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Abstract

Estrogenic and androgenic steroids can be synthesised in the brain and rapidly modulate synaptic transmission and
plasticity through direct interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used
whole cell patch clamp recordings in brainstem slices of male rats to explore the influence of ER and AR activation
and local synthesis of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) on the long-term synaptic changes
induced in the neurons of the medial vestibular nucleus (MVN). Long-term depression (LTD) and long-term
potentiation (LTP) caused by different patterns of high frequency stimulation (HFS) of the primary vestibular afferents
were assayed under the blockade of ARs and ERs or in the presence of inhibitors for enzymes synthesizing DHT
(5α-reductase) and E2 (P450-aromatase) from testosterone (T). We found that LTD is mediated by interaction of
locally produced androgens with ARs and LTP by interaction of locally synthesized E2 with ERs. In fact, the AR block
with flutamide prevented LTD while did not affect LTP, and the blockade of ERs with ICI 182,780 abolished LTP
without influencing LTD. Moreover, the block of P450-aromatase with letrozole not only prevented the LTP induction,
but inverted LTP into LTD. This LTD is likely due to the local activation of androgens, since it was abolished under
blockade of ARs. Conversely, LTD was still induced in the presence of finasteride the inhibitor of 5α-reductase
demonstrating that T is able to activate ARs and induce LTD even when DHT is not synthesized. This study
demonstrates a key and opposite role of sex neurosteroids in the long-term synaptic changes of the MVN with a
specific role of T-DHT for LTD and of E2 for LTP. Moreover, it suggests that different stimulation patterns can lead to
LTD or LTP by specifically activating the enzymes involved in the synthesis of androgenic or estrogenic
neurosteroids.
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Introduction

Growing evidences show that synaptic plasticity may be
rapidly modulated in different areas of the brain by sex steroids
like 17β-estradiol (E2), testosterone (T) and 5α-
dihydrotestosterone (DHT), either produced in the gonads or
locally synthesised in the brain [1-6]. Synthesis of sex
neurosteroids depends on neural conversion of cholesterol into
T that is then transformed into E2 and DHT by action of P450-
aromatase and 5α-reductase enzymes, respectively [6-15]. The
rapid action of these neurosteroids involves a direct interaction
with specific membrane receptors for estrogens (ERs: ERα and
ERβ) and androgens (ARs) [16-22].

Our previous studies in slice demonstrate opposite long-term
synaptic effects in the neurons of the medial vestibular nucleus

(MVN) by exogenous administration of E2 or DHT [23,24]. In
particular, E2 induced long-term potentiation (LTP) of synaptic
response to vestibular afferent stimulation while DHT caused
long-term depression (LTD). Interestingly, these effects were
also produced by administration of T depending on its
transformation into estrogenic or androgenic metabolites [23].
We have recently found by whole-cell patch recordings that the
opposite effects of E2 and DHT can occur in the same MVN
neuron, a result that is supported by the immunohistochemical
evidence of co-localization of ERs and ARs in the MVN
neurons [25]. Since it has been shown that the sex
neurosterogenesis may be driven by synaptic stimulation
involving Ca2+ influx through N-methyl-D aspartate receptor
(NMDAR) [11-14,26,27], our main purpose was to understand
whether and how synthesis of estrogenic and androgenic
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neurosteroids can be associated with activity dependent
induction of NMDAR mediated LTP and LTD in the MVN. We
know by our previous field potential recordings that the local
synthesis of E2 is implied in LTP induced by afferent high
frequency stimulation (HFS) in the MVN and hippocampus CA1
area [28,29]. Now the question is whether different patterns of
stimulation may induce opposite long-term effects through
activation of androgen synthesising pathway. This is suggested
by our recent observation in hippocampus slices showing that
induction of LTD by low frequency stimulation depends on
activation of the ARs (unpublished data). Therefore, we
hypothesised that in the vestibular neurons the direction of the
long-term effects in response to different patterns of afferent
stimulation is due to the characteristic of the stimulus that may
specifically activate the estrogenic or androgenic pathway by
facilitating the conversion of T into E2 for LTP, or into DHT for
LTD. To demonstrate this hypothesis, we designed this whole
cell patch study in which, according to our recent finding [30],
we induced LTP or LTD in the MVN neurons by varying the
pattern (inter-burst interval and burst number) of high
frequency burst stimulation, and we assessed the influence of
androgenic and/or estrogenic neurosteroids on these opposite
long-term effects by using either the antagonists of ARs and
ERs or inhibitors of the DHT and E2 synthesising enzymes.
Since MVN synaptic changes like LTP and LTD play a role in
visuo-vestibular calibration and vestibular compensation
[31,32] in response to different afferent signals, it would be
interesting to find out the role of different sex neurosteroids in
determining the sign of long-term changes and gain insight into
their possible importance in adaptive vestibular overloading
and pathological condition.

