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Abstract: The grape is a very well-liked fruit that is valued for its distinct flavor and several health
benefits, including antioxidants, anthocyanins, soluble sugars, minerals, phenolics, flavonoids, or-
ganic acids, and vitamins, which significantly improve the product’s overall quality. Today’s supply
chain as a whole needs quick and easy methods for evaluating fruit quality. Thus, the objective of this
study was to estimate the quality attributes of Flame Seedless grape berries cultivated under various
agronomical management and other practices using color space coordinates (berry L*, berry a*, and
berry b*) as inputs in an artificial neural network (ANN) model with the best topology of (3-20-11).
Satisfactory predictions based on the R2 range, which was 0.9817 to 0.9983, were obtained for physical
properties (i.e., berry weight, berry length, and berry diameter as well as berry adherence strength)
and chemical properties (i.e., anthocyanin, total soluble solids (TSS), TSS/titratable acidity, total
sugars, titratable acidity, reducing sugars, and non-reducing sugars). Meanwhile, we also performed
a contribution analysis to analyze the relative importance of CIELab colorimeter parameters of berries
L*, a*, and b* to determine the main fruit quality. In terms of relative contribution, berry b* contributed
relatively largely to berry weight, berry adherence strength, TSS, TSS/titratable acidity, titratable
acidity, total sugars, reducing sugars, and non-reducing sugars and a* contributed relatively largely
to anthocyanin, berry length, and berry diameter. The developed ANN prediction model can aid
growers in enhancing the quality of Flame Seedless grape berries by selecting suitable agronomical
management and other practices to avoid potential quality issues that could affect consumers of them.
This research demonstrated how color space coordinates and ANN model may well be utilized to
evaluate the Flame seedless grape berries’ quality.

Keywords: agricultural practices; chemical properties; grape; quality; machine learning; modeling;
physical properties

1. Introduction

Grape (Vitis vinifera L.) belongs to the family Vitaceae, which contains more than
60 genera and is native to the riverbanks of North America, Europe, and Asia [1,2]. It is
an adaptable fruit shrub that grows in hot tropical, subtropical, and temperate climates in
a variety of soil types [3,4]. The majority of the world’s grapes-growing regions, known
as the temperate climatic belt, are found between the latitudes of 40◦ and 50◦ N in the
Northern hemisphere and between latitudes of 30◦ and 40◦ S in the Southern hemisphere [3].
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Grapevines occupy a lot of land in the world (7515 thousand ha), with a total production
of 77.3 million tons, of which 36% corresponded to fresh table grapes in 2015 [5]. In
Egypt, it is ranked second after citrus fruits, due to its high net return; it is grown rapidly,
especially in reclaimed soils [6,7]. Due to the availability of antioxidants, minerals (such as
calcium, magnesium, and iron), soluble sugars, anthocyanins, flavonoids, organic acids,
vitamins (such as B1, B2, and C), and aromatic compounds, the grapevine is one of the
most economically significant sources for the human health and food industries [8–11].
Furthermore, the grapevine has rich phenolic compounds, so it has positive health effects
on people to protect them from different diseases [12–16]. Additionally, it is used in food
additives, the pharmaceutical industry, and natural cosmetic products [17].

Flame Seedless is one of the most well-liked fruits in Egyptian markets because it is
seedless and ripens the earliest [18,19]. It is one of the most widely cultivated table grapes in
the world because it creates attractive clusters, and has a higher percentage of anthocyanin
content than other seedless cultivars [20,21]. The marketing value of Flame Seedless grapes
is based on their appealing fruit, cluster, and size/shape characteristics. Therefore, in order
to assure profitability, it is essential to maximize yield and quality [20,22].

Grape quality and its nutrient composition vary depending on agronomical manage-
ment practices (fertilization, irrigation, weed, and pest control), agrochemicals treatments
(such as kaolin, hormones, and sucrose), viticultural (grape cultivars, cluster thinning,
pruning, and trunk girdling), biotechnological techniques and growth stage, and environ-
mental changes (soil, climate, and season) as well as combinations of leaf removal and
crop load treatments [15,23]. Generally, fruit quality refers to a combination of traits that
determine whether the fruit is suitable for consumption while still fresh or for storage for
an appropriate amount of time without deterioration and providing advice on its worth in
terms of customer acceptance [24,25]. Only high-quality fruit can increase a fruit’s ability
to compete in the market. As people’s living standards have continued to rise in recent
years, their expectations for nutritional content and fruit quality have also increased [26].
Most methods to assess the internal quality of fruits are based on laboratory measurements.
However, these measurements are traditional methods requiring samples, which is time-
consuming, costly, and labor-intensive [27]. Similar to external quality forecasts, numerous
techniques have been created and applied; these techniques rely on mathematical models
and statistical regressions. When compared to traditional sample-based measurements,
image processing has the ability to quickly capture a fruit’s dimension and color. Addi-
tionally, machine learning methods, such as artificial neural networks (ANN), have been
used to predict fruit quality [28]. The development of methods for evaluating the quality
of fruits and vegetables has received significant attention recently, and tools of quality
assessment have gained momentum [29]. Moreover, different studies examined ANN for
determining the quality of different fruit and vegetables with the aid of some features that
include fruit color, size, etc. [28,30]. Although determining the quality of any food material
is a challenging task, ANN technologies and their intelligent capabilities make them both
highly accurate and economically advantageous [29]. Additionally, ANN is capable of
learning without human intervention. It can treat existing data internally through different
activation functions, adjust weights for different settings, examine hidden associations
between data, and, therefore, represent unknown data, which is of different significance
for prediction. An ANN’s powerful computing power lets it treat more data and solve
many identical multifaceted nonlinear problems [30]. As an example, Amoriello et al. [28]
collected data for seven strawberry varieties and created two statistical procedures, i.e.,
multiple linear regression (MLR) and ANN models, to predict titratable acidity, dry matter,
soluble solids, and firmness as well as nutritional attributes, such as antioxidant poten-
tial, total anthocyanins, and total phenols. The inputs to the models were color space
coordinates, which were denoted by L*, a*, and b* of strawberries. When MLR was used,
unsatisfactory prediction performances were achieved for all parameters. Contrarily, the
quality attributes were accurately predicted by ANN, particularly for antioxidant activity
and total monomeric anthocyanin, with higher coefficients of determination above 0.90.
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The study showed that color coordinates and the established ANN models could be success-
fully utilized to assess strawberry quality. Huang et al. [30] applied ANN to discover the
effects of mineral nutrients in leaves and soil on the fruit quality attributes of loquat. The
results indicated that the developed ANN models with different topologies could predict
the titratable acid content, the single fruit weight, and soluble solids content with higher
coefficients of determination. Sun et al. [31] predicted peach fruit quality of single fruit
weight, fruit soluble solids content, and fruit titratable acid content using ANN based on
soil mineral nutrients and showed high prediction accuracy based on R2 values over 0.90.

