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Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction
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ABSTRACT
Defective autophagy contributes to Alzheimer disease (AD) pathogenesis although evidence is conflicting
on whether multiple stages are impaired. Here, for the first time, we have comprehensively evaluated the
entire autophagic process specifically in CA1 pyramidal neurons of hippocampus from early and late-stage
AD subjects and nondemented controls. CA1 neurons aspirated by laser capture microdissection were
analyzed using a custom-designed microarray comprising 578 neuropathology- and neuroscience-
associated genes. Striking upregulation of autophagy-related genes, exceeding that of other gene
ontology groups, reflected increases in autophagosome formation and lysosomal biogenesis beginning at
early AD stages. Upregulated autophagosome formation was further indicated by elevated gene and
protein expression levels for autophagosome components and increased LC3-positive puncta. Increased
lysosomal biogenesis was evidenced by activation of MiTF/TFE family transcriptional regulators,
particularly TFE3 (transcription factor binding to IGHM enhancer 3) and by elevated expression of their
target genes and encoded proteins. Notably, TFEB (transcription factor EB) activation was associated more
strongly with glia than neurons. These findings establish that autophagic sequestration is both competent
and upregulated in AD. Autophagosome-lysosome fusion is not evidently altered. Despite this early
disease response, however, autophagy flux is progressively impeded due to deficient substrate clearance,
as reflected by autolysosomal accumulation of LC3-II and SQSTM1/p62 and expansion of autolysosomal
size and total area. We propose that sustained induction of autophagy in the face of progressively
declining lysosomal clearance of substrates explains the uncommonly robust autophagic pathology and
neuritic dystrophy implicated in AD pathogenesis.
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Introduction

As neurons age, their dependence on mechanisms of protein
clearance for survival increases even as the competence of these
proteolytic systems progressively declines. In adult onset neu-
rodegenerative diseases such as Alzheimer disease (AD), amyo-
trophic lateral sclerosis, and Parkinson disease, the responsible
pathogenic protein accumulates only late in life, reflecting an
emergence of aging- and disease-related deficits in eliminating
damaged proteins.1-3 Autophagy, the principal lysosomal path-
way for turning over intracellular constituents, is closely linked
to the mechanisms underlying cellular aging and longevity4-6

and is upregulated during cellular stress.7 Several subtypes of
autophagy are known, which are distinguished by how sub-
strates are delivered to lysosomes.8 The major one of these sub-
types, macroautophagy, hereafter referred to as autophagy,
supports both the constitutive and selective turnover of a broad
range of cell constituents and is also the only mechanism avail-
able to neurons for eliminating damaged organelles and large
protein aggregates.9 Acting in concert with the BECN1-

PIK3C3/VPS34 complex and several ubiquitin-ligase com-
plexes,10,11 ULK1 initiates the formation of an elongating dou-
ble-membrane structure that surrounds the substrate(s) and
closes to form a vacuole, termed the autophagosome.12 Seques-
tration of substrates within an autophagosome involves their
engagement with the phagophore membrane via LC3 proteins
and other autophagy receptors such as SQSTM1/p62,13-15

which facilitate selective cargo recruitment and are themselves
ultimately degraded by autophagy.

Autophagosome clearance is initiated upon fusion with
lysosomes and/or late endosomes, which introduce into the
resulting autolysosome the dozens of lysosomal acidic
hydrolases and the acidification machinery necessary for
enzyme activation and substrate digestion.1 The release of
amino acids from autolysosomes and other factors maintain
MTOR in its active state to inhibit autophagy induction in
a feedback manner.16-18 Under conditions of nutrient depri-
vation or cellular/lysosomal stress, however, MTOR may
become inhibited, leading to nuclear translocation of MiTF/
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TFE family proteins that positively regulate genes control-
ling lysosomal biogenesis and some aspects of autophago-
some formation.19 These include members of the MiTF/TFE
transcription factor family such as TFE3 (transcription fac-
tor binding to IGHM enhancer 3) and TFEB (transcription
factor EB), which bind to a specific E-box (the “CLEAR
sequence”) on the promoter of a large group of autophagic-
lysosomal genes to promote their expression.20-22 Additional
transcription factors from the FOXO (forkhead box) family,
including FOXO1 and FOXO3, positively regulate smaller
subsets of genes supporting autophagy in response to
stress-responsive protein kinases such as AKT.23

Autophagy flux is markedly impaired in AD and AD models
although information on the stage(s) of autophagy impaired
and the molecular basis for deficits, especially in the authentic
disease in humans, is incomplete and conflicting.24,25 The wide-
spread appearance of dystrophic neurites filled mainly with
autophagic vacuoles containing incompletely digested cellular
constituents is a hallmark neuropathological feature of AD,26-28

along with the classical intraneuronal aggregates of MAPT/
tau29 and extracellular deposits of b-amyloid.30 The storage of
undigested substrates in AD brain, which is more extensive
than in other adult-onset neurodegenerative disorders, reflects
a major defect in lysosomal clearance mechanisms.26 That these
lysosomal system deficits are key pathogenic factors in AD is
strongly suggested by growing evidence that selectively restor-
ing lysosomal proteolytic function in mouse AD models ameli-
orates diverse pathological, synaptic, and cognitive deficits.31,32

Although lysosomal function is evidently deficient in AD mod-
els,25,33 reports of additional alterations of earlier steps of auto-
phagy (e.g. autophagy induction, autophagosome formation)
have been conflicting,34-37 reflecting, in many cases, limited
analysis of human samples and inferences made from a single
or relatively few indices of autophagic function as well as the
use of brain tissue composed of diverse cell types varying in
their responses to disease.38 Here, we assessed all of the major
steps of the autophagy pathway to evaluate the initiation as
well as subsequent autophagy flux and the implications for the
development of AD pathology.