Materials and Methods

Ethics statement
All procedures on animals were performed in strict

accordance with protocols approved by the Ethical Committees
of the University of Perugia, in compliance with the guidelines
of the Italian Ministry of Health, national laws on animal
research (Legislative Decree 116/92) and The European
Communities Council directive on animal research (N. 86/609/
EEC). All efforts were made to minimize the number of animals
used and their suffering.

Slice preparation and whole cell patch clamp
recordings

The study was conducted in brainstem slices prepared from
male Wistar rats (16-26 days old, Harlan, Italy). We used male
rats to avoid the influence of cyclic estrogenic fluctuation on the
induction of synaptic plasticity in the MVN neurons, given that
previously we demonstrated that HFS can induce LTP or LTD
in female rat, depending on the phase of estrous cycle [33,34].
Following anaesthesia with Avertin (i.p. 250 mg/Kg), the
animals were decapitated and brainstem rapidly removed into
ice-cold modified high sucrose artificial cerebrospinal fluid
(ACSF) of composition (mM): KCl, 2.5; NaH2PO4, 1; MgSO4, 2;
CaCl2, 0.5; D-glucose, 11; NaHCO3, 26.2 and sucrose 238,
saturated with 95% O2 and 5% CO2. Transverse slices (300

µm), containing the MVN, were cut using a vibratome (Series
1000 plus starter CE, Vibratome, St. Louis, MO, USA) and
were incubated for at least 1h before recording in warmed (30
± 1°C) ACSF containing (mM): NaCl, 124; KCl, 3; KH2PO4,
1.25; NaHCO3, 26; CaCl2, 2.1; MgSO4, 1.7; D-glucose 10 and
L-ascorbate 2, saturated with 95% O2 and 5% CO2, (pH ~7.4).
The submerged recording chamber was perfused with warmed
(30 ± 1°C) and oxygenated ACSF at a rate of 2 ml/min.

For each animal we used 2-3 slices prepared from the
middle portion of the MVN (about 1.6 mm of the rostro-caudal
nucleus length), corresponding to the vestibular nerve root.
Neurons from the ventral part of the MVN were visualized by
means of a 60x water immersion objective mounted on an
upright microscope (Eclipse FN 1, Nikon, Tokyo, Japan), fitted
with an analogue video camera (WAT-902B, Watec, Japan).
They generally had ovoid soma (~15 μm in diameter) and at
least two processes visible. Whole-cell patch recordings were
obtained using thick-walled borosilicate glass pipettes (Harvard
Apparatus, Holliston, MA, USA) pulled on a P-97 puller (Sutter
Instruments, Novato, CA, USA) with a tip resistance of 6-10
MΏ in ACSF when filled with intracellular solution containing
(mM): K-gluconate, 145; MgCl26H2O, 2; HEPES, 5; EGTA, 0.1
and K2ATP, 5 (pH 7.2-7.3; osmolarity adjusted to ~290 mOsm).
Whole cell patch clamp recordings were performed using an
Axoclamp-2B amplifier (Axon Instruments, Foster City, CA,
USA), filtered at 3 kHz and digitized at 10 kHz with an Axon
Digidata 1440 A interface controlled by Clampex 10.2 software
(Axon Instruments, Foster City, CA, USA). All neurons included
here were type B neurons recognized by the shape of their
action potential (AP) and in particular based on the presence of
a dual component afterhyperpolarization (AHP) with an
afterdepolarization potential (ADP) (Figure 1B) [35-37]. We
chose to analyse only type B neurons since we found that
glutamatergic synaptic response in type-A neurons are not
influenced by E2 [24].

Excitatory postsynaptic potential (EPSP) was evoked by
stimulating the primary vestibular afferents with a bipolar home-
made Pt/Ir-stimulating electrode placed in a narrow zone at the
medial border of the lateral or descending vestibular nucleus
(Figure 1A), which is the point where a bundle of vestibular
fibres enter the MVN. The EPSP was recorded in current clamp
mode with the membrane potential (Vm) held at -75 mV by
negative holding current to suppress spontaneous neuron
discharge. All the recordings were performed under continuous
perfusion of ACSF containing picrotoxin (100 μM) and
strychnine (1 μM) (Sigma-Aldrich, St Louis, MO) to block
spontaneous GABAA and glycine mediated inhibitory post-
synaptic currents.