Optimizing the use of suitable management measures, particularly agronomical man-
agement and other practices, is necessary to prevent a harmful imbalance between vine
growth and quality. Moreover, the quality attributes of Flame Seedless grape berries can
be analyzed qualitatively using laboratory analysis. However, many previous research
papers [28,30] have specified that the ANN technique is a very operative and consistent
predicting tool, which has been extensively used in fruit quality field and has a very
high prediction precision. The present research aimed to notice the dependability of the
ANN model to predict the berry weight, berry length, and berry diameter as well as berry
adherence strength and chemical properties (i.e., anthocyanin, total soluble solids (TSS),
TSS/titratable acidity, total sugars, titratable acidity, reducing sugars, and non-reducing
sugars) of Flame Seedless grape berries and to discover the effects of CIELab colorimeter
parameters of berries L*, a*, and b* on the key fruit quality attributes of them. This was
the aim so as to provide a theoretical source for quality attribute diagnosis and a boost in
choosing the right agronomical management and other practices in practical production to
avoid potential quality issues that could affect consumers of Flame Seedless grape berries.

2. Materials and Methods
2.1. Vineyard’s Description

The lack of readily available valuable data for training and validation purposes is the
key obstacle to adopting machine learning procedures in the horticulture industry for the
aim of predicting fruit quality [32]. Thus, the fresh grape samples for the required data were
collected from seven-year-old Flame Seedless grapevines, which were cultivated in private
vineyards located at QoraKhargin, Gharb El-Nobarya region, Beheira Governorate, Egypt
(30◦34′55.3′′ N, 29◦53′25.4′′ E) during the 2021 growing season. The vines were planted on
sandy soil with an average pH of 7.7–7.8 and were spaced 4 × 1.75 m apart. They were
watered using a drip irrigation technique with two lines and four drippers (8 L/h) per
vine. Nine vineyards that vary in agronomical management and other practices (such as
hoeing, irrigation, fertilization, pinching, pest management, etc.) from one vineyard to
another were chosen for collecting the required data in the present study. Additionally,
81 vines were chosen to be as uniform as possible in growth, with no visible signs of
nutrient deficiency, and almost uniform in their vigor. The grape samples were collected
from nine vineyards with nine replicates per vineyard and two vines per replicate.

2.2. Measurements of Studied Parameters

When the grape berries got their peak color in the second week of May 2021, the grape
clusters were gathered and brought to the laboratory at the Faculty of Agriculture, Food
Science and Technology Department, Alexandria University, Egypt, for sample analysis.
The berries from each vine’s cluster were carefully separated manually, and fifteen berries
were obtained from each vineyard for determination of berry weight, berry length, and
berry diameter immediately as the samples were not stored. Berry weight was recorded
using a digital scale. However, berry length and berry diameter were measured using a
digital caliper. Furthermore, a digital force gauge (DPS-110R, Imada, Northbrook, IL, USA)
was also used to measure the strength of the berry adhesion, which refers to separation
force in g, which is then converted to N.

Another random sample of berries was collected to determine the chemical properties.
In the juice, the percentage of total soluble solids (TSS) was measured by a hand refractome-
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ter (Atago, Tokyo, Japan). The titratable acidity expressed as grams of tartaric acid/100 mL
of juice was determined according to AOAC [33], and the ratio between TSS and titrat-
able acidity was calculated. Anthocyanin pigment in the berries’ skin (mg/100 g fresh
weight) was determined using spectrophotometry at a wavelength of 535 nm, according to
Ranganna [34]. Total sugars were determined by using the phenol sulfuric acid method
outlined by Malik and Singh [35]. Reducing sugar content was determined according to
the Lane and Eynon method as described by Egan et al. [36]. The difference between total
sugars and reducing sugars was used to compute the non-reducing sugar levels.

Berries’ color was evaluated using a colorimeter (CR-3000, Konica Minolta, Tokyo,
Japan), which measures L*, a*, and b* values. The L* value is equivalent to a dark–bright
scale (0, black; 100, white), the a* value to a green–red scale (negative value, greenness;
positive, redness), and the b* value to a blue–yellow scale (negative value, blueness;
positive, yellowness).