In the present study, we used a unique approach involving
the evaluation of autophagy alterations specifically within the
vulnerable CA1 hippocampal neuronal population of AD
brains by determining the expression profile of 44 selected
autophagy-related genes in relation to 534 other degenerative
disease-related genes comprising a custom-designed microar-
ray platform.38-40 Expression changes in autophagy-related
genes were interpreted in relation to morphological alterations
of autophagy-related autophagic organelles in CA1 neurons
combined with analyses of mRNA and levels, subcellular distri-
butions, and activities of autophagy-related proteins in the hip-
pocampus, which collectively reflect the functional activity of
autophagy induction and autophagosome formation as well as
the biogenesis and degradative capability of lysosomes. We also
analyzed the changes in neuron-specific expression of major
transcriptional regulators of autophagy and lysosomal biogene-
sis in AD brain. Our analysis reveals that autophagy is upregu-
lated early and progressively in AD, despite an evolving
impairment in the ability to clear autophagic substrates. This
combination of pathological events provides a plausible basis

for the well-described massive accumulations of substrate-laden
autolysosomes within dystrophic neurites that are a hallmark of
AD neuropathology.41

Results

Autophagosome formation is upregulated in CA1 neurons
in AD brain

To obviate limitations of autophagy analyses at the regional
brain tissue level, which includes the differential expression
patterns of heterogeneous cell types, we re-analyzed a previ-
ously published microarray made on single case populations of
CA1 pyramidal neurons microaspirated by laser capture micro-
dissection (LCM), focusing on the mRNA expression of 44
autophagy-related genes (out of 578 total genes on the custom-
designed array platform).40 The 44 genes selected as auto-
phagy-related were classified by curating gene ontology data-
bases using the most recent biological evidence supporting a
relevant function in autophagy (Fig. 1A; see Materials and
Methods). Considering Br. III/IV (n D 14) and V/VI (n D 15)
together (Table 1), we observed that a disproportionately high
percentage of the genes related to autophagy (34%, 15/44) were
significantly upregulated relative to controls (n D 10) whereas
only 2% of this group were downregulated (1/44) (Fig. 1A, B).
By comparison, considering all 578 genes on the microarray,
only 6% (38/578) were significantly upregulated while a rela-
tively high percentage (15%, 85/578) were downregulated
(Fig. 1C). Analysis of the Gene Ontology (GO) terms for highly
expressed gene groups confirmed that “Autophagy” was the
most highly represented biological process in our gene array
(Fig. 1D). Notably, the majority of the upregulated autophagy
genes were significantly altered in both Br. III/IV and V/VI
cases (Fig. 1A), suggesting that autophagy responses in these
neurons arise early and are then maintained during the pro-
gression of the disease. Upregulated autophagy genes included
those involved in induction signaling (AKT1 and MAPK3),
autophagosome formation (ATG3, ATG5, ATG12, and ATG8
orthologs GABARAP and MAP1LC3A), autophagosome-lyso-
some trafficking/fusion (RAB7A42 and RAB24), lysosomal bio-
genesis/proteolysis (CLCN7, LAMP1 and CTSD) and other
RAB proteins involved in autophagy (RAB4A43 and
RAB5A38,44). We performed additional qPCR measurements in
the CA1 sector of the hippocampus on an independent cohort
of controls, Br. III and Br. V cases shown in Table 3 (n D 9, 10,
10 respectively) that validated these microarray findings. As
shown in Fig. 1E, 7 of 8 genes that were measured by qPCR
analyses (the first 8 genes represented) for comparison to
microarray analysis match in terms of the direction of change
or absence of change, although qPCR analyses reflect expres-
sion from a mixed cell population in hippocampal tissue. The
strong upregulation in AD brain of a particular set of ATG
genes from our array (ATG3, ATG5, and ATG12) and 2 addi-
tional genes, ULK1 and PIK3C3/VPS34measured by qPCR sug-
gested the possible activation of FOXO transcription factors,
which regulate a select group of autophagic genes,45 including
the 5 from our study. Consistent with this possibility, FOXO1
was significantly upregulated by qPCR assessment (p � 0.005)
whereas FOXO3 expression was unchanged (Fig. 1E).
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Additional support for the upregulation of autophagy in
AD brain was provided by quantitative western blot analy-
ses of hippocampal homogenates prepared from tissue used
in qPCR analyses (Table 3). Results revealed no significant
change of ULK1 levels, but elevated levels of PIK3C3/
VPS34 (p � 0.01), a component of the BECN1-PIK3C3/
VPS34 complex that is positively regulated by ULK11

(Fig. 2A, B) in Br. V. Increased autophagosome formation
in AD cases was also supported by elevated levels of the
autophagic marker LC3B-II and LC3B-I in hippocampal
total homogenate of Br. V samples (p � 0.01) (Fig. 2A, B)
and a marked increase in the total area/cell and in number
of LC3-positive puncta in AD CA1 neurons (Fig. 5A, C, D)
detectable already at Br. III. We also detected an increase of
FOXO1 levels at Br. V (Fig. 2C, D).