Stimulus parameters
Test stimulation consisted of bipolar voltage pulses (intensity

5-25 V, duration 70 μs) delivered at a frequency of 0.06 Hz
using the stimulus isolation unit ISO-Stim 01D (NPI, Germany)
driven by the computer. The stimulus intensity was chosen so
that the amplitude of evoked EPSP was 40-60% of the
maximum at both stimulus polarities, as determined by an
input-output curve. Accordingly with previous studies [30,38]
we induced LTD or LTP by using different patterns of burst
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Figure 1.  Long-term potentiation and depression are induced by different stimulation patterns at the vestibular afferent
synapses of the MVN type B neurons.  A. Schematic drawing of rat brainstem slice showing position of stimulating electrode
(black area) and the recording loci (grey area) in the ventral portion of the MVN. Abbreviations: D, descending vestibular nucleus;
Md, dorsal part of the MVN; Mv, ventral part of the MVN; L, lateral vestibular nucleus; S, superior vestibular nucleus; R, recording
and St, stimulating electrodes. B. Representative action potential recorded from type B neuron displaying an early fast and a late
slow AHP (arrows), and the ADP (asterisk). C. LTD of EPSP induced by long-interval stimulation (LIS). (Top-left) Averaged traces (n
= 20) of EPSPs evoked in type B neurons before (thin trace: pre-LIS) and after LIS (dashed traces: post-LIS). (Top-right) Schematic
drawing of LIS protocol with burst duration (BD) = 0.55 s, burst number (BN) = 30 and inter-burst interval (IBI) = 10 s. (Bottom) Time
courses of the LIS effects on the slope of EPSP in control condition (circles) and in the presence of AP-5 (squares). In this and
following figures each point represents the mean ± SE (from the number of neurons reported in the graph legend) of EPSP slope
measured every 15 s and expressed as percentage of EPSP baseline values. D. LTP of EPSP induced by SIS. (Top-left) Averaged
traces (n = 20) of EPSPs evoked before (thin trace: pre-SIS) and after SIS (dashed traces: post-SIS). (Top-right) Schematic drawing
of SIS protocol with BD = 0.55 s, BN = 4 and IBI = 1 s. (Bottom) Time courses of the SIS effects on the EPSP slope in control
condition (circles) and in the presence of AP-5 (squares). In this and the subsequent figures the bars indicate stimulation delivery
time, so that the negative values represent the times before the start of stimulation and the positive ones those after the end of
stimulation.
doi: 10.1371/journal.pone.0080792.g001
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(0.55 s duration) stimulation at 100 Hz. LTD was induced by 30
bursts repeated with 10 s inter-burst interval (long-interval
stimulation, LIS, Figure 1C) and LTP by 4 bursts repeated with
1 s inter-burst interval (short-interval stimulation SIS, Figure
1D).

The type B neurons tested were allowed to fire normally
during the application of the induction protocol (current clamp
mode, resting Vm = -50 mV). In each single slice, only one
neuron was analysed.

Drugs
Drug used included the antagonists for ARs (flutamide, 100

nM), ERs (ICI 182,780, 100 nM), and NMDAR (D-(-)-2-
amino-5-phosphonopentanoic acid (AP-5, 50 μM) and the
inhibitors of the enzymes 5α-reductase (finasteride, 1 μM) and
P450-aromatase (letrozole, 100 nM). All the drugs were
purchased from Sigma-Aldrich (St Louis, MO). Flutamide is
commonly used to block ARs but it can also influence
GABAergic transmission, because of its similarity with
benzodiazepines [39]. However, we can exclude this possibility
since the concentration used was much lower than that
reported to have anti-convulsant effects [39] and all the
recordings were performed under picrotoxin (100 μM) to block
spontaneous GABAA mediated inhibitory post-synaptic
currents. Concerning ICI 182,780 it is a well known antagonist
of nuclear ERs, however it also acts as a membrane ER
antagonist mediating rapid estrogenic effects [40,41]. Thus, we
used ICI to block ERα and ERβ localized at the cell membrane
[22].

Stock solutions of flutamide (10 mM), letrozole (10 mM), ICI
182,780 (1 mM) and finasteride (100 mM) were dissolved in
dimethylsulphoxide (DMSO) while stock solution of AP-5 (10
mM) was dissolved in distilled water. The drugs were applied
by dissolving them to working concentrations in oxygenated
ACSF (containing picrotoxin and strychnine) and were perfused
at a rate of 2ml/min. Total replacement of the medium in the
chamber occurred within 1 min. In all the experiments using
these different drugs the baseline analysed 10 min after the
beginning of drug application was not modified.

