcounter immune scores amongmolecular subtypes. (F) Comparison of ESTIMATE immune scores amongmolecular subtypes. (G)

Heatmap for the comparison of three immune scores among molecular subtypes.
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endometrial adenocarcinoma (SEA and EEA, respectively). Then, an
immune prognostic signature of grade III UCEC was constructed
based on TIME genes and validated in different cohorts. In addition,
we evaluated the prognostic merit of the seven-gene signature for
immunotherapy response. The current findings revealed that the
gene signature could be used to evaluate the prognosis of patients
with grade III UCEC and guide clinical decision-making, including
immunotherapy-related choices.

RESULTS
Identification of two molecular subtypes based on TIME genes

After deduplication and filtering, the expression profile of 1,356 tu-
mor immune-related genes in TCGA was extracted and analyzed
by univariate Cox analysis (Table S1), and 195 genes related to the
prognosis of UCEC were obtained (Table S2; p < 0.05). Non-negative
matrix factorization (NMF) helps extract the biological correlation
coefficients of the data in the gene expression matrix and obtain the
internal characteristic structure of the data and finally groups the
samples. This approach is widely used in the molecular classification
of cancers at present. With the use of the NMF algorithm, the optimal
number of subtypes was two (Figures 1A, S1A, and S1B). The C2 sub-
type has a significantly worse prognosis than C1 in terms of overall
survival (OS) and progression-free survival (PFS) (Figures 1B and
1C; log-rank p < 0.01). The R software package ESTIMATE was
used to evaluate StromalScore, ImmuneScore, and ESTIMATEScore
between C1 and C2 subtypes. Further, MCPcounter was used to
evaluate 10 immune cell types, and CIBERSORT was employed to
evaluate 22 immune cell types. ESTIMATE and MCPcounter results
revealed that the tumor immune infiltration degree of the C1 subtype
was mostly higher than that of the C2 subtype (Figures 1E and 1F).
CIBERSORT results indicated that M1 macrophages, CD8+ T cells,
and follicular helper T cell abundance in the C1 subtype were signif-
icantly higher than in the C2 subtype (Figure 1D). Furthermore, the
distribution of tumor-infiltrating immune cells (TIICs) between the
two subtypes, as evaluated by the three methods, was nearly the
same.We, therefore, speculated that the C1 subtype may have a better
response to immunotherapy. The heatmap of TIIC distribution for
the two subtypes is shown in Figure 1G.

Further, we compared the distribution of histopathological subtypes’
age, FIGO stage, and survival between the two molecular subtypes.
The results showed that the C1 subtype is dominated by EEA samples,
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Table 1. TCGA training set and validation set sample information

Clinical features TCGA-UCEC train TCGA-UCEC test p

OS

0 119 124
0.5853

1 37 32

Stage

I 81 84

0.6354
II 19 15

III 46 42

IV 10 15

Age

%65 75 78

0.9436>65 80 77

Unknown 1 1
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whereas in the C2 subtype, most samples are SEA (Figure S1C). The
survival rates for the two subtypes were significantly different, with
the mortality rate of the C2 subtype being higher (Figure S1D). The
age ratios of the two subtypes were significantly different, as the pro-
portion of middle-aged patients in subtype C2 was higher (Fig-
ure S1E). There was also a significant difference in the proportion
of FIGO stages between the two subtypes, as the proportion of pa-
tients with FIGO stage II, III, and IV was higher in the C2 subtype
than in the C1 subtype (Figure S1F).

Identification of differentially expressed genes (DEGs) between

subtypes

As previously described, we obtained 883 DEGs (Table S3), and the
volcano map of upregulated and downregulated DEGs between the
C1 and C2 subtypes is shown in Figure S1G. Among them, 443 genes
were upregulated, whereas 440 genes were downregulated.We selected
the top 100 genes with the most significant upregulation or downregu-
lation to construct a heatmap, which is shown in Figure S1H. DEGs be-
tween C1 and C2 have evident distribution characteristics.