Lysosomal biogenesis is mediated by TFE3 in CA1 neurons
in AD brain

Upregulated lysosomal biogenesis in neurons in AD has previ-
ously been suggested by lysosomal morphometry46 and lyso-
somal protease CTSD (cathepsin D) expression patterns47 in
affected neuronal populations of AD brain along with upregu-
lation of CTSD gene and protein expression in neurofibrillary
tangle-bearing CA1 pyramidal neurons.48 This earlier conclu-
sion was strongly supported by microarray data obtained from
hippocampal CA1 pyramidal neurons showing upregulated
mRNA expression for 3 genes containing the CLEAR site in

their promoter sequence, LAMP1, CLCN7, and CTSD, which
was confirmed in the hippocampus by qPCR analysis of CTSD
and LAMP1 (Fig. 1A, E). LAMP2, which is not a CLEAR family
member,22 was not altered at the mRNA or protein levels. Con-
sistent with mRNA findings, levels of CTSD and CTSB protein
were also significantly elevated in hippocampus (p�0.01,
Fig. 3A, B) although levels of LAMP1 protein were not signifi-
cantly increased. The discrepancy between the mRNA and pro-
tein levels of LAMP1 may be attributed to other levels of
regulation between transcripts and protein products.49 Of the
44 genes related to autophagy analyzed by microarray, we also
found 3 other genes containing the CLEAR site sequence
(RAB5A, RAB7A and GABARAP) that were upregulated at the
mRNA level. In light of these data, we next investigated in CA1
neurons the state of activation of the MiTF/TFE family of tran-
scription factors known to regulate lysosomal biogenesis and
CLEAR family proteins. To evaluate further roles for MiTF/
TFE family members in autophagy upregulation in AD, we first
measured TFEB and TFE3 mRNA levels by qPCR in a CA1
neuron population microdissected from hippocampus (Table 2,
Ctr. Vs. Br. V, n D 5, 10 respectively) and also in whole hippo-
campal extracts from AD and control brains (Table 3) shown
in Fig. 4A, B. Surprisingly, TFE3 mRNA levels were higher
than those of TFEB in hippocampus, as indicated by an amplifi-
cation plot showing an �1 cycle difference in CT values
(Fig. 4C). Moreover, TFE3 mRNA expression was greater in Br.
V CA1 neurons (p � 0.0001; Fig. 4A) and also in whole AD
hippocampal extracts (p � 0.05; Fig. 4B) compared to controls.

Figure 1. Changes in expression of autophagy-related genes in hippocampal CA1 pyramidal neurons. (A) Autophagy-related genes showing differential regulation in CA1
neurons via custom-designed microarray analysis of 578 genes. Significantly (p � 0.05) altered in both Br. III/IV and Br. V/VI shown in dark gray; others significantly altered
in Br. V/VI only shown in black, no change in gray. (B) Pie chart indicating proportions of significantly upregulated and downregulated autophagy genes on the array plat-
form. (C) Pie chart illustrating a relative paucity of genes upregulated in all 578 transcripts contrasting with the higher proportion that are downregulated. (D) GO analysis
of all highly expressed genes in Br. III/IV and Br. V/VI when compared to control group. Autophagy, the most represented term, is highlighted in darker blue. p value cut
off 0.05. (E) qPCR validation of selected autophagy/lysosomal genes assayed in the CA1 sector of the hippocampus. Statistical significance is denoted by asterisks with
p-values shown determined by one-way ANOVA or for 2 column analysis by Student t test. �p � 0.05; ��p � 0.01.
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In accord with mRNA levels, TFE3 protein levels were also
increased in AD brain at both Braak stages (p � 0.01; Fig. 4D,
E). Most importantly, TFE3 immunocytochemistry (ICC)
revealed that a significantly higher percentage of CA1 neurons
exhibited translocation of TFE3 immunoreactivity from the
cytoplasm to the nucleus (Fig. 4F, G), indicating activation of
TFE3. Notably, TFEB mRNA levels in microdissected CA1
neurons were unchanged in AD, whereas levels were signifi-
cantly increased in Braak stage V AD hippocampal tissue (p �
0.05; Fig. 4A, B). The AD-related increase in hippocampus, but
not in CA1 neurons, raised the possibility that the elevated
TFEB expression was in glial cells. This observation is consis-
tent with our preliminary evidence that TFEB is more highly
expressed in glia than in neurons (unpublished data). Accord-
ingly, TFEB protein levels did not differ in total extracts of hip-
pocampus between AD and controls (Fig. 4D, E). However,
fluorescence immunolabeling of TFEB in a semi-quantitative
analysis of signal intensity confirmed that the frequency of glial
cells with positive nuclear TFEB labeling was significantly
higher in AD Braak V stage hippocampus (Fig. 4H, I). In

contrast to glia, only a very small percentage of CA1 neurons
exhibited nuclear translocation of TFEB, albeit at a significantly
higher frequency in mild/moderate AD cases than in controls
(Fig. 4I). Taken together, these data indicate a more prominent
role for TFE3 in promoting lysosomal biogenesis and auto-
phagy upregulation in CA1 neurons during AD pathogenesis
and point to a relatively more important role for TFEB in glia
of CA1 hippocampus.

Clearance of autophagic substrates by lysosomes is
defective in CA1 neurons in AD

Despite evidence that lysosomal biogenesis is more activated in
AD brain, including our earlier studies,46,47 additional observa-
tions indicated that lysosomal degradative efficiency is
impaired. To evaluate lysosomal function, we assessed LC3
clearance specifically in CA1 pyramidal cells using double-
immunofluorescence labeling analysis with antibodies to the
autophagosome marker LC3 and the lysosomal hydrolase
CTSD (Fig. 5A). Qualitatively, the presence of LC3 in many

Table 1. Demographics of brain samples utilized in tissue microarray analysis from the Rush University Religious Orders Study (RROS) and the University of Pennsylvania
Center for Neurodegenerative Disease Research (CNDR).