2.3. Statistics Analysis

All data were analyzed for vineyard effects on measured quality attributes by ANOVA
using SAS [37]. At a probability level of 0.05, the means were divided and compared using
the least significant difference (LSD) method. Further, descriptive statistics, such as Kurtz,
mean, maximum, skewness, minimum, and standard deviation, were achieved; however,
coefficients of variation were calculated based on standard deviation and mean values to
evaluate the dispersed of the collected data. The descriptive statistics were calculated using
SPSS statistical software (version 22, SPSS, Chicago, IL, USA), where the dataset comprised
of 81 observations. Additionally, the pair relationships among all of the quality attributes
were assessed using the Person correlation coefficient.

2.4. Artificial Neural Network Modeling

The quality attributes of Flame Seedless grape berries cultivated under various agro-
nomical management and other practices were predicted using an ANN model. The ANN
was a nonlinear model constructed using a feed-forward architecture as the multi-layered
perceptron, with back propagation as the training algorithm. It has one input layer, in which
the neurons (L*, a*, and b*) operate as independent parameters, one or more hidden layers,
and one output layer, in which each output parameter acts as a dependent parameter on the
neurons (Figure 1). The output variables were berry weight, berry length, berry diameter,
berry adherence strength, TSS, titratable acidity, TSS/titratable acidity, anthocyanin, total
sugars, reducing sugars, and non-reducing sugars.

The standard back propagation algorithm was used, an iterative technique that trained
the dataset by randomly dividing the complete collection of data into training (80% of the
data) and testing sets (20% of the data). The network was trained using the training dataset
to produce output values as close to the target values as possible, as the learning algorithm
was used to update the weights, which are connected to the associates between the neurons.
The network performance after the learning phase was evaluated using the test dataset.
The neurons of the first layer take the input values from fed data during the training phase,
each of which is weighted independently, and error minimization is achieved by the back
propagation algorithm. The size of the input vector is equal to the number of artificial
processing neurons or nodes. The activation function is applied after each input node sends
a signal to each hidden node as a weighted sum. The signal from the hidden layer to the
output layer was also subject to the same procedure. The hidden (xi) and output (yi) neuron
activities are defined as follows [28]:

xi = f (vi) (1)

yi = f (vi) (2)

where the activation function used in the output or hidden layers is f (vi). Due to its
improved performance, feed-forward neural network models typically use entire topologies
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with hidden layers and an active transfer function, which is the sigmoid in this study [38].
The activation function (sigmoid function) is as follows [28]:

f (vi) = vi (3)

f (vi) =
1

1 + e−vi
(4)
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νi is calculated as follows:

vi = ∑m
j=1 wij xj + bi (5)

where m is the total number of nodes in the output layer, wij is the weight between layers
i-th and j-th, and bi is the bias of the i-th neuron. The network in this study was trained
100,000 times with initial weight and bias values selected at random by the software, and
the hidden layer was tested with a range of topologies and neurons from 1 to 30. To
build the ANN model, we used a commercial neural network software called Qnet2000 on
Windows, Vesta Services, 2000 [39]. However, the input and output values were normalized
between 0.15 and 0.85 by the software, according to the following equation.

T =
(t− tmin)

(tmax − tmin)
× (0.85− 0.15) + 0.15 (6)

where t symbolizes the actual values of the input and output variables, T is the normalized
value, and tmin and tmax are the minimum and maximum values of input and output
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variables, respectively. However, Figure 2 shows the information of the best topology of the
ANN model (3-20-11) with network definition and training control parameters to predict
the quality attributes of Flame Seedless grape berries cultivated under various agronomical
management and other practices. However, during the building of the ANN model
employing a feed-forward type based on an error back propagation algorithm, the trial-
and-error procedure was employed to get the optimal ANN configuration. Additionally,
a major challenge in training neural networks is knowing when to stop training. If we
train too little, the model will underfit the training and test sets. If we train too much, the
model will overfit the training set and have poor performance on the test set. We noticed
that the total corrected percentage (87.7%), as shown in Figure 2, of the testing dataset
stops early if the performance starts to degrade on a validation dataset. However, a flow
chart tagging the different solving steps for establishing the present ANN model using the
applied software of Qnet2000 is explained in a previous study [40].
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2.5. Evaluation of the Performance of ANN Models

The presentation of the ANN model was appraised by some statistical indexes, such
as mean absolute error (MAE), and root mean square error (RMSE), as follows:

RMSE =

√
1
n∑n

i=1(Pi −Oi)
2 (7)

MAE =
1
n∑n

i=1|Pi −Oi| (8)

where Oi and Pi are the measured and predicted values, respectively, and n is the total
number of observations in each dataset. Moreover, scatter plots are offered for pictorial
correlation of the predicted and measured values. The average magnitude of error denoted
by MAE produced by the ANN model is considered, and values that are close to 0 suggest
a successful forecast. Meanwhile, RMSE stands for residual mean square error, and it can
be used to measure how well the model predicts the response as well as how widely dis-
tributed the residuals are. A better match is indicated by lower RMSE values. Additionally,
coefficient of determination (R2) was employed to determine whether differences in one
variable can be explained by variations in another variable.
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3. Results and Discussion
3.1. Exploratory Analysis by Sites

High variability among the nine investigated vineyards for pomological traits (i.e.,
berry weight (W), berry length (L), berry diameter (D), berry adherence strength, berry
length/berry diameter, and berry CIELab color coordinates), minimum, maximum, and
means values were observed (Table 1) as well as coefficient of variation, skewness, and
Kurtz. In detail, the berry weight values varied from 3.20 to 3.66 g in vineyards V1 and V9,
respectively, as shown in Table 2, with a mean value of 3.46 ± 0.16 g. This suggested that
no large disparity was seen in berry weight as the CV value was 4.59%, as shown in Table 1.
Previous results showed that various agronomical management and other practices can
lead to an increase in berry weight [41–45]. In addition, Caspari et al. [46] reported that
the removal of leaves increased the berry weight of ‘Sauvignon blanc’ grapes. Vineyards
V1 and V9 denote the lowest and greatest values of berry length and berry diameter (L:
1.9 and 2.8 cm; D: 2.0 and 3.0 cm, respectively). The higher the berry growth rate, early
uptake of glucose, sucrose, and fructose, and increase in absolute berry water content, then
the larger berry length and berry diameter [47].