Construction of a prognostic multi-gene signature based on

TIME subtype

TCGA cohort was divided into training and testing cohorts, with 156
samples each (Table 1). Based on the training cohort, the univariate
Cox proportional hazard regression model was employed to identify
prognostic DEGs between the subtypes with the threshold value of p <
0.05. Finally, 42 prognostic hub genes were obtained (Table S4). These
genes may serve as potential TIME-related characteristic genes.

As an excessively large number of genes are not conducive to clinical
detection, we further narrowed the range of immune-related genes.
We employed the least absolute shrinkage and selection operator
(Lasso) regression analysis, and the resulting change trajectory of
each independent variable is shown in Figure 2A.With the gradual in-
crease of lambda, thenumberof independent variable coefficients grad-
ually increased to zero. Five-fold cross-validation was used to build the
296 Molecular Therapy: Oncolytics Vol. 22 September 2021
model, and the confidence interval under each lambda is shown in Fig-
ure 2B, indicating that when log(lambda) = �3.65, the model was
optimal. Thus,we selected18 genes at lambda=0. 0262 as the candidate
genes. As described in Materials and methods, in order to obtain the
best fit of the model, the Akaike information criterion (AIC) method
was then employed from which we obtained seven genes, namely
DRAM1, TNFRSF14, SCGB2A1, EMX2, DNER, DAPL1, and inter-
feron-induced protein with tetratricopeptide repeats sequence 1
(IFIT1). The seven-gene signature estimated Riskscore (RS) is as fol-
lows: RS =�0.621 $DRAM1� 0.343 $ tumor necrosis factor receptor
(TNFR)SF14� 0.106 $ SCGB2A1� 0.433 $ EMX2 + 0.259 $DNER +
0.248 $ DAPL1 + 0.344 $ IFIT1.

To obtain a fixed grouping threshold between different cohorts, we
converted RS to standard score; the samples with RS greater than
zero are divided into high-risk groups (HRGs), whereas those with
less than zero are divided into low-risk groups (LRGs). The Ka-
plan-Meier (KM) curve is shown in Figure 2C. Seventy-one samples
were added into the HRG and 85 samples into the LRG. There was a
significant difference in survival between the HRG and LRG (p <
0.0001). R software package timeROC was used to analyze the prog-
nostic efficiency of the RS. The area under the curves (AUCs) of gene
signature for 1-year, 3-year, and 5-year survival were 0.79, 0.82, and
0.89, respectively (Figure 2D).

Internal and external validation of the robustness of the

signature

To determine the robustness of the signature, internal cohorts (TCGA
testing and TCGA-UCEC), along with an external cohort, named
Gene Expression Omnibus (GEO): GSE119041, were used for valida-
tion. The RS was calculated using the same formula as the training
cohort. Subsequently, the samples are divided into HRG and LRG ac-
cording to the previous step.

Significant prognostic differences were observed between the HRG
and LRG from TCGA testing cohort (Figure 3A; p < 0.01). The
AUCs of 1-year, 3-year, and 5-year survival in TCGA testing cohort
were 0.62, 0.71, and 0.69, respectively (Figure 3B).

In the entire TCGA-UCEC cohort, significant prognostic differences
were also observed between the HRG and LRG (Figure 3C; p < 0.01).
The AUCs of 1-year, 3-year, and 5-year survival in TCGA-UCEC
cohort were 0.72, 0.77, and 0.80, respectively (Figure 3D).

In the GEO: GSE119041 cohort, the prognosis of the HRG was signif-
icantly worse than that of the LRG (Figure 3E; p < 0.05). Lastly, the
AUCs of 1-year, 3-year, and 5-year survival in the GEO:
GSE119041 cohort were 0.76, 0.79, and 0.78, respectively (Figure 3F).
These results indicated that our model performed robustly in
different cohorts.