Sample number Braak stage Brain bank PMI (h) Age at death ApoE Race/Sex

Ctr. 1 I RROS 2.3 85.2 E3/3 WF
Ctr. 2 II RROS 5.2 76.8 E3/3 WM
Ctr. 3 II RROS 7.5 72.5 E3/4 WF
Ctr. 4 I RROS 8.5 81.9 E3/3 WF
Ctr. 5 I RROS 12.5 81.2 E3/3 WM
Ctr. 6 I RROS 5 67.4 E2/3 WM
Ctr. 7 ND RROS 4 87 ND ND
Ctr. 8 I CNDR 8 81 E3/3 BF
Ctr. 9 0 CNDR 5.5 67 E3/3 WF
Ctr. 10 I CNDR 15 64 ND ND
Avg/Tot 7.4 C 3.9 76.4C 8.2 5F/3M/2ND
Br. III/IV 1 III RROS 11 92.8 E3/3 WM
Br. III/ IV 2 III RROS 4 89.6 E2/3 WM
Br. III/ IV 3 III RROS 3.6 88.7 E3/3 WF
Br. III/ IV 4 III RROS 2.8 92.3 E3/3 WF
Br. III/ IV 5 IV RROS 3 97.5 E2,3 WF
Br. III/IV 6 IV RROS 13.4 89.2 E3/4 WM
Br. III/IV 7 IV RROS 3.6 82.5 E3/3 WF
Br. III/IV 8 IV RROS 4.8 80.5 E3/3 WF
Br. III/IV 9 III RROS 4.3 82.1 E3/3 WM
Br. III/IV 10 IV RROS 8 81 E4/4 WF
Br. III/IV 11 IV RROS 13 81.5 E3/3 WF
Br. III/IV 12 IV RROS 16 84.1 E3/3 WM
Br. III/IV 13 IV RROS 6 83.5 E3/4 WF
Br. III/IV 14 III CNDR 7 89 E3/3 BF
Avg/Tot 7.2 C 4.4 86.7C 5.3 9F/5M
Br. V/VI 1 V RROS 6 87 ND M
Br. V/VI 2 V RROS 5 80 ND M
Br. V/VI 3 V RROS 8.5 81 ND F
Br. V/VI 4 V RROS 10.7 84.2 E3/3 WF
Br. V/VI 5 V RROS 3.5 84.8 E3/4 WM
Br. V/VI 6 V RROS 2.2 82.7 E4/4 WM
Br. V/VI 7 V RROS 4.5 80.1 E3/4 WM
Br. V/VI 8 V RROS 3.1 92.8 E3/3 WF
Br. V/VI 9 V RROS 4 94.1 E2/4 WF
Br. V/VI 10 VI CNDR 6 69 ND WF
Br. V/VI 11 VI CNDR 17 75 ND WM
Br, V/VI 12 VI CNDR 8 62 E2/3 WM
Br. V/VI 13 IV CNDR 12 91 ND WF
Br. V/VI 14 VI CNDR 7 86 ND BF
Br. V/VI 15 VI CNDR 7 80 ND WF
Avg/Tot 7.0 C 3.9 82.0C 8.6 8F/7M

Abbreviations: W, white; B, black, ND, not divulged; PMI, Postmortem interval.
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CTSD-positive neurons was readily apparent in Br. III CA1
hippocampus and quantitative image analysis confirmed a sig-
nificant increase of Pearson’s correlation coefficient for LC3-
CTSD colocalization, with further increase to nearly 4-fold in

Br. V CA1 neurons compared to controls (p � 0.001; Fig. 5B).
Most LC3 signal colocalized within CTSD-positive vesicles; in
fact, the relative area and number of LC3-positive puncta con-
taining no CTSD signal (i.e. autophagosomes) was decreased in

Figure 2. Evaluation of autophagy induction in AD. (A) Western blot analysis of indices of autophagic induction and autophagosome formation for ULK1, BECN1, PIK3C3/
VPS34, ATG7, LC3, and SQSTM1/p62 and degradative products in AD hippocampus. (B) Histogram illustrating quantification of the findings in (A). (C–D) Western blot anal-
ysis of FOXO1 and FOXO3 levels in AD and control hippocampal tissue. Samples analyzed from patients as Control (n D 9), from AD Br. III (n D 10) and from AD Br. V (n D
10). Significance determined by one-way ANOVA with post-hoc Dunnett’s Comparison to Control test. �p � 0.05; ��p � 0.01. Western blots cropped as shown for pur-
poses of clarity.

Figure 3. Analysis of lysosomal constituents in AD hippocampus. (A) Western blot analysis of structural and enzymatic constituents of lysosomes with quantification
shown in (B). Samples analyzed from control patients (n D 9), from AD Br. III (n D 10) and from AD Br. V (n D 10). Significance determined by one-way ANOVA, with
post-hoc Dunnett’s Comparison to Control test. ��p � 0.01. Western blots cropped as shown for purposes of clarity.
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CA1 neurons in AD Br. III and was not changed in AD Br. V,
suggesting that the formation of autolysosomes (ALs), derived
by the fusion of an autophagosome (AP) and lysosome (CTSD-
positive vesicles negative for LC3), within the neuronal peri-
karya, was not compromised in AD. Interestingly, at Br. III
stage, we observed a significant increase of area occupied by
ALs associated with a decrease of area and number of APs and
lysosomes (Fig. 5C, D), as a sign of an early upregulation of
autophagy and possibly of more efficient AP-lysosome fusion.
With the progression of the disease, there was an accumulation
of ALs indicated by a significantly increased number and total

area of these structures (p � 0.001; Fig. 5C, D), reinforcing the
notion of progressively impaired turnover of LC3 in CA1 neu-
rons at late stages of AD. In further support of progressively
dysfunctional autophagic clearance, size analysis revealed sig-
nificantly increased numbers of ALs between 0.51–1.41 mm2

and 1.41–7.0 mm2 (p � 0.01 and p � 0.05, respectively, Fig. 5E)
at Br. III stage while at Br. V, all sizes categories of ALs were
abnormally enlarged, presumably with accumulated substrate
(Fig. 5E). Consistent with these data, immunoblots revealed
increased levels of LC3-II and a second autophagic substrate
SQSTM1/p62 and its intermediate breakdown products (p �

Table 3. Demographics of Harvard Brain Tissue Resource Center (HBTRC) brain samples used in biochemical/molecular analyses.