To investigate the possible involvement of estrogenic or
androgenic signals in the induction of LTP and LTD, we first
analysed the induction of LTP and LTD in the presence of the
block of ERs (ICI 182,780) or ARs (flutamide). Then, whether
the receptor blockade affected the induction of the long-term
effect we analysed the effect of inhibitors of enzyme
synthesising E2 (letrozole) or DHT (finasteride).

Data analysis and statistical evaluation
All data analysis was performed with Clampfit 10.2 (Axon

Instruments, Foster City, CA, USA) and Origin 7.0 (Microcal
Software, Northampton, MA, USA) software. The recordings
were analyzed when the height of neuron spike was ≥ 50 mV
and the resting Vm did not change more than 2-3 mV
throughout the baseline. Recordings where series resistance
changed by more than 20% over the duration of the experiment
(30-40 min) were rejected.

Type B neurons were recognized by the shape of 1 min bins
averaged AP and in particular on the presence of biphasic AHP

with an ADP (Figure 1B). To characterize the drug effects on
the baseline EPSP and on induction of the LTD and LTP,
vestibular nerve stimulation was applied every 15 s. We
measured the initial slope of EPSP using linear regression of
the first 1 ms to minimize the contribution of voltage-activated
conductance and used the average response recorded during
a stable initial period (10 min) at the beginning of the
experiments as the baseline. Modifications of the responses
induced by drugs or stimulation protocols were expressed as a
percentage of the baseline. Within a single experiment, we
considered the mean ± SE over 2.5-min intervals before and
after induction protocol application until 30 min, in order to
monitor possible long-term effects. The establishment of LTP
and LTD was statistically verified (Student’s paired t test) by
comparing the values of EPSP slope at 30 min after induction
protocol application with the baseline. The values of LTP and
LTD amplitude given in the text are mean ± SE. The
occurrence frequency of LTP or LTD (n = number of neurons)
was statistically evaluated by using the chi-square (χ2) test. In
addition, we compared the magnitude of LTP and LTD induced
in different experimental conditions by the one-way analysis of
variance (ANOVA). The level of significance was set at P<0.05
for Student’s t test, ANOVA, post hoc comparison, and χ2 test.
Statistical analyses were performed with Statistica (StatSoft,
Tulsa, OK, USA).

Results

Induction of LTD and LTP in the MVN neurons
We used LIS (n = 8, 4 animals) or SIS (n = 10, 5 animals)

protocols to induce LTD or LTP of the EPSP in the type B MVN
neurons (Figure 1C and D).

Application of LIS protocol caused LTD reducing the EPSP
slope to 64 ± 1% of the baseline in all the tested neurons (post-
LIS vs pre-LIS, Student’s t test, P<0.05; Figure 1C and 2D).
Conversely, SIS protocol induced LTP with an increase of the
EPSP slope to 146.5 ± 0.8% in 8 neurons (post-SIS vs pre-SIS,
Student’s t test, P<0.05) and no effect in the remaining 2
neurons (Figure 1D and 3D).

The dependence of LTD and LTP on activation of the
NMDAR was confirmed by applying LIS (n = 4, 2 animals) or
SIS (n = 4, 2 animals) in the presence of AP-5. In all the cases,
AP-5 prevented either LTD or LTP, since both stimulation
protocols did not induce significant modifications of the EPSP
slope compared to the baseline (LIS: 100.7 ± 0.3%, post-LIS vs
pre-LIS, Student’s t test, P>0.05, SIS: 100 ± 0.7%, post-SIS vs
pre-SIS, Student’s t test, P>0.05; Figure 1C and D).

Role of sex neurosteroids in the induction of LTD and
LTP

The possible involvement of AR and/or ER activation and
DHT or E2 synthesis in the induction of LTD and LTP was
investigated by analysing the effects of LIS and SIS protocols
in the presence of the antagonists for ARs (flutamide) or ERs
(ICI 182,780) and of inhibitors of 5α-reductase (finasteride) or
P450-aromatase (letrozole).