Table 1. Statistical criteria of experimental results of quality attributes of Flame Seedless grape berries
cultivated under various agronomical management and other practices.

Quality Attributes
Statistical Criteria

Minimum Maximum Mean Standard
Deviation

Coefficient of
Variation, CV (%) Skewness Kurtz

Berry weight (g) 3.18 3.67 3.46 0.16 4.59 −0.31 −1.33

Berry length (cm) 1.9 2.8 2.4 0.29 12.07 −0.19 −1.34

Berry diameter (cm) 2.0 3.0 2.5 0.32 12.42 −0.35 −1.20

Berry length/berry
diameter 0.90 0.96 0.93 0.01 1.55 −0.25 −0.41

Berry L* 25.65 46.45 35.13 6.79 19.33 0.18 −1.35

Berry a* 5.24 10.99 8.58 1.72 20.10 −0.48 −0.80

Berry b* 3.12 12.96 7.83 3.18 40.61 0.07 −1.28

Berry adherence
strength (N) 4.22 6.33 5.22 0.68 12.96 0.12 −1.28

TSS (%) 16.70 22.10 19.48 1.94 9.94 −0.02 −1.63

Titratable acidity (%) 0.48 0.79 0.62 0.09 15.30 0.23 −1.07

TSS/titratable acidity (−) 21.14 46.04 32.62 8.08 24.78 0.19 −1.33

Anthocyanin (mg/100 g
fresh fruit) 17.30 38.90 28.58 6.84 23.95 −0.24 −1.10

Total sugars (%) 13.10 18.70 16.43 1.81 11.04 −0.65 −0.89

Reducing sugars (%) 11.96 16.52 14.74 1.46 9.89 −0.78 −0.73

Non-reducing sugars (%) 1.12 2.24 1.69 0.37 21.82 −0.13 −1.38

No. of points 81 81 81 81 81 81 81

Further, the berry length values varied from 1.9 to 4.4 cm in vineyards V1 and V9, re-
spectively, as shown in Table 2, with a mean value of 2.4± 0.29 cm (Table 1). This suggested
that no large variation was seen in berry length as the CV value was 12.07%, as shown in
Table 1. Additionally, the berry diameter values varied from 2.0 to 3.0 cm in vineyards V1
and V9, respectively, as shown in Table 2, with a mean value of 2.5 ± 0.32 cm (Table 1). This
suggested that no large disparity was seen in berry diameter as the CV value was 12.42%,
as shown in Table 1. Furthermore, the shape index of berries (berry length/berry diameter)
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was obtained from the L and D ratio and ranged from approximately 0.90 to 0.96, as shown
in Table 2 (vineyards V5 and V6, respectively), with a mean value of 0.93 ± 0.01 (Table 1).
This suggested that no large disparity was seen in the shape index of berries as the CV value
was 1.55%, as shown in Table 1. Moreover, berry adherence strength showed reasonable
variability among the vineyards. In detail, the berry adherence strength values varied
from 4.22 to 6.33 N, as shown in Table 1, with a mean value of 5.22 ± 0.68 N cm (Table 1).
The highest and the lowest berry adherence strengths were seen for berries cultivated in
vineyards V1 and V9, respectively (Table 2). It is obvious that from Table 2, the adherence
strength of Flame Seedless’ connection was altered depending on the vineyard, with large
variations between them. It might be argued that berries’ brush and pedicel have more per-
sistent insoluble pectin content, which accounts for their increased adherence strength [48].
Berry adherence strength and firmness changes are tightly correlated with parameters
affecting weight and water loss [49]. However, the cation Ca2+ encourages the firmness of
the cell wall by chelating the free carboxylic groups of galacturic units and cross-linking
the pectic polysaccharide chains, forming a firmer, tighter structure [47]. Similar physical
trait variability was reported for Flame Seedless grapes by other authors [50–54]; however,
a comparison of the supplied results with the literature data was not possible.

Table 2. Distribution of mean values of weight, length, diameter, adherence strength, and color space
coordinates (L*, a*, and b*) of Flame Seedless grape berries cultivated under various agronomical
management and other practices.

Vineyards

Berry
Weight

Berry
Length

Berry
Diameter

Berry Adherence
Strength

Berry Length/Berry
Diameter

(Shape Index)
Berry L* Berry a* Berry b*

(g) (cm) (cm) (N) (−) (−) (−) (−)

V1 3.20 i 1.9 i 2.0 i 6.29 a 0.950 a 45.90 a 5.32 i 12.83 a

V2 3.26 h 2.0 h 2.1 h 6.03 b 0.940 b 43.16 b 6.74 h 11.51 b

V3 3.33 g 2.1 g 2.3 g 5.72 c 0.930 c 40.76 c 7.48 g 10.18 c

V4 3.42 f 2.3 f 2.5 f 5.46 d 0.920 de 37.88 d 8.24 f 9.07 d

V5 3.48 e 2.4 e 2.6 e 5.18 e 0.916 e 33.83 e 8.86 e 7.92 e

V6 3.55 d 2.5 d 2.7 d 4.96 f 0.928 cd 31.88 f 9.39 d 6.39 f

V7 3.60 c 2.6 c 2.8 c 4.65 g 0.937 bc 29.37 g 9.91 c 5.22 g

V8 3.62 b 2.7 b 2.9 4.41 h 0.930 c 27.60 h 10.38 b 4.12 h

V9 3.66 a 2.8 a 3.0 ab 4.28 i 0.927 cd 25.77 i 10.88 a 3.19 i

LSD (5%) 0.0088 0.0292 0.0307 0.0377 0.0091 0.271 0.084 0.052

Different letters indicate that means are significantly different from each other (p < 0.05).