Sample Case number Braak Score Age Gender PMI (h) RIN

Control 1 AN01404 I 74 M 18.3 6.2
Control 2 AN06429 II 77 F 23.3 5.1
Control 3 AN15823 I 76 M 24.2 4.4
Control 4 AN01717 II 79 F 20.6 4.2
Control 5 AN10180 II 73 M 24.0 5.6
Control 6 AN01234 II 85 M 20.8 5.4
Control 7 AN06221 II 82 M 24.1 5.3
Control 8 AN13219 II 93 F 12.3 6.7
Control 9 AN10936 II 86 F 23.8 6.5
Avg/Tot 80.6 C 6.5 5M/4F 21.3 C 3.9
Br. III 1 AN18315 III 81 M 23.8 6.0
Br. III 2 AN01765 III 88 F 14.9 4.2
Br. III 3 AN04145 III 94 M 15.6 6.2
Br. III 4 AN01725 III 84 F 13.2 5.1
Br. III 5 AN05918 III 85 M 6.1 5.0
Br. III 6 AN05919 III 85 M 6.1 5.0
Br. III 7 AN08520 III 89 F 17.8 4.5
Br. III 8 AN15998 III 82 F 18.8 6.7
Br. III 9 AN18315 III 82 F 17.4 5.1
Br. III 10 AN19132 III 84 F 8.6 4.4
Avg/Tot 85.4 C 3.9 4M/6F 14.2 C 5.8
Br. V 1 AN06801 V 76 M 23.7 5.3
Br. V 2 AN00391 V 89 F 15.0 2.5
Br. V 3 AN03479 V 83 M 26.6 5.3
Br. V 4 AN18658 V 80 M 20.6 3.8
Br. V 5 AN18751 V 76 M 12.5 6.9
Br. V 6 AN08533 V 84 M 12.6 5.2
Br. V 7 AN11070 V 86 F 15.3 6.3
Br. V 8 AN14636 V 89 F 15.8 5.4
Br. V 9 AN15437 V 90 F 20.5 5.2
Br. V 10 AN12565 V 76 F 21.4 5.9
Avg/Tot 83.2 C 5.6 5M/5F 18.4 C 4.8

Abbreviations: RIN, RNA Integrity Number; PMI, Postmortem interval.

Table 2. Emory Alzheimer’s Disease Resource Center (ADRC) demographics of single cell qPCR analysis of transcriptional activators.

Sample No. Case number Braak stage PMI (h) Age at onset Age at death Duration ApoE Race/Sex

Ctr. 1 OS99-08 I 3 74 E3/3 WF
Ctr. 2 OS03-380 II 12 61 E3/4 BM
Ctr. 3 OS03-390 II 7 74 E3/3 WF
Ctr. 4 E10-142 II 5.5 94 E3/3 WM
Ctr. 5 E14-06 I 12.5 56 WM
AVG/Tot . 8.0 C 4.1 71.8 C 14.7 3M/3F
Br. V 1 OS00-11 V 4 49 55 6 E3/3 WM
Br. V 2 E05-67 V 11.5 52 62 10 E3/4 WM
Br. V 3 E07-36 V 22 91 E3/3 WM
Br. V 4 E09-65 V 10 77 85 8 E4/4 WF
Br. V 5 E10-56 V 15.5 76 82 6 E4/4 BF
Br. V 6 OS01-10 V 8 79 87 8 E3/4 WF
Br. V 7 E04-179 V 20 77 91 14 E3/4 WF
Br. V 8 E13-134 V 17.5 75 79 4 WF
Br. V 9 E08-97 V 19 78 E3/4 WF
AVG/Tot 14.2 C 6.1 78.9 C 12.6 3M/6F

Abbreviations: W, white; B, black; PMI, Postmortem interval.
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Figure 4. Analysis of TFE3 and TFEB transcription factors in hippocampal CA1 pyramidal neurons and glia. (A) qPCR analysis of CA1 neurons for TFE3 and TFEB. (B) qPCR
for both TFEB and TFE3 in hippocampal total RNA. (C) Amplification plots for TFE3 (red) and TFEB (green) showing a 1.2 cycle difference equivalent to a greater than 10-
fold higher level of TFE3mRNA in hippocampal tissue. (D–E) Western blot analysis for TFE3 and TFEB in hippocampal tissue and relative quantification showing higher lev-
els of TFE3. Samples analyzed from control patients (nD 9), from AD Br. III (nD 10) and from AD Br. V (nD 10). (F) Immunocytochemical localization of TFE3 in the hippo-
campal CA1 region. Cells immunostained for TFE3 and counterstained with Nissl. Black arrowheads indicate translocation of TFE3 in neuronal nuclei; blue arrowheads
point to negative TFE3 nuclear staining. Scale bar: 10 mm. (G) Quantification of TFE3 nuclear translocation in glia and neurons. (H) Fluorescent immunolocalization of
TFEB (yellow arrowheads for neuronal, blue for glia) with Nissl staining shows neuronal or glial nuclei and with decreasing Nissl staining on nuclear translocation in hippo-
campal CA1 region. Scale bar: 10 mm. (I) Quantification of TFEB nuclear translocation in glia and neurons. A minimum of 50 fields were quantified per condition. Statistical
significance denoted by asterisks with p-values shown determined by one-way ANOVA, with post-hoc Dunnett’s Comparison to Control test, or for 2 columns analysis by
Student t test. �p � 0.05; ��p � 0.01; ���p � 0.001; ����p � 0.0001.
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0.05-0.001; Fig. 2C, D), at Br. V. Collectively, these findings
indicate that autolysosomal proteolytic function becomes pro-
gressively impaired in CA1 neurons in AD.