Performance of RS with regard to clinical features

The RS constructed by the seven-gene signature could effectively
distinguish between the HRG and LRG with regard to age and
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Figure 2. Analysis of Lasso regression

(A) The changing trajectory of each independent variable

(the abscissa represents the corrected lambda, and the

ordinate represents the coefficient of the independent

variable). (B) The log value of the independent variable

lambda (the abscissa represents the confidence interval

of each lambda, and the ordinate represents errors in

cross validation). (C) The KM curve of the seven-gene

signature-based stratification in TCGA training cohort. (D)

The 1-, 3-, and 5-year ROC curve based on seven-gene

signature stratification.
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FIGO stage (Figures 4A�4D; p < 0.05). The RS of the group over 65
years old was higher than that of the group%65 years old (Figure 4E).
In addition, the advanced FIGO stage had a higher RS than the early
stage (Figure 4F). Between the molecular subtypes, the RS of the
poor prognosis C2 subtype was higher than the C1 subtype (Fig-
ure 4G). These findings indicated that our signature had a good ability
to predict prognosis based on different clinical characteristics.

We further explored the relevant pathways that characterize the
different clinical features of RS. R software package gene set variation
analysis (GSVA) was used to perform gene set enrichment analysis
(GSEA) for each sample, then calculated the correlation between bio-
logical pathways and the RS, and selected the top 22 pathways with a
correlation greater than 0.3 for visual display (Figure 4H). It is evident
that INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUC-
TION, T_CELL_RECEPTOR_SIGNALING_PATHWAY, and NAT-
URAL_KILLER_CELL_MEDIATED_CYTOTOXICITY tumor im-
mune-related pathways are negatively correlated with RS (Figure 4I).
Construction and evaluation of nomograms comprising the

signature

The independence of the seven-gene signature in clinical application
was evaluated by univariate and multivariate Cox regression analyses.
The results revealed that RS was significantly correlated with prog-
nosis in both the univariate model (hazard ratio [HR] = 3.80, p <
Molecular The
0.001) and multivariate model (HR = 3.60, p <
0.001) (Figures 5A and 5B), indicating that the
seven-gene signature had a good clinical predic-
tive value.

Based on the results of multivariate Cox anal-
ysis, significant clinical features such as FIGO
stage and RS were combined to construct a
nomogram (Figure 5C). The nomogram
comprising the RS and FIGO stage proved use-
ful to predict survival.

Calibration curves were used to visualize the per-
formance of 1-, 3-, and 5-year nomograms. In
each case, the 45� line represents the best predic-
tive ability. The calibration results indicated that the nomogram per-
formed well (Figure 5D). The AUC of the 1-, 3-, and 5-year nomo-
grams was larger than that of the other clinical variables (Figures
5E�5G). Decision curve analysis (DCA) was used to assess the validity
of the signature, and the nomogram showed the greatest net benefit
(Figures 5H�5J). These results suggested that the nomogram is better
for predicting the survival of patients with grade III UCEC than using a
single clinical factor. Thus, itmay be useful during the clinical decision-
making process and for choosing individualized treatments.

The seven-gene signature performed better than others in

prognostic prediction

To determine whether our seven-gene signature had a superior pre-
dictive ability for TCGA-UCEC cohort, we compared it with four
published prognostic signatures, namely, a nine-gene signature
(Jiang et al.21), a seven-gene signature (Liu et al.22), a six-gene
signature (Wang et al.23), and another nine-gene signature (O’Mara
et al.24). To make signatures comparable, we calculated the RS of
each UCEC sample in all TCGA cohorts by the same method
and converted the RS according to the previous methods in the
four signatures. All four signatures could effectively divide patients
into two subgroups with significantly different prognoses (Figures
6A�6C and 6G). However, receiver operating characteristic
(ROC) analysis revealed that the AUC values of the four signatures
for 1-, 3-, and 5-year survival were lower than those of our model
(Figures 6D�6F, and 6H). The restricted mean survival (RMS)
rapy: Oncolytics Vol. 22 September 2021 297
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Figure 3. Validation of the seven-gene prognostic signature