Fruit color coordinates showed high variability among the vineyards; L* ranged from
25.65 (vineyard V9) to 46.45 (vineyard V1), as shown in Table 2, with a mean value of
35.13 ± 6.79 (Table 1). This suggests that a large disparity was seen for the L* of berries, as
the CV value was 19.3%, as shown in Table 1. Additionally, a* ranged from 5.24 (vineyard
V1) to 10.99 (vineyard V9), as shown in Table 2, with a mean value of 8.58 ± 1.72 (Table 1).
This suggests that a large disparity was seen for the a* of berries, as the CV value was 20.10%,
as shown in Table 1. Furthermore, b* ranged from 3.12 (vineyard V9) to 12.96 (vineyard V1),
as shown in Table 2, with a mean value of 7.83 ± 3.18 (Table 1). This suggests that a large
disparity was seen for the b* of berries, as the CV value was 40.61%, as shown in Table 1. The
high variability among the nine investigated vineyards for CIELab color coordinates, shown
in Table 1, is cleared based on coefficients of variation values, which were 19.33%, 20.10%,
and 40.61% for L*, a*, and b*, respectively. However, there are agricultural practices, such
as stimulant fertilizers, which have recently gained popularity due to their enhancement
of berry coloration, for example, potassium sources [55], kaolin foliar fertilizer [56], and
algal extract [57]. The color of the berries of vines cultivated in V9 was visually more red
(a* = 10.88) than in other vineyards at harvest time. It could be suggested that a* correlated
with anthocyanin content. However, anthocyanin is reflected in the berry’s skin color
in Crimson Seedless grapes. It accumulates in berries at the beginning of the véraison
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stage of berry development. Continually, the accumulation during berry development
is related to abscisic acid (ABA) metabolism, by which berry skin anthocyanin content
increases and color appears [58]. Further, by application of exogenous cyanocobalamin, the
skin color profile of Crimson Seedless grapevines can be improved [59]. Furthermore, it
may be that Vitamin B12 activated cDNA and soluble protein in plant cells during berry
development [60], which then increased the accumulation of peonidin and the acylated
derivatives of anthocyanin content in fresh grape skins [61].

Variability among the nine vineyards for chemical parameters’ (i.e., TSS, titratable
acidity, TSS/titratable acidity, anthocyanin, total sugars, reducing sugars, and non-reducing
sugar) were observed (Table 1), which indicates minimum, maximum, and means values as
well as the coefficient of variation, skewness, and Kurtz. The distribution of mean values of
such attributes for the different vineyards are shown in Table 3 and in Figure 3. As regards
the TSS, the values ranged from 16.70% to 22.10%, as shown in Table 3, with a mean value
of 19.48 ± 1.49% (Table 1). This suggested that no variation was seen for the TSS of berries,
as the CV value was 9.94%, as shown in Table 1. The highest and the lowest TSS were seen
for berries cultivated in vineyards V1 and V9, respectively (Table 3). When high-potassium
fertilization was applied, the TSS of the Crimson Seedless grape increased [44]. Moreover,
Bledsoe et al. [62] found that the TSS in the Sauvignon blanc variety was significantly
higher in berries from vines with leaves removed.

Table 3. Distribution of mean values of internal quality (TSS, titratable acidity, TSS/acidity, and
anthocyanin) of Flame Seedless grape berries cultivated under various agronomical management
and other practices.

Vineyards
TSS Titratable Acidity TSS/Titratable

Acidity Anthocyanin

% % (−) (mg/100 g Fruit Weight)

V1 16.76 i 0.78 a 21.39 i 17.34 i

V2 17.26 h 0.73 b 23.78 h 19.76 h

V3 17.72 g 0.68 c 25.89 g 23.72 g

V4 18.36 f 0.65 d 28.24 f 27.36 f

V5 19.36 e 0.61 e 31.68 e 29.73 e

V6 20.73 d 0.58 f 35.75 d 31.36 d

V7 21.36 c 0.55 g 39.15 c 33.58 c

V8 21.74 b 0.52 h 42.18 b 35.53 b

V9 22.00 a 0.48 i 45.52 a 38.81 a

LSD (5%) 0.0588 0.0057 0.3569 0.0725
Different letters indicate that means are significantly different from each other (p < 0.05).

Vineyard V1 presented the highest mean titratable acidity value (0.78%), whereas
vineyard V9 presented the lowest one (0.48%), as shown in Table 3. Moreover, the range
was 0.48% to 0.70%, with a mean value of 0.62 ± 0.09% (Table 1). This suggested that
high variation was seen for the titratable acidity of berries, as the CV value was 15.30%,
as shown in Table 1. The decrease in the titratable acidity of juice caused by potassium
foliar application as the potassium source improves the sugar transport into berries [63].
Additionally, Ethephon’s capacity to increase membrane permeability and speed up the
respiration of acids stored in cell vacuoles may be the cause of the acidity reduction that
results from its application [47]. Similar trends for TSS and titratable acidity were reported
in [47,63]. The fluctuation in titratable acidity and TSS due to various environmental condi-
tions and site-specific field management strategies (plant variety, planting date, harvest
time, and cultural technique) was also reported by Cocco et al. [64].