Autophagy deficits in AD can be interrogated further by
analysis of the prominent neuritic dystrophy characteristic of
this disease.26 In the hippocampal CA1 region of Br. V sam-
ples, immunostaining for LC3 and CTSD revealed dystrophic
neurites in the neuropil, which were strongly positive for both
antibodies (Fig. 6A). Dystrophic neurites are more numerous
adjacent to senile plaques that are identified as large amor-
phous granular deposits that are weakly positive for CTSD,
consistent with earlier established neuropathological pat-
terns.50 Examination of z-stack images of a typical dystrophic

swelling (Fig. 6B) revealed abundant autophagic vesicles of
varying subtypes positive for LC3 co-existing with ones posi-
tive for CTSD, consistent with ultrastructural analyses show-
ing that dystrophic neurites in AD brain are filled nearly
completely with undigested autophagic vacuoles rather than
with mixtures of different organelles.26 Autolysosomes con-
taining LC3 (CTSD- and LC3-positive) are abundant, as in
the perikarya. Large LC3-positive, CTSD-negative autophago-
somes, however, are also common raising a possibility that, in
axons, fusion between these 2 compartments may be less effi-
cient; however, the numbers of lysosomes in axons is limited
and the abundance of APs in neurites is more likely due to
limited availability of neurite lysosomes rather than inefficient

Figure 5. Double-immunofluorescent labeling of the CA1 region with LC3 and CTSD. (A) Immunofluorescent staining for LC3 (green channel) and CTSD (red) in CA1 hip-
pocampal neurons from Control, Br. III and V. Scale bar: 20 mm. (B) Pearson’s correlation coefficient of colocalization of CTSD with LC3 in hippocampal CA1 neurons. A
minimum of 100 neurons were quantified per condition. (C–D) Characterization of vesicles in Control, Br. III and V CA1 neurons, identified as autophagosome (AP, LC3-
positive, CTSD-negative vesicles), autolysosome (AL, LC3- and CTSD-positive vesicles) and lysosome (Ly, LC3-negative, CTSD-positive vesicles). Depicted is the total num-
ber and area covered per cell in (C) and (D) respectively. (E) Size distribution of autolysosomes in Control, Br. III and V CA1 neurons. Statistical significance denoted by
asterisks with p-values shown determined by one-way ANOVA, with post-hoc Dunnett’s Comparison to Control test for grouped analyses, and 2-way ANOVA for size distri-
bution analyses. �p � 0.05; ��p � 0.01; ���p � 0.001.
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AP-lysosome fusion. The pattern in dystrophic neurites rein-
forces the conclusion that autolysosomal proteolysis is
impeded, which has been previously shown to selectively slow
the retrograde transport of autophagic vacuoles that can pro-
mote dystrophic swellings.51

Since neuronal cell loss is widely reported in AD52-54 and
may influence analyses at a tissue level, we also performed
quantitative immunoblot analyses of the CA1 sector of the hip-
pocampus, which revealed a 24% reduction of neuron-specific
TUBB3 (p � 0.05) in Braak stage V hippocampus, indicative of
a mild-to-moderate loss of neurons as expected (Fig. 7). Similar
analyses of GFAP (glial fibrillary acidic protein) indicated a sig-
nificant 85% increase in GFAP (p � 0.01; Fig. 7), consistent
with the expected reactive astrogliosis. These data highlight the
importance of the cell population-specific analyses in this
study, which are substantially less influenced by these changes
in cellular composition in the AD hippocampus.

Discussion

Our study is the first analysis of multiple stages of autophagy
specifically in a single vulnerable population of neurons during
the progression of AD. The cell-specific approaches used were
designed to overcome notorious limitations of molecular neu-
ropathological analysis in brain tissue, where cell populations
are heterogeneous and responses of individual neuronal and/or
non-neuronal populations, including differential cell losses, are
admixed.40 By assessing autophagy broadly, we could obtain a

relatively full picture of the variables contributing to the robust
autophagy pathology in AD brain.

We establish that autophagy induction and autophagosome
formation in CA1 pyramidal neurons are competent and, in
fact, are upregulated at the transcriptional level early in AD
development and remain upregulated even as the clearance of
autophagic substrates by lysosomes becomes progressively
impaired. An activation of neuronal autophagy in AD is sup-
ported by independent lines of evidence established in microas-
pirated CA1 neurons and regional hippocampal dissections,
including: (a) increase in the total area/cell and in number of
LC3-positive puncta, (b) increased expression of key compo-
nents involved in autophagosome formation; and (c) activation
of TFE3 and TFEB transcription factors regulating lysosomal
biogenesis and additional genes that support autophagy.20

Notably, analysis of significantly altered transcripts by DAVID
software55 identified the autophagy pathway as the most
broadly upregulated gene family among the gene ontology
groups represented on our microarray. Most other gene ontol-
ogy groups altered in CA1 neurons were downregulated, nota-
bly transcripts encoding NTFs/neurotrophins and
neurotrophin receptors, synaptic-related proteins, and compo-
nents related to glutamatergic neurotransmission.38,40 Many of
the autophagy subgroup of genes are targets of the MiTF/TFE
and FOXO families of transcription factors. MiTF/TFE family
members are activated upon induction of autophagy56,57 or
prolonged mitochondrial stress58 in order to sustain both auto-
phagosome formation and clearance by lysosomes (lysosome