(A) The OS curve of seven-gene signature classification in TCGA testing cohort. (B) The 1-, 3-, and 5-year ROC curve based on seven-gene signature stratification. (C and D)

The OS curve of seven-gene signature-based stratification and 1-, 3-, and 5-year ROC curve of TCGA-UCEC cohort. (E and F) The OS curve of the seven-gene signature-

based stratification and the 1-, 3-, and 5-year ROC curve in the GEO: GSE119041 cohort.
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package was used to calculate the C-index of all prognostic signa-
tures. Our model had the highest C-index at 0.72 (Figure 6I). These
findings highlighted the superior predictive performance of our
TIME gene signature.

The seven-gene signature effectively predicted the efficacy of

immunotherapy

The identification of novel predictive markers is essential for effective
immunotherapy. We obtained an immunotherapy cohort (IMvi-
gor210) to explore whether the seven-gene signature could predict
the benefit of immunotherapy.25 The IMvigor210 cohort contains a
gene expression profile for patients with or without beneficial re-
sponses to anti-programmed death ligand 1 (PD-L1) immunotherapy
for metastatic urothelial carcinoma (MUC). The KM curve indicated
that the prognosis of HRG was worse than that of patients with LRG
(Figure 7A). The ROC curve indicated that the combination of the RS,
neoantigen (NEO), and tumor mutational burden (TMB) models
with logistic regression could predict treatment response with 83%
accuracy, which was higher than that of NEO (AUC = 0.62) or
TMB (AUC = 0.56) alone (Figure 7B). MCPcounter was used to
calculate the immune cell scores of IMvigor210 samples. The results
revealed that RS was negatively correlated with TMB and NEO, as
well as T, natural killer (NK), and B cell scores (Figure 7C).

The violin map further indicated that the RS was significantly
higher for patients with stable diseases (SD) or progressive dis-
298 Molecular Therapy: Oncolytics Vol. 22 September 2021
eases (PD) than for those with complete responses (CR) or a
partial response (PR) (Figure 7D). The proportion of responder
(CR/PR) in the LRG was significantly higher than that in the
HRG (31% versus 14%) (Figure 7E). Therefore, patients in the
LRG may benefit more from immunotherapy than those in the
HRG.

We further analyzed RS-related immune activity and evaluated its
association with seven clusters (hematopoietic cell kinase [HCK],
immunoglobulin G [IgG], interferon, lymphocyte-specific protein
tyrosine kinase (LCK), major histocompatibility complex class I
[MHC class I], major histocompatibility complex class II [MHC
class II], and signal transducer and activator of transcription 1
[STAT1]) representing different inflammatory and immune
response functions.26 High RS was negatively correlated with
HCK, LCK, MHC class II, and MHC class I and positively corre-
lated with the interferon cluster (Figure 7F). Due to the close rela-
tionship between the seven-gene signature and immune-related
biological pathways, we further explored the relationship between
risk score and 22 immune cell types. The estimated scores of
different immune cell types between the HRG and LRG were calcu-
lated via CIBERSORT.

The immune cell landscape differed between the HRG and LRG (Fig-
ures 7G, 7H, S2A, and S2B). The abundance of CD8+ cells and M1
macrophages in the LRG was significantly higher than that in the
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Figure 4. KM survival curves in different clinical subgroups stratified based on the seven-gene risk model

(A) Age >65 years. (B) Age%65 years. (C) FIGO stages I + II. (D) FIGO stages III + IV. (E) Correlation diagram between risk score and age. (F) Correlation diagram between risk

score and FIGO stage. (G) Correlation diagram between risk score and subtype cluster. (H) The top 22 pathways with RS correlation greater than 0.3. (I) Heatmap of the

relationship between pathways and RS; the horizontal axis represents the sample, and the RS increases from left to right.
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HRG, suggesting that the TME of HRG was immunosuppressive,
which may mechanistically explain the poor prognosis of this patient
group.