Sex Neurosteroids in Vestibular LTP and LTD
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Figure 2.  Involvement of androgens in the induction of LTD by the LIS protocol.  A. Averaged traces (n = 20) of EPSPs
evoked before (thin traces: pre-LIS) and after LIS (dashed traces: post-LIS) in the presence of flutamide, finasteride and ICI
182,780. (Left) Schematic drawing of stimulation pattern inducing LTD (LIS). B and C. Time courses of the responses induced by
LIS under block of the DHT synthesizing enzyme (B) and of ARs or ERs (C). B. Under finasteride, LIS induces LTD (open square, n
= 9) and no effect (open circle, n = 2). C. Under flutamide, LIS has no effect (open square, n = 11) or induces LTD (filled triangles, n
= 2), while under ICI 182,780 it only induces LTD (open circles, n = 6). Note that under block of ARs (flutamide) LTD is prevented in
the majority of cases, while it is still induced under block of DHT synthesising enzyme (finasteride) and of ERs (ICI 182,780). D.
Frequency occurrence (number of neurons) of LTD (black columns), LTP (grey columns) and no effect (NE, white columns) induced
by LIS in the control condition and in the presence of flutamide, finasteride and ICI 182,780 (χ2 test: ***P<0.005, **** P<0.001, n.s. =
no significant). E. In this and in the subsequent figure columns express the mean ± SE of the EPSP slopes (percentage of baseline)
within 2.5-min intervals evaluated at 30 min post-stimulus. Here, comparison between the amplitudes of LTD induced by LIS in
control condition (n = 8) and in the presence of finasteride (n = 9) or ICI 182,780 (n = 6) (one-way ANOVA: n.s = no significant).
doi: 10.1371/journal.pone.0080792.g002
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Figure 3.  Involvement of estrogenic signal in the induction of LTP by the SIS protocol.  A. Averaged traces (n = 20) of
EPSPs evoked before (thin traces: pre-SIS) and after SIS (dashed traces: post-SIS) in the presence of letrozole, ICI 182,780,
flutamide and letrozole plus flutamide. (Left) Schematic drawing of stimulation pattern inducing LTP (SIS). B and C. Time courses of
the responses induced by SIS under block of the E2 synthesising enzyme (B) and of ERs or ARs (C). B. Under letrozole SIS
induces LTD (open square, n = 7) and no effect (open circle, n = 6), while under letrozole plus flutamide it has only no effect (filled
triangles, n = 8). C. Under ICI 182,780 SIS has no effect (filled triangles, n = 10), while under flutamide it induces LTP (open circles,
n = 6) or no effect (open square, n = 2). Note that induction of LTP is fully prevented under block of ERs (ICI 182,780) while in the
majority of cases it is not affected by the block of ARs (flutamide). Moreover, under inhibition of the E2 synthesising enzyme
(letrozole) LTP by SIS is prevented or reverted into LTD that is abolished by flutamide. D. Frequency occurrence (number of
neurons) of LTD (black columns), LTP (grey columns) and no effect (NE, white columns) induced by SIS in the control condition and
in the presence of letrozole, ICI 182,780, flutamide and letrzole plus flutamide (χ 2 test: *P<0.05, **P<0.01, ***P<0.005, **** P<0.001
and n.s. = no significant). E. Comparisons between the amplitude of LTD obtained by SIS under letrozole (n = 7) and LTD normally
induced by LIS in control condition (n = 8) and F. Comparison between the amplitudes of LTP induced by SIS in control condition (n
= 8) and in the presence of flutamide (n = 6) (one-way ANOVA: n.s. = no significant).
doi: 10.1371/journal.pone.0080792.g003
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Androgens but not E2 are involved in the induction of
LTD

Effect of the block of androgenic pathway on the
induction of LTD.  To verify whether LTD induced by the LIS
protocol could depend on the androgenic neurosteroids we first
delivered this stimulation pattern under the block of the ARs
(flutamide: n = 13, 5 animals). Application of flutamide did not
modify the baseline EPSP (101.2 ± 0.56%, Student’s t test,
P>0.05) but in the presence of flutamide no effect was
observed in 11 neurons (101.1 ± 0.75%, post-LIS vs pre-LIS,
Student’s t test, P>0.05) while LTD (65.7 ± 2.2%, post-LIS vs
pre-LIS, Student’s t test, P<0.05) was still induced in only 2
cases (Figure 2A, C, D and E). In order to verify the possible
involvement of local synthesis of DHT in the induction of LTD
we analysed the effect of LIS under the blockade of 5α-
reductase with finasteride (n = 11, 5 animals). Finasteride had
no effect on the baseline EPSP (99.8 ± 0.36%, Student’s t test,
P>0.05) but, unlike flutamide, it did not affect LTD in most of
the cases. In fact LTD (64.8 ± 1.4%, post-LIS vs pre-LIS,
Student’s t test, P<0.05) was induced in 9 neurons, while no
effect was observed in the other 2 neurons (Figure 2A, B, D
and E). As a result of this different influence of the drugs, the
occurrence frequency of LTD under flutamide was significantly
different compared with finasteride and control, while the
occurrence of LTD under finasteride did not differ from the
control (flutamide vs control: χ2 = 13.9, df = 2, P<0.001;
finasteride vs control: χ2 = 1.37, df = 2, P>0.2; flutamide vs
finasteride: χ2 = 10.5, df = 2, P<0.005; Figure 2D). In addition,
the amplitude of LTD under finasteride was not statistically
different from the LTD observed in control condition and LTD
induced by LIS under ICI 182,780 (see below) (ANOVA: F1,20 =
0.1, P=0.8; Figure 2B, C and E).