Figure 6. Neuritic dystrophy adjacent to senile plaques in the CA1 region in AD brains. (A) The image of AD Br. V hippocampal CA1 depicts a population of putative dys-
trophic neurites (white arrowheads in the merged image) surrounding a weakly CTSD-positive senile plaque (P). (B) Z-stack images of consecutive optical slices through
the single profile indicated by the box in (A) confirms the typical appearance of a dystrophic neurite, which is shown to contain mainly autophagic vacuoles including
LC3-positive AP (green), LC3- and CTSD-positive AL, (yellow-orange vesicles) and less frequent CTSD-positive-only lysosomes (red). Scale bar: 10 mm.
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biogenesis). Our results establish TFE3 as the pre-eminent
MiTF/TFE family member in hippocampal neurons. By con-
trast, TFEB, often considered the most relevant master tran-
scriptional regulator of autophagy and lysosome function,20,59

showed greater nuclear translocation in glial cells, perhaps to
support reactive gliosis and the scavenging of dying neuronal
processes and/or aggregated proteins. The changing cellular
composition observed in Br. V hippocampus, including astro-
gliosis and moderate loss of neuron-specific markers under-
scores the importance of our cell-specific analytical approaches.
Autophagy assessment in tissue is complicated by these
changes as well as by evidence that some autophagy-related
components are differentially expressed in neurons and glia,
and responses of these different cell types to disease and pathol-
ogy are likely to differ.

Because autophagosome clearance is impaired in AD,24,60,61

it has previously been difficult to determine whether increased
induction/autophagosome formation also contributes to the
massive buildup of autophagy substrates in AD brain. Earlier
investigations of autophagy induction in AD brain and AD
models have yielded conflicting results, related partly to differ-
ences in experimental models used, confounding effects on
autophagy of expressing mutant proteins at high levels,24 and
tissue-level analyses often involving insufficient numbers of
autophagy measures to confirm the functionality of a given
step in the autophagic process.62 Lipinski and coauthors36

found in AD cortical tissue that transcription of genes promot-
ing autophagy was generally upregulated and that of negative
regulators was downregulated, consistent with our findings.
Moreover, MTOR kinase activity is reduced in PSEN1/PS1-
APP mouse brain and cells treated with Ab1-42,63 although it
is reported to be increased in several other AD mouse mod-
els,64,65 in inferior parietal lobule35 in neurons exhibiting neu-
rofibrillary degeneration in the AD brain,66 and in cell models
stimulated by Ab oligomers67 or mutant APP transfection.64 In
view of these controversial conclusions about the net direction
of autophagy change in AD, we used a broad range of func-
tional autophagy indices, involving molecular, biochemical,
and imaging techniques and a focus on individual CA1 vulner-
able neuron populations. The multidimensional approach in
our study, which includes autophagy gene expression analysis,
allowed us to conclude that autophagy is upregulated in AD
brain.

Although autophagy gene expression is already upregulated
at early AD stages, lysosomal degradative function becomes
strikingly impaired beginning early (Br. III stage), but especially
by the later Br. V stage as evidenced by buildup of SQSTM1/
p62 and LC3-II, and the accumulation and increased colocali-
zation of LC3 with CTSD within elevated numbers and area of
enlarged autolysosomes. An MTORC1 downregulation due to
impaired lysosomal proteolysis16-18 may also be one cause for
the observed activation and nuclear translocation of MiTF/TFE
family transcription factors. Notably, the increased colocaliza-
tion of LC3-II with CTSD in autolysosomes demonstrates that
autophagosome-lysosome fusion is relatively preserved. Along
the neurites of the most affected neurons, however, enlarged
LC3-positive CTSD-negative autophagosomes were frequently
seen although their presence is less likely a reflection of
impaired AP-Ly fusion than to the fact that lysosomes are inef-
ficiently transported into axons,51 and their availability for
fusion events may be limiting, especially when autophagosome
formation is upregulated as in AD. Expansion of autolysosomal
compartments, as seen in AD brain68 is also seen upon inhibit-
ing lysosomal proteolysis in vivo or in vitro,51,69 and in mouse
models of b-amyloidosis.32 In the latter case, targeted enhance-
ment of lysosomal proteolysis rescues deficits of synaptic plas-
ticity, cognition, and substantially ameliorates amyloid
deposition and tauopathy32 underscoring the pathogenic
importance of these lysosomal deficits. Moreover, when addi-
tional proteolytic dysfunction is superimposed on the brain in
AD, such as that exerted by mutant PSEN1 (presenilin 1) on
V-ATPase function and lysosomal acidification,25,31,70-72 lyso-
somal pathology and disease onset are substantially accelerated.
Such alterations of lysosomal pH, if present in AD brain, will
negatively affect cathepsin maturation and activity,73 explaining
why CTSD upregulation alone would not be sufficient to main-
tain adequate clearance of lysosomal substrates.

Collectively, our findings suggest that in AD, early upregula-
tion of autophagy is an initial neuroprotective response to cell
stress,74 which ultimately becomes counterproductive as lyso-
somal function becomes progressively impaired. Indeed, an
increased substrate load in the presence of a developing AD-
related impairment of lysosomal clearance,69 serves as a ‘double
hit’ on lysosomes. Failing lysosomes are further overburdened
by an accelerated delivery of endocytic substrates driven by ele-
vated levels of the APP b-C-terminal fragment in AD and

Figure 7. Expression of cell-type markers in AD hippocampus shows alterations in neuronal and glial content. (A) Representative western blots illustrating neuronal
TUBB3 and glial GFAP markers in AD and control hippocampus. (B) Relative quantification of markers in hippocampus indicates downregulation of neuronal-specific
TUBB3 and upregulation of GFAP, consistent with neuronal cell loss and concomitant astrogliosis. Statistical significance denoted by asterisks with p-values shown deter-
mined by one-way ANOVA, Dunnett’s test. �p � 0.05; ��p � 0.01. Western blots cropped as shown for purposes of clarity.
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mediated by an APP b-C-terminal fragment-APPL1-RAB5
mechanism.75 Notably, endocytic pathway genes were the third
most upregulated gene family in CA1 neurons of AD brain38

and their upregulation early in disease60 has been linked to
abnormally accelerated endocytosis and accumulation of sub-
strate in distal compartments in AD and DS.46,76 The pathobi-
ology in AD is reminiscent of Niemann-Pick Type C, a
lysosomal storage disease sharing various neuropathological
features with AD.77 In Niemann-Pick Type C patient cells, pri-
mary lysosomal dysfunction is partially relieved by experimen-
tally lowering an abnormally elevated level of autophagy
induction.78