DISCUSSION
UCEC is a heterogeneous malignancy with distinct molecular charac-
teristics. The prognosis of high-risk endometrial cancer is poor, and
the treatment is limited to traditional surgery, radiotherapy, and
chemotherapy, the efficacy of which is not satisfactory. Grade III
UCEC is a common histological subtype of high-risk endometrial
cancer, which makes further exploring its characteristics greatly sig-
nificant to develop improved clinical diagnosis, treatment, and prog-
nosis approaches. The TIME is instrumental in tumor development
and treatment response, especially in immunotherapy. As researchers
have shown that numerous immune cells and cytokines are present in
endometrial tumors, the anti-tumor immune response may be
enhanced via immunotherapy.27 However, the relationship between
patient prognosis and TIME characteristics in endometrial cancer re-
mains poorly understood. The present work focused on grade III
endometrial cancer.
A significantly greater abundance of M1 macrophages and CD8+

T cells was observed for C1 than for C2. Activated M1 macrophages
suppress tumor growth by releasing pro-inflammatory factors,
inducing interstitial damage, and normalizing tumor blood ves-
sels.28–30 In contrast, M2 tumor-associated macrophages inhibit the
anti-tumor immune response by releasing anti-inflammatory cyto-
kines and angiogenic factors. Interestingly, exosomes derived from
M1 macrophages repolarize the M2 tumor-associated macrophages
into the M1 phenotype, thus enhancing immunotherapy efficacy.31

Within the tumor immune system, CD8+ T cells are activated by
both dendritic cells and costimulatory molecules, which subsequently
induces them to attack tumor cells.32 Blocking the programmed cell
death protein 1 (PD-1)-PD-L1 axis can enhance the CD8+ T cell
response by preventing PD-L1+ tumor cell-mediated CD8+ T cell sup-
pression.33 Thus, we speculated that the C1 subtype may have a better
response to immunotherapy.

Based on DEGs between the two subtypes, we constructed a seven-
gene signature, composed of DRAM1, TNFRSF14, DNER, SCGB2A1,
DAPL1, EMX2, and IFIT1, via Lasso regression. The signature
Molecular Therapy: Oncolytics Vol. 22 September 2021 299
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robustly predicted prognosis in different datasets. Some studies have
shown that SCGB2A1 is overexpressed in endometrial cancer and
may be involved in the regulation of tumor proliferation and the
cell cycle. Further, the decreased expression of SCGB2A1 was associ-
ated with a poor prognosis.34,35 EMX2 levels in the postmenopausal
endometrium were higher than in premenopausal endometrium.36

Furthermore, EMX2 is significantly downregulated in endometrial
cancer.37 HVEM (TNFRSF14), a member of the TNFR family, is
frequently mutated in cancer and is considered to have tumor inhib-
itory effects in some cancer types. For example, TNFRSF14 may play
an anti-tumor role in bladder cancer by inducing cell apoptosis and
inhibiting proliferation.38

TNFRSF14 acts not only as a ligand of lymphocyte checkpoint proteins
BTLAandCD160 but also as a receptor to activate thenuclear factorkB
(NF-kB) signaling pathway upon interactionwith BTLA andCD160 or
TNF ligands LIGHT and LTa, thereby regulating the anti-tumor im-
mune response.39 IFIT1, which is highly expressed in head and neck
squamous cell carcinoma, is associated with several immune check-
pointmolecules and tumor-associatedmacrophagemarkers.40 Entestat
initiates IFIT1-stimulator of interferon genes (STING)-mediated
STAT4 enhancement through interferon regulatory transcription fac-
tor 1 (IRF1), thereby enhancing the NK cell-mediated anti-tumor
response.41 Thus, although both TNFRSF14 and IFIT1 are implicated
within theTIME, their role in endometrial cancer has not been studied.
DRAM1 is a stress-induced regulator of autophagy and cell death asso-
ciated with cancer, myocardial infarction, and infectious disease.42 Its
acts as a tumor inhibitor in non-small-cell lung carcinoma (NSCLC)
by promoting epidermal growth factor receptor (EGFR) lysosome
degradation and regulates autophagy as well as cell proliferation by in-
hibiting the phosphatidylinositol 3-kinase-Akt-mechanistic target of
rapamycin (mTOR)-ribosomal protein S6 pathway.43,44 It has been re-
ported that DNER promotes the epithelial-to-mesenchymal transition
in breast cancer through the Wnt/b-catenin pathway.45 DAPL1 was
upregulated in hepatoblastoma and could be used as a prognostic
biomarker of the disease.46 The role of DRAM1, DNER, and DAPL1
in endometrial cancer, as well as their involvement within the immune
microenvironment, remains unclear; therefore, further research is
needed.

