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ABSTRACT In this work we report the complete sequence and assembly of the
estradiol-degrading bacterium Novosphingobium tardaugens NBRC 16725 genome
into a single contig using the Pacific Biosciences RS Il system.

strogens are C18 steroid hormones that play several roles in animal physiology (1)

but also are important endocrine-disrupting compounds (EDCs) affecting aquatic
fauna, even at extremely low concentrations (2). The occurrence and abundance of
estrogens in aquatic environments present a serious risk to public health (3), and they
have been classified by the World Health Organization as group 1 carcinogens (https://
monographs.iarc.fr/list-of-classifications-volumes/).

Although the presence and removal of estrogens via biodegradation have been
studied to some extent (4), current knowledge of microbial estrogen degradation
pathways is still very limited (5). The bacterial degradation of estrogens is an uncom-
mon trait, and only a few bacteria are known to completely metabolize them (6-8).

The alphaproteobacterium Novosphingobium tardaugens NBRC 16725 (described as
strain ARI-1) was isolated at a sewage treatment plant in Tokyo, Japan, and is able to
use estradiol, estrone, and estriol as its only carbon source (9, 10). It is a Gram-negative,
aerobic, rod-shaped, and nonmotile bacterium. The genome of this strain was previ-
ously sequenced using 454 GS-FLX Titanium and Illumina HiSeq 1000 technologies and
assembled in 54 contigs (contig Ns,, 486,386 bp; contig Ls,, 4 bp) (BioProject number
PRJDB314).

Here, we report the complete sequence and assembly of the N. tardaugens NBRC
16725 genome into a single contig using the Pacific Biosciences (PacBio) RS Il techno-
logy that offers very long and unbiased reads that are uniquely suited for closing
genome assemblies.

N. tardaugens NBRC 16725 was purchased from the Leibniz Institute DSMZ—
German Collection of Microorganisms and Cell Cultures. The strain was grown at 30°C
in nutrient broth medium in an orbital shaker. Genomic DNA was isolated using the
phenol chloroform extraction method (11). The G-tube method was used to construct
a 10-kb SMRTbell template library of 9,172 kb, which was checked on an Agilent
Technologies 2100 Bioanalyzer instrument. The sequencing reagent used was single-
molecule real-time (SMRT) cell 8Pac v3 with the DNA polymerase binding kit P6.
Sequencing yielded 1,248,591,484 total bases and 205,778 total reads with a mean
subread length of 6,067 bp and an Ny, value of 7,616 bp. All raw data were deposited
in the SRA database under accession number SRR8271516. The PacBio reads were
assembled de novo using RS Hierarchical Genome Assembly Process (HGAP) v3.0
software (12) with default options, yielding a single contig with a total length of
4,358,096 bp and a 61.2% GC content (Fig. 1). Pairwise alignment between that single
contig sequence and a previous assembly using Geneious v11.0.5 software revealed
99.8% base pair identity, and 175,514 additional nucleotides were sequenced that were
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FIG 1 Graphical map of the circular genome of Novosphingobium tardaugens NBRC 16725 obtained using the GCView Server (21)
comparative genomic tool. Colors show CDS (blue), ORFs (red), GC content (black), GC skew + (green) and GC skew - (purple).

distributed in 26 gaps existing between previously available contigs. The whole assem-
bled nucleotide sequence was deposited in GenBank under the accession number
CP034179.

Protein-, rRNA-, and tRNA-coding genes were annotated using the NCBI Prokaryotic
Genome Automatic Annotation Pipeline (PGAAP) (13) and Rapid Annotations using
Subsystems Technology (RAST) (14). This genome contained 4,097 open reading frames
(ORFs) with 4,040 coding DNA sequences (CDS), 48 tRNA-coding sequences, and 6
rRNA-coding sequences.

The N. tardaugens NBRC 16725 genome (4.36 Mbp) was found to be highly similar
(70.79%) to that of Novosphingobium subterraneum strain DSM 12447 (15) using aver-
age nucleotide identity based on BLAST (ANIb) analysis (16).

The oecA, oecB, and oecC genes involved in estradiol degradation (17) are located in
two distinct gene clusters as in Sphingomonas sp. strain KC8 (7), covering a 76-kb region
that also contains the testosterone degradation cluster (18), which was segregated in
the previous assembly. The genome includes a third cluster containing the sal2, scd2AB,
and stdA2 genes involved in cholic acid degradation (19, 20).

Data availability. This genome sequencing project has been deposited in GenBank
under the accession number PRINA505257. The version described in this paper is
version CP034179. All raw data have been deposited in the SRA database under
accession number SRR8271516.
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