The study of the TSS/titratable acidity ratio is regarded as a trustworthy indicator
of grape maturity, and a significant rise indicates the onset of ripening [47]; also, it is a
better index for fruit customer acceptance, as reported by Crisosto et al. [65]. However,
the concentration of titratable acidity, TSS, and their ratios are not stationary but fluctuate
considerably during fruit maturation and ripening. Because of this, these features are
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frequently utilized as commercial and laboratory indicators of maturity for numerous
horticultural crops [66,67]. In this study, the TSS/titratable acidity values ranged from
21.14 to 46.04%, as shown in Table 1, with a mean value of 32.62 ± 8.08 (Table 1). This
suggested that high disparity was seen for the TSS/titratable acidity of berries, as the CV
value was 24.78%, as shown in Table 1. The highest and the lowest TSS/titratable acidity
were seen for berries cultivated in vineyards V9 and V1, respectively (Table 3).
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Figure 3. Distribution of mean values of total sugars, reducing sugars, and non-reducing sugars of
Flame Seedless grape berries cultivated under various agronomical management and other practices
in investigated vineyards. (Different letters indicate that the means are significantly different from
each other (p < 0.05)).

High variability in anthocyanin was observed (Table 1), as denoted by the coefficient
of variation of 23.95%. Vineyards V1 and V9 showed the minimum and maximum values,
respectively (17.34 and 38.81 mg/100 g fruit weight), as shown in Table 3. However, the
mean value was 28.58 ± 6.84 mg/100 g of fruit weight (Table 1). During development,
the skin’s anthocyanin content rises, enhancing the berry’s color [68]. The reduction in
nitrogen dose, foliar potassium, foliar ethereal, and basal leaf removal may be the causes
of the improvement in anthocyanin [63]. Following foliar treatments of phosphor and
potassium, Topalović et al. [69] noted an increase in total anthocyanins. Additionally, Abd
El-Razek et al. [44] claimed that fertilizing Crimson Seedless grapes with a high dose of
potassium and low nitrogen levels boosted anthocyanin levels. When grapevine berries
ripen, ethylene levels rise right before veraison, encouraging some of the linked processes,
such as anthocyanin accumulation, according to Dal Ri et al. [70]. Monitoring anthocyanin
concentrations in connection to various agronomical management is crucial for assessing
the quality of all fruits since, if present in high concentrations, anthocyanins may contribute
to the red color of fruits as the plant pigments. The striking red color of table grapes is a
result of anthocyanins [71]. Additionally, the controlling of anthocyanin concentration in
crop loads resulted in the proper coloration of ‘Aki Queen’ fruits through the regulation of
anthocyanin concentration in grapes [72].

As regards total sugars, it showed moderate disparity (Table 1), as denoted by the
CV of 11.04%, the maximum total sugars of 18.59% was revealed in vineyard V9, whereas
the minimum total sugars was revealed in vineyard V1 (13.14%), as shown in Figure 3.
However, the mean value of total sugars was 16.43 ± 1.81% (Table 1). Additionally, as
regards reducing sugars, a small variation was observed (Table 1), as denoted by the
CV of 9.89%, however, the maximum reducing sugars of 16.52%, the minimum reducing
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sugars of 11.96, and as shown in Figure 3; the maximum and the minimum reducing
sugars were noticed in vineyard V9 and V1, respectively. Furthermore, as regards non-
reducing sugars, high variation was observed (Table 1), as denoted by the CV of 21.82%.
However, non-reducing values were in the range of 1.12% to 2.24%, with a mean value of
1.69 ± 0.37% (Table 1); the maximum and the minimum non-reducing sugars were noticed
in vineyard V9 and V1, respectively (Figure 3). Similar to total sugars, the reducing sugars
and non-reducing sugars’ variability was reported for Flame Seedless grapes by another
author [2], but a comparison of the presented data with the literature data was not possible.
The nine investigated vineyards showed an identical trend for the total sugars, reducing
sugars, and non-reducing sugars; however, the highest values of them belonged to vineyard
V9 and the lowest values belonged to vineyard V1. King et al. [73] observed that Hawke’s
Bay grapes had more sugar concentration after crop removal. Somkuwar et al. [74] noticed
that when the number of clusters per vine in grape cv. Jumbo Seedless increased, the
concentration of reducing sugars decreased. Additionally, reducing, non-reducing, and
total sugars concentrations of grape berries increased with increasing concentrations of
micronutrients by applying agronomical management, such as fertilization, additionally,
the increase in the sugar content of grape berries could be associated with the increased
chlorophyll content [2].

3.2. Correlation Analysis

One of the most crucial competitive market factors is fruit quality, which has an impact
on both the price and volume of fruit sold [75]. Multiple variables contribute to its occur-
rence, including the individual and cumulative effects of mineral nutrients [76]. The link or
association between fruit quality characteristics was examined using Pearson’s correlation
coefficient test (Table 4). With varying r-values, all fruit quality criteria were connected
with one another either positively or negatively; r-values were in the high positive range
of 0.921 to 0.995. As an example, high positive correlations between berry weight and
berry length, berry diameter, berry a*, TSS, TSS/titratable acidity, anthocyanin, total sugars,
reducing sugars, and non-reducing sugars, were observed by r-values of 0.988, 0.989, 0.986,
0.985, 0.976, 0.992, 0.983, 0.972, and 0.995, respectively. This suggests that increasing berry
weight increases the berry length, berry diameter, berry a*, TSS, TSS/titratable acidity,
anthocyanin, total sugars, reducing sugars, and non-reducing sugars. In another study,
Pilar et al. [77] found a positive correlation between TSS and 100 berry weight. The high
negative correlation between berry weight and berry L*, berry b*, berry adherence strength,
and titratable acidity were noticed by r-values of −0.993, −0.991, −0.990, and −0.989,
respectively. Furthermore, anthocyanin presented a negative correlation with L*, and this
agreed with the results of Peppi et al. [78] and Mekawy and Ahmed [79]. Given that
anthocyanin and color attributes have a link, it can be assumed that colored grapes have
higher anthocyanin concentrations [79]. Additionally, total sugars and TSS have a high
positive correlation, seen by the r-value of 0.948, also, this finding was seen by Mekawy
and Ahmed [79].