Previous studies have established a prognostic model for UCEC, but
they have not specifically targeted grade III high-risk patients with a
poor prognosis.18,21–24,47–49 Among the four prognostic risk models
selected for comparison, our model had the highest C-index, indi-
cating that its overall performance was superior. Taken together,
our model was a better predictor of patients’ outcome.
Figure 5. Clinical value of the predictive model

(A) Forest plot of univariate Cox analysis. (B) Forest plot of multivariate Cox analysis. (C) N

by adding up the points from the point scale for each variable to a total score. Based th

scales. (D) Calibration curves for nomogram-predicted 1-, 3-, and 5-year OS in relation

clinical variables with regard to 1-, 3-, and 5-year survival. The DCA curves can evaluate t

none are treated. Therefore, the net benefit is 0. Gray indicates that all samples are po

experiencing: (H) 1-year survival; (I) 3-year survival; and (J) 5-year survival.
In clinical practice, the pathologic stage is a key prospective determi-
nant. However, it cannot fully reflect the biological heterogeneity of
patients, thus affecting the accuracy of UCEC prediction in patients.

In this study, a seven-gene signature was constructed based on TME-
related genes. Moreover, the use of this mRNA-based RS prognostic
signature proved to be an effective assessment of patient outcomes.
By examining the expression levels of these seven genes, we calculated
the RS of each patient: if a patient’s RS was greater than 0, this indi-
cates that the patient is at high risk, and his or her prognosis is poor.
The clinician may change the patient’s treatment plan according to
the forecast result of the signature in order to personalize his or her
treatment. Additionally, strategies were developed to prevent or
detect recurrence of ovarian cancer in high-risk populations as early
as possible.

Furthermore, a nomogram comprising FIGO stage and RS was con-
structed, which allowed us to calculate the level of risk and OS. This
approach may contribute to patient counseling and decision-making.
In summary, the seven-gene prediction model we constructed will
enable ovarian cancer patients to be more accurately managed in clin-
ical practice.

Our model also performed well for predicting the efficacy of immu-
notherapy. The current findings indicated that risk scores could be
used to predict the outcome of anti-PD-L1 therapy in patients with
MUC. Furthermore, the combination of RS, NEO, and TMB models
could predict treatment responses with an accuracy of 83.3%. Thus,
our model may improve immunotherapy treatment choices in G3
endometrial cancer.

RS was also evaluated in relation to tumor immune cell infiltration
and inflammation. A high RS was negatively correlated with HCK,
LCK, MHC class II, and MHC class I clusters, whereas positively
correlated with the interferon cluster. HCK activity is elevated in a va-
riety of malignant solid tumors, promoting the secretion of growth
factors and proinflammatory cytokines by myeloid cells as well as
the polarization of macrophages to wound healing and alternatively
activated phenotypes.50 LCK, an Src-related protein associated with
CD4 and CD8molecules, is a tyrosine kinase essential for T cell devel-
opment and activation.51 Tumors can evade T cell responses by losing
the expression of MHC/human leukocyte antigen (HLA) class I.52