In conclusion, this multidimensional analysis of autophagy
at different levels of the pathway in a specific vulnerable neuro-
nal population highlights, for the first time, multiple alterations
of autophagy in AD that provide new insight into the develop-
ment of AV-laden dystrophic neurites that are a hallmark of
AD neuropathology.26 The novel observation that transcrip-
tional factors regulating lysosomal biogenesis and function may
be operating differentially in individual cell types in the brain is
one of the various observations that underscore the importance
of evaluating the autophagy pathway in single populations of
cells in disease states, such as AD.

Materials and methods

Tissue

For the custom-designed microarray analysis, tissue was pro-
cured from the Rush Religious Orders Study (RROS, Rush

University Medical Center, Chicago, IL, USA) and the Center
for Neurodegenerative Disease Research (CNDR, University of
Pennsylvania, Philadelphia, PA, USA) as described previously
by Ginsberg et al. with demographics shown in Table 1.38

Pathology as determined by the methodology of Braak and
Braak was the primary criterion used to type tissues grouped as
Controls (Br. 0-II, n D 10), Br. III/IV, n D 14, and Br. V/VI, n
D 15).79 Based on results from these analyses, subsequent stud-
ies were typed solely on the basis of the primary neuropatho-
logical assessment as described by Braak and Braak.79 For
qPCR and western blot analyses, fresh-frozen postmortem
human brain tissue was obtained from the Harvard Brain Tis-
sue Resource Center (HBTRC, McLean Hospital, Belmont,
MA, USA) with demographic information outlined in Table 3.
For these studies, we used hippocampus from cases assigned an
AD diagnosis at either Braak stage III (n D 10) or Braak stage
V (n D 10) (see Table 3). Nondemented, age-matched subjects
with little or no AD pathology in these regions were analyzed
as controls (Controls, n D 9). Groups were matched for age
and postmortem interval (Table 3). For single-cell analysis of
transcriptional activators via qPCR, frozen samples of CA1
region were obtained from Emory University Alzheimer’s Dis-
ease Research Center (ADRC), Atlanta, GA, USA with patient
demographics shown in Table 2. Finally, for ICC analysis of
autophagic and lysosomal determinants and transcriptional
activators, formalin-fixed hippocampi were procured from
HBTRC and ADRC as shown in Table 4 and grouped as age-
matched controls and Braak III or V as outlined above. Tissue
was examined and neuropathological designations were based
on NIA Reagan Recommendation, CERAD, and Braak staging

Table 4. Formalin-fixed hippocampal sections utilized in immunocytochemical analyses from Emory ADRC and Harvard HBTRC.

Sample No. Case number Brain bank Braak stage PMI (h) Age at onset Age at death Duration ApoE Race/Sex

Ctr. 1 E08-101 ADRC II 17 78 E3/3 WF
Ctr. 2 6865 HBTRC ND 18.7 78 F
Ctr. 3 6573 HBTRC ND 15 79 F
Ctr. 4 7862 HBTRC ND 18.0 73 M
Ctr. 5 8341 HBTRC ND 15.7 82 F
Ctr. 6 5326 HBTRC ND 12.1 75 F
Ctr. 7 5859 HBTRC 0 12.5 60 F
Ctr. 8 5919 HBTRC II 18.7 80 M
Ctr. 9 5452 HBTRC ND 7.6 73 M
Ctr. 10 5832 HBTRC I 16.7 75 F
Ctr. 11 5619 HBTRC ND
Ctr. 12 5582 HBTRC ND 74
AVG/Total 15.2C 3.5 75.2 C 5.8 7F/3M
Br. III 1 OS03-76 ADRC III 17.5 70 78 8 E3/3 WM
Br. III 2 E08-127 ADRC III 20 76 82 6 E4/4 BF
Br. III 3 E10-30 ADRC III 2 77 90 13 E3/3 WF
Br. III 4 6776 HBTRC III 17.2 80 F
AVG/Total 14.2C 8.2 82.5 C 5.3 3F/1M
Br. V 1 E08-97 ADRC V 19 78 E3/4 WF
Br. V 2 E06-15 ADRC V 13.5 67 72 5 E3/4 WM
Br. V 3 5979 HBTRC VI 17.9 80 M
Br. V 4 5035 HBTRC V 20 75 F
Br. V 5 6209 HBTRC V 13 75 F
Br. V 6 6917 HBTRC V 24.1 79 F
Br. V 7 6297 HBTRC V 6.5 75 F
Br. V 8 6265 HBTRC V 7.9 78 F
Br. V 9 6215 HBTRC V 15 82 M
Br. V 10 6164 HBTRC V 14.1 73 M
Br. V 11 5850 HBTRC V 5 73 M
AVG/Total 14.2C 6.0 76.4 C 3.4 6F/5M

Abbreviations: ND, not divulged; B, black; W, white; PMI, postmortem interval.
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criteria.79-81 All studies were performed under the guidelines of
the Institutional Review Board of the NYU Langone Medical
Center and NKI. Clinical and neuropsychological evaluation
criteria for the RROS/CNDR and ADRC cohorts have been
published previously.82-84 Antemortem cognitive assessment
tests were performed, including the Mini-