3.3. Prediction of Flame Seedless Quality Attributes

For the purpose of identifying the ideal network architecture, different ANN configu-
rations were created and contrasted with one another (input-hidden-output layers). Three
input data were present in the network’s first layer, and its only output layer represented
the quality attributes. In fact, how well a dataset may be learned may depend on how
many hidden neurons there are [80]. The network will not be able to learn if there are not
enough neurons used. Overfitting can occur when there are too many hidden neurons,
which prevents the generalizability of the input/output relationship but improves network
learning and data memorization [80,81]. An increase in hidden neurons may enhance ANN
performance [81].
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Table 4. Pearson’s correlation coefficients (r) describing the correlations among quality variables of Flame Seedless grape cultivated under various agronomical
management and other practices.

Parameters Berry
Weight

Berry
Length

Berry
Diameter L* a* b* Berry Adherence

Strength TSS Titratable
Acidity

TSS/Titratable
Acidity Anthocyanin Total

Sugars
Reducing

Sugars

Berry weight 1

Berry length 0.988 1

Berry diameter 0.989 0.993 1

L* −0.993 −0.990 −0.987 1

a* 0.986 0.980 0.986 −0.987 1

b* −0.991 −0.988 −0.982 0.995 −0.986 1

Berry adherence
strength −0.990 −0.988 −0.984 0.995 −0.986 0.997 1

TSS 0.985 0.980 0.966 −0.988 0.965 −0.989 −0.985 1

Titratable
acidity −0.989 −0.985 −0.985 0.993 −0.994 0.995 0.993 −0.977 1

TSS/titratable
acidity 0.976 0.978 0.966 −0.985 0.965 −0.993 −0.988 0.988 −0.985 1

Anthocyanin 0.992 0.987 0.992 −0.992 0.991 −0.992 −0.992 0.971 −0.994 0.978 1

Total sugars 0.983 0.970 0.983 −0.974 0.986 −0.971 −0.973 0.948 −0.978 0.940 0.985 1

Reducing
sugars 0.972 0.957 0.973 −0.960 0.978 −0.956 −0.959 0.930 −0.967 0.921 0.975 0.998 1

Non-reducing
sugars 0.995 0.992 0.988 −0.997 0.983 −0.996 −0.995 0.990 −0.992 0.989 0.993 0.974 0.959
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We examined various neurons in the ANN’s hidden layer (from 1 to 30) to determine
the best topology for the ANN, and we chose the topology with the highest overall accuracy
(Figure 2) based on the smallest RMS Errors and the highest correlation coefficients of
training and testing sets. The best model was built using the sigmoid activation function
for hidden neurons and 20 neurons in the hidden layer. For each quality parameter
prediction of Flame Seedless grapes berries utilizing ANN models by 3-20-11 topology
and testing set, Table 5 displays the errors analysis and coefficients of determination (R2),
however R2 determines whether differences in one variable can be explained by variations
in another variable.

Table 5. RMSE and MAE values and R2 for each quality parameters predictions of Flame Seedless
grapes berries using ANN model with a 3-20-11 topology and testing set.

Quality Parameters RMSE MAE R2

Berry weight (g) 0.008 0.007 0.9971
Berry length (cm) 0.042 0.036 0.9817

Berry diameter (cm) 0.038 0.033 0.9849
Berry adherence strength (N) 0.065 0.058 0.9902

TSS (%) 0.083 0.069 0.9981
Titratable acidity (%) 0.007 0.006 0.9949

TSS/titratable acidity (−) 0.453 0.371 0.9973
Anthocyanin (mg/100 g fruit weight) 0.313 0.248 0.9978

Total sugars (%) 0.172 0.134 0.9906
Reducing sugars (%) 0.162 0.127 0.9870

Non-reducing sugars (%) 0.015 0.011 0.9983

Using the ideal ANN topology, there was generally good agreement between the
experimental and predicted values as shown by higher values of R2 (Table 5). Meanwhile,
to appraise the ability of the established ANN model well, we compare the predicted
and the experimental values of all quality attributes in the training and testing phases
(Figures 4–6). The results display that the distribution shape of the predicted quality
attributes’ values is very close to the experimental quality attributes’ values in scatter plots
(Figures 4–6), and all predicted and measured quality attributes’ values have a similar
trend. The results indicate that the established ANN model is consistent and effective for
predicting the quality attributes of Flame Seedless grapes berries. In reality, as illustrated
in Figures 4–6, the R2 using the test dataset and training dataset were all above 0.90. This
result shows that the established ANN model was adequate for solving the nonlinearity
of the relationships among CIELab colorimeter parameters of berries L*, a*, and b* and
Flame Seedless grapes berries’ quality attributes (berry weight, berry length, and berry
diameter as well as berry adherence strength, anthocyanin, TSS, TSS/titratable acidity,
total sugars, titratable acidity, reducing sugars, and non-reducing sugars). In particular,
the low values of MAE and RMSE for the testing set (Table 5) indicated a high capacity
for predicting the quality attributes of Flame Seedless grape berries due to a very small
dispersion of residuals. ANNs are useful tools for assisting customers in selecting the
appropriate fruits for various uses, as well as for improving postharvest life, final quality,
and maintaining fruit quality for better marketability in the fruit field, such as sorting,
classification, grading, identification, and quality feature prediction. In the studies by
Amoriello et al. [28] and Yoshioka et al. [82], they discovered that ANN models could
accurately predict anthocyanins by taking into account the CIELab coordinates of L*, a*,
and b*. A recent study suggested that ANN modeling can be successfully exploited for
the prediction of quality parameters of winter rapeseed [83]. Furthermore, ANN was
developed to predict the TSS, titratable acidity, TSS/titratable acidity, anthocyanin, vitamin
C, and total carotenoids contents using surface-color CIELab coordinates of L*, hue, and
chroma for fresh peach fruit based on inputs of juice volume, single fruit weight, and
sphericity percent [84]. In addition, ANN could be employed as a tool for the identification
of peach varieties based on physical characteristics [85]. Finally, ANN can be utilized as an
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alternative tool for fruit mass prediction of ber fruits (Ziziphus mauritiana Lamk) [86] and
peach fruits [87].
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3.4. Relevance of the Input Variables to the Predictions Made by the ANN Model