Thus, patients with high RS exhibited an immunosuppressive micro-
environment contributing to their relatively poor prognosis. The
TME of patients with a low RS was characterized by high infiltration
of CD8+ T cells and M1 macrophages.
omogram predicting the 1-, 3-, and 5-year OS of patients. The nomogram is applied

e total score, the probability of 1-, 3-, or 5-year survival is projected on the bottom

to actual survival. (E�G) ROC curves of nomograms compared with those of other

he clinical potential of nomograms. Black indicates that all samples are negative, and

sitive, and all are treated. The x axis represents threshold probabilities of patients
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Figure 6. Comparison of the seven-gene risk model with other models

(A and B) The ROC and KM curves of a nine-gene signature (Jiang et al.21). (C and D) The ROC and KM curves of another seven-gene signature (Liu et al.22). (E and F) The

ROC and KM curves of a six-gene signature (Wang et al.23). (G and H) The ROC and KM curves of a nine-gene signature (O’Mara et al.24). (I) C-indexes of the five risk models.
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Studies have shown that OS and disease-free survival are significantly
prolonged in patients with UCEC showing high CD8+ T cell tumor
infiltration.53–55 The prognosis of patients with ovarian cancer
showing high M1 macrophage infiltration was also favorable.56–58

Although the relationship betweenM1macrophages and endometrial
cancer prognosis has been poorly studied, our results suggested that
302 Molecular Therapy: Oncolytics Vol. 22 September 2021
M1macrophage infiltration may be a predictor of favorable prognosis
in grade III UCEC.

The current study does have some limitations. First, we used false dis-
covery rate (FDR) for the multiple hypothesis testing, whereas the
Benjamini and Hochberg method was used to calculate FDR. Even
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though this correctionmethod does not guarantee a complete absence
of false positive results, it controls the ratio of false positive results to
true positive results within a certain range. Second, at present, the
identification of cell types based on RNA sequencing (RNA-seq) de-
pends on the characteristic genes of cells. Hence, different character-
istic genes may affect the accuracy of cell-type recognition. Third, due
to lack of corresponding clinical samples, we did not have access to an
in-house cohort to validate the expression of the seven-gene signature
by qRT-PCR or immunochemistry. It is worth noting that some of
these genes have not been reported in endometrial cancer and thus
remain to be further explored. Finally, TCGA patient population
mainly included data from Caucasian and African descendants,
which makes the inclusion of Asian populations essential in future
research.
In conclusion, we classified high-risk grade III UCEC into C1 and C2
TIME subtypes based on immune-related genes. The C1 subtype may
benefit from immunotherapy and also helped elucidate the mecha-
nism underlying this improved response. Thereafter, we constructed
and validated a seven-gene prognostic signature, which had good pre-
dictive performance in both training and validation cohorts. The RS
based on the seven-gene signature could be an important clinical tool
for prognosis and for predicting immunotherapy responses in pa-
tients with high-risk grade III UCEC.

MATERIALS AND METHODS
Data source and preprocessing

Gene expression profile and clinical follow-up information of RNA-
seq samples from patients with UCEC were downloaded from
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Table 2. Sample information

Clinical features TCGA-UCEC GEO: GSE119041

OS

0 243 11

1 69 39

Stage

I 165

II 34

III 88

IV 25

Age

%65 153

>65 157

Unknown 2

Molecular Therapy: Oncolytics
TCGA database, and the GEO: GSE 119041 cohort was downloaded
from the GEO database.

The RNA-seq data from TCGA-UCEC were preprocessed as follows:
(1) the samples without follow-up information were removed; (2)
ENSEMBL IDs were converted to gene symbols; (3) grade 3 samples
were retained; and (4) genes with expression level lower than 1 and
the proportion higher than 50% in all samples were eliminated.

The GEO cohort was processed via the following steps: (1) the
samples without clinical follow-up information were removed; (2)
ENSEMBL IDs were converted to gene symbols; (3) the probes corre-
sponding tomultiple genes were removed; and (4) the median of mul-
tiple gene expression values was used.

Data from a total of 312 samples in TCGA-UCEC were collected, and
the data for 50 samples were collected from the GEO: GSE119041
cohort. The cohort information is shown in Table 2.