Effect of the block of estrogenic pathway on the
induction of LTD.  We also assayed the possible influence of
estrogenic signal activation on the LIS dependent LTD by
blocking the ERs with ICI 182,780 (n = 6, 3 animals). ICI
182,780 did not modify the baseline EPSP (100.5 ± 0.55%,
Student’s t test, P>0.05) and had no effect on the induction of
LTD. In fact, in the presence of ICI 182,780 LTD (63.6 ± 1.7%,
post-LIS vs pre-LIS, Student’s t test, P<0.05) was obtained in
all the examined neurons (Figure 2A, C, D and E). The
occurrence of LTD was not different from that observed under
control condition and in the presence of finasteride, but it was
different from that obtained under flutamide (ICI vs control: χ2 =
0.008, df = 2, P=1; ICI vs finasteride: χ2 = 1, df = 2, P>0.2, ICI
vs flutamide: χ2 = 11.7, df = 2, P<0.005; Figure 2D). As stated
above, the amplitude of LTD obtained under ICI 182,780 was
not statistically different from that induced under finasteride and
in control condition (ANOVA: F1,20 = 0.1, P=0.8; Figure 2B, C
and E).

E2, but not androgens, is involved in the induction of
LTP

Effect of the block of estrogenic pathway on the
induction of LTP.  Our previous study demonstrated by
extracellular field potential recordings that the local synthesis of
E2 and activation of ERs play a key role in the induction of LTP
by HFS in the MVN neurons [28]. Thus, we verified this result

by analysing the effect of ICI 182,780 (n = 10, 4 animals) and
letrozole (n = 13, 5 animals) on the induction of LTP by the SIS
protocol in single MVN neurons. Like observed for ICI 182,780
(see above), the baseline EPSP was not affected by letrozole
application (100.3 ± 0.72%, Student’s t test, P>0.05). However,
the effects induced by the SIS protocol were completely
different in the presence of ICI 182,780 or letrozole. In fact,
while ICI 182,780 prevented LTP in all the examined neurons
(100.1 ± 0.78%, post-SIS vs pre-SIS, Student’s t test, P>0.05),
letrozole abolished LTP in only 6 neurons (100.6 ± 0.84%,
post-SIS vs pre-SIS, Student’s t test, P>0.05) while in the other
7 neurons SIS induced LTD (64.4 ± 1.1%, post-SIS vs pre-SIS
Student’s t test, P<0.05; Figure 3A, B, C, D and E). Because of
this difference in the drug effects, the occurrence frequency of
the SIS effects under ICI 182,780 or letrozole was significantly
different from that observed in control condition and between
them (ICI vs control: χ2 = 13, df = 2, P<0.005; letrozole vs
control: χ2 = 16.2, df = 2, P<0.001; letrozole vs ICI: χ2 = 7.4, df
= 2, P<0.01; Figure 3D). Concerning the amplitude of LTD
induced by SIS in the presence of letrozole it was not
significantly different from that normally induced by the LIS
protocol in control condition (see above, ANOVA: F1,13 = 0.068,
P=0.79; Figure 3E).

Effect of the block of androgenic pathway on the
induction of LTP.  The possible effect of androgenic signal
activation on the induction of LTP was analysed by applying
SIS protocol under the blockade of ARs with flutamide (n = 8, 4
animals). Under flutamide SIS induced LTP (146.3 ± 1.3%;
post-SIS vs pre-SIS, Student’s t test, P<0.05) in 6 neurons and
had no effect (100.8 ± 0.98%, post-SIS vs pre-SIS, Student’s t
test, P>0.05) in the remaining 2 neurons. The occurrence and
amplitude of LTP under flutamide did not significantly differ
from those observed under control condition (χ2 = 0.06, df = 2,
P>0.95; ANOVA: F1,12 = 0.1; P=0.75; Figure 3A, C, D and F).
We also verified whether LTD resulting by SIS under letrozole
depended on androgenic signals by applying SIS protocol in
the presence of combined blockade of P450-aromatase and
ARs (letrozole plus flutamide, n = 8, 3 animals). The combined
block prevented either LTP or LTD (100.5 ± 0.56%, post-SIS vs
pre-SIS, Student’s t test, P>0.05; Figure 3A, B and D) so that
the occurrence of SIS effects in this condition (only no effects)
was statistically different from that obtained under letrozole
alone (LTD and no effects) or flutamide alone (LTP and no
effects) and similar to that obtained under ICI 182,780 (only no
effects) (letrozole plus flutamide vs letrozole: χ2 = 6.1, df = 2,
P<0.05; letrozole plus flutamide vs flutamide χ2 = 9.3, df = 2,
P<0.01; letrozole plus flutamide vs ICI: χ2 = 0.004, df = 2, P=1;
Figure 3D).