To determine how important the input variables are, the relative contribution of
the input variables to the predictions made by the ANN model was evaluated. using
contribution analysis by Qnet2000 software. The relative importance (%) of the CIELab
coordinates for the network and each quality metric was then ranked (Tables 6 and 7). In
the ANN model, higher significance values indicate that the input variable is given more
weight. As shown in Tables 6 and 7, berry b* was the most significant variable for berry
weight, berry adherence strength, TSS, TSS/titratable acidity, titratable acidity, total sugars,
reducing sugars, and non-reducing sugars; a* for anthocyanin, berry length, and berry
diameter. The fruit components’ chemical makeup may help to explain it. Fruit pigment
buildup and variations in the amount of sugar and organic acid cause a correlation between
color and fruit quality [88,89]. A number of biochemical and physiological processes that
take place during fruit ripening also cause color changes depending on the cultivar [90,91].
The color of the skin and pulp is specifically caused by various bioactive substances, such as
anthocyanins, carotenoids, and polyphenols. For instance, anthocyanins and polyphenols
are primarily associated with the hues of purple and red [89].

Table 6. Relative importance (%) of the input variables for ANN model predictions of berry weight,
berry length, berry diameter, berry adherence strength, and TSS.

Input
Variables

Output Variables

Berry
Weight Berry Length Berry

Diameter
Berry Adherence

Strength TSS

Berry L* 4.24 9.78 26.73 11.78 7.29
Berry a* 26.81 45.28 47.65 38.57 19.23
Berry b* 68.95 44.93 25.61 49.65 73.48
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Table 7. Relative importance (%) of the input variables for ANN model predictions of titratable
acidity, TSS/titratable acidity, anthocyanin, total sugars, reducing sugars, and non-reducing sugars.

Input Variables

Output Variable

Titratable
Acidity

TSS/Titratable
Acidity Anthocyanin Total Sugars Reducing

Sugars
Non-Reducing

Sugars

Berry L* 10.17 11.21 28.47 9.62 13.24 19.27
Berry a* 43.21 31.34 37.47 27.48 21.9 29.75
Berry b* 46.63 57.44 34.06 62.9 64.86 50.98

Berry skin color is a significant quality parameter in table grapes. However, weak
berry color expansion in red cultivars, such as Flame Seedless, Red Globe, and Crimson
Seedless, leads to poor quality and serious economic loss [63]. The unique buildup of
anthocyanins during the ripening of these grapes is what gives them their signature red
hue. The study’s use of ANN predictions was shown to be much more reliable when
a large number of data points were used for ANN modeling. The proper training and
testing of ANNs require a wide variety of data [81]. The values of the several parameters
in our analysis varied widely and were spread across all intervals rather evenly. However,
utilizing a small sample size may have indicated a weakness in the estimation of the Flame
Seedless grape berries’ quality characteristics, which could be one of the reasons why
certain models produced inaccurate results [92].

4. Conclusions

In this study, we use the feed-forward architecture as a multi-layered perceptron,
with back propagation as a training algorithm to build an effective and reliable artificial
neural network model that can predict the quality attributes of Flame Seedless grapes
cultivated under various agronomical management and other practices by the CIELab
colorimeter parameters of berries L*, a*, and b*. The established ANN model had the best
topology of 3-20-11 as it reaches the highest accuracy (R2 above 0.9 for all investigated
quality parameters). High positive correlation between berry weight and berry length, berry
diameter, berry a*, TSS, TSS/titratable acidity, anthocyanin, total sugars, reducing sugars,
and non-reducing sugars, were observed by r-values of 0.988, 0.989, 0.986, 0.985, 0.976, 0.992,
0.983, 0.972, and 0.995, respectively. Furthermore, the anthocyanin presented a negative
correlation with L*. We conducted a relative contribution analysis by Qnet2000 software,
and the results display that the content of the berry b* was the most significant variable
by relative importance percentage for berry weight (68.95%), berry adherence strength
(49.65%), TSS (73.48%), TSS/titratable acidity (57.44%), titratable acidity (46.6%), total
sugars (62.9%), reducing sugars (64.86%), and non-reducing sugars (50.98%). Meanwhile,
a* was the most significant variable as the relative importance percentage for anthocyanin
(37.47%), berry length (45.28%), and berry diameter (47.65%). According to the study’s
findings, colorimetric measurements are a promising nondestructive, quick, and affordable
tool for the quick assessment of Flame Seedless grape berries’ quality. As a result, grape
growers and technicians in the food processing industry can successfully use it with an
ANN model in commercial applications.
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