The immune-related pathway genes were downloaded from the web-
site of ImmPort (https://www.immport.org/shared/home) (Table S5).

NMF clustering algorithm

The expression profile of immune-related genes was extracted from
TCGA-UCEC cohort, and univariate Cox analysis was performed us-
ing the coxph function in R to obtain prognostic genes related (p <
0.05). The NMF was used to cluster UCEC samples. A total of 312
grade III UCEC samples were divided into two distinct molecular
subtypes with significantly different prognoses (C1 and C2) based
on immune prognosis-related genes.

The NMF method selects the standard “Brunet” and performs 100
iterations. The cluster number K was set to 2�10, the average con-
tour width of the common member matrix was determined by the R
package “NMF,” and the minimum membership of each subclass
was set to 10.
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Identification of DEGs

The limma R package was used to identify DEGs between the C1 and
C2 subtypes by filtering based on the threshold values of FDR < 0.05
and fold change > 1.5. The R software package WebGestaltR (version
[v.]0.4.2) was used to conduct Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway and Gene Ontology (GO) functional enrich-
ment analyses of upregulated and downregulated DEGs between
UCEC subtypes.

Construction of prognostic risk model

The samples from TCGA dataset were divided into a training and
testing cohort. To avoid the influence of random assignment bias
on the stability of subsequent modeling, all samples were randomly
grouped 100 times in advance. Group sampling was carried out ac-
cording to a ratio of training cohort: testing cohort equivalent to
1:1. The most suitable training and testing cohorts were selected ac-
cording to the following conditions: (1) the two groups were similar
in age distribution, sex, follow-up time, and patient mortality ratio,
and (2) the sample size of the two groups was similar after randomly
clustering the gene expression profiling datasets. The chi-square test
was used to test both cohorts. No significant differences were
observed (p > 0.05), indicative of reasonable grouping.

Univariate Cox regression analysis, Lasso regression analysis,

and AIC

The univariate Cox proportional hazard regression model was em-
ployed using the training set data, and p < 0.05 was selected as the
filtering threshold. Finally, DEGs from the C1 and C2 subtypes
were identified.

The Lasso method is a compression estimate.59 Since it yields a
more refined model by constructing a penalty function, some coef-
ficients are compressed, whereas some coefficients are set to zero.
Therefore, it retains the advantage of subset contraction, a kind
of biased estimation with complex collinear data, which can realize
the selection of variables at the time of parameter estimation, solv-
ing the problem of multicollinearity in regression analysis. The
DEGs were analyzed by Lasso Cox regression using the R software
package glmnet.

AIC was used to conduct stepwise regression, which takes into ac-
count the statistical degree of fit of the model and the number of pa-
rameters used to fit. The stepAIC method in the MASS package starts
with the most complex model and deletes a variable to reduce the
AIC. The smaller the value, the better the model, indicating that the
model obtains a sufficient degree of fit with fewer parameters. The
DEGs were further analyzed by AIC stepwise regression analysis,
and the final hub genes were obtained.

Statistical analysis

KM analysis was used to calculate the survival rate, and the log-rank
test was used to determine the significance of differences between sur-
vival curves. The clinical utility of the prognostic model was evaluated
by both time-dependent ROC and DCA analyses. The nomogramwas

https://www.immport.org/shared/home
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constructed by integrating the significant clinical features of multivar-
iate Cox analysis using the R package rms, and the pROC package was
used to draw the ROC curve. For the IMvigor210 cohort, we used the
IMvigor210CoreBiologies package to extract clinical information and
gene expression profile information. Afterward, the gene expression
profiles were converted from counts to transcripts per million
(TPM), and we performed log2 processing. We used the analysis of
variance (ANOVA) test to draw a box diagram among CR, PR, SD,
and PD. In addition, the Corrplot package was used to plot correla-
tions. All statistical analyses were performed using the R software
(v.3.6.1).
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