Discussion

In this study we demonstrate for the first time in the
vestibular system that the long-term synaptic changes induced
in the MVN neurons of male rat by afferent stimulations and
their direction depend on different sex neurosteroid signals,
since the LTD requires the presence of androgens, T or DHT,
and LTP that of the estrogen E2. In fact, the blockade of ARs
with flutamide prevented in almost all cases the induction of
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LTD by LIS, while that of ERs with ICI 182,780 impeded LTP
elicited by SIS. Conversely, LTD and LTP were not modified by
ICI 182,780 and flutamide, respectively.

These effects under blockade of the sex steroid receptors
imply the local synthesis of androgens and estrogens. Indeed,
under letrozole that prevents the conversion of T into E2 by
blocking the P450-aromatase [7,10-14] the induction of LTP by
SIS was impeded and LTD instead of LTP was often observed.
Conversely, finasteride that blocks the synthesis of DHT from
T, through inhibition of the 5α-reductase enzyme [8,9,13], did
not abolish LTD in response to its inducing stimulation protocol
(LIS), except in two cases. In general, these results confirm the
crucial role of the local synthesis of E2 in the induction of LTP
previously observed in the MVN neurons [28], but do not
provide a definitive demonstration for the involvement of the
DHT synthesis in the induction of LTD.

Concerning the E2, the P450-aromatase may play a role
either by synthesizing E2 in response to stimulation inducing
LTP or by synthesizing E2 continuously to permit to a specific
stimulus for LTP to be effective. However, the permissive
action of E2 is doubtful since the same specific stimulation for
LTP can lead to LTD under the P450-aromatase block. This
supports the idea that the afferent stimulation is not specific per
se, but for its capability to activate the synthesis of E2. Since
we know that LTP can be induced in the MVN by simply
increasing the level of E2, through exogenous administration
[24], it is likely that the stimulation activates the synthesis of
E2, and this, in turn, leads to LTP. In this view, the inversion of
LTP into LTD that occurs in the presence of letrozole, but not of
ICI 182,780, can be explained by a probable accumulation of
upstream and/or downstream androgenic metabolites that
takes place when the transformation of T into E2 is impeded.
Therefore, LTD might result from activation of ARs by the
increased level of androgens or by an interaction of DHT
metabolites, like androstane-dioles, with other receptors as
GABAA or ERβ [42,43]. However, the finding that flutamide fully
prevented the LTD observed under block of the estrogenic
pathway strongly suggests the involvement of AR activation by
T and/or DHT. In addition, an effect on GABAA receptor can be
certainly ruled out since we worked under block of GABAergic
transmission. The possible influence of androstane-dioles on
ERβ could also raise the suspicion of a role of this pathway in
the induction of LTP by SIS, but activation of ERs by locally
synthesized E2 appears to be the only responsible for LTP
since under letrozole LTP was abolished or inverted into LTD.

Moreover, the evidence that E2-dependent LTP or androgen-
dependent LTD can be obtained in the same MVN neurons
also suggests that they have the possibility to develop either
potentiation through E2 or depression through T or DHT
depending on the afferent stimulation pattern. Therefore, the
mechanisms for inducing LTP and LTD by sex neurosteroids
seem to coexist in many MVN neurons, like supported by our
recent immunohistochemical evidence of co-localization of ERs
and ARs in the majority of them [25].

Concerning the involvement of the DHT synthesis in LTD,
our findings do not yet lead to its demonstration, since under
inhibition of the 5α-reductase LTD was still induced, even
though it was prevented by the AR blockade in almost all

cases. This suggests that, although the activation of androgen
signaling is required for LTD, the conversion of T into DHT
could not be necessary. However, we know that 1) DHT is able
to induce LTD in the MVN [23,25], 2) under block of the DHT
synthesis the occurrence of LTD by exogenous administration
of T was reduced [23] and 3) DHT shows a greater affinity for
ARs than T [41,44]. Taken together these results put forward
the conversion of T into DHT during the LTD-inducing
stimulation. In this view the maintenance of LTD under the
block of 5α-reductase can be explained by the upstream
accumulation of T substituting for the lack of DHT. However,
according with our previous field potential study with
exogenous administration of T [23], we expected that
accumulating T not only reduced the probability of LTD, but
also increased that of LTP, owing to its transformation into E2.
But this did not occur in the present experimental condition. It
may be that these different effects depend on a lower level of T
elicited by the synaptic stimulation compared to that reached
through exogenous administration of T [23], or to an inhibitory
influence of the LIS pattern on the P450-aromatase. Therefore,
we hypothesize that LTP can only be induced when the
synthesis of E2 is activated by a specific pattern of stimulation.
On the contrary, in theory LTD could be elicited by any
stimulation able to increase the level of T, but not to activate
the P450-aromatase. Therefore, the neural synthesis of E2
seems to be crucial for guiding vestibular synapses toward LTP
or LTD. In fact, we suggest that both inducing LTP and LTD
stimulation facilitates the synthesis of T, but only the specific
activation of P450-aromatase can drive the direction of
synaptic change toward the potentiation. It remains to be
demonstrated whether the transformation of T into DHT is also
guided by specific stimulation patterns.

The mechanism by which stimulation patterns may lead to
production of different neurosteroids is at the moment fully
unknown. We know that the E2 synthesis may be mediated by
the Ca2+ influx through the NMDAR [11] and activation of the
P450-aromatase [12-14,26,27]. Similarly, NMDAR dependent
Ca2+ influx elevates the level of pregnenolone and
pregnenolone sulphate [11], the first precursors of sex
neurosterogenesis [5,6]. But, no evidence for a Ca2+-driven
activation of 5α-reductase has been provided so far. Our
electrophysiological findings may only prompt for a role of
different levels of Ca2+ associated with different synaptic
stimulations in the specific activation of estrogenic or
androgenic enzymatic conversion of T. Moreover, since both
LTP and LTD in the MVN are NMDAR dependent phenomena,
and induction of LTP or LTD is mediated by different amount of
NMDAR-dependent Ca2+ signalling [45], we suggest that these
different levels of Ca2+ allow the synthesis of potentiating or
depressant neurosteroids, that in turn regulate the NMDAR
function [24,27,46-50]. However, the Ca2+ dynamics associated
with stimulation patterns inducing LTD or LTP in the vestibular
nuclei need to be explored in detail, as well as the possible
effect of different Ca2+ levels in activating the estrogenic or
androgenic signals involved in the NMDAR dependent synaptic
plasticity. The intracellular signalling pathways from ERs and
ARs to NMDAR that are implied in the rapid synaptic effects of
E2 and T-DHT have not been well elucidated, but activation of
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different kinase signal cascades including mitogen-activated
protein kinase pathway has been proposed [3,27,40,47,50].

On the whole, this study suggests that the activity dependent
neural production of E2 and T-DHT plays a very important role
in determining the sign of vestibular synaptic plasticity.
However, the sex neurosteroids might influence this plasticity in
a different way considering that their effects, as well as the
activity of their synthesising enzymes, may be affected by the
level of circulating hormones depending on sex, estrous cycle
and age [33,34]. In fact, significant morphological and
functional modifications of neuronal circuitry have been
reported to depend on the history of estrogen and androgen
impact on the neurons [51]. A further complexity in figuring out
the real effects of sex neurosteroids in a more integrated
system comes from their possible role in modulating inhibitory
GABAergic and glycinergic inputs. However, even though our
previous studies with exogenous administration of E2 and DHT
show no substantial changes in their effects caused by GABA
[23,28], we actually found that induction of LTP in the MVN is
facilitated by the E2 mediated reduction of GABAergic
transmission [28]. Concerning LTD, it is likely that in the
presence of GABAergic transmission it may be facilitated by
the downstream DHT metabolites acting on GABAA receptors
[42].

Nevertheless, even if performed in a simplified experimental
condition our study gives clear evidence that the sign of
glutamate synaptic plasticity can be determined by specific

stimulation patterns in dependence on the local activation of
estrogenic or androgen pathways

Conclusions

On the whole this study demonstrates a clear role of sex
neurosteroids in the induction of vestibular synaptic plasticity.
In particular, it demonstrates a distinct role of E2 through ERs,
and T or DHT through ARs, in mediating the induction of LTP
and LTD, respectively. Therefore, we suggest that the synaptic
stimulation pattern is responsible for the induction of LTP or
LTD since it drives the synthesis, at a neural level of estrogens
or androgens. In this context, neural E2 and T-DHT seem to be
very effective modulators of synaptic plasticity that can
significantly contribute to vestibular learning processes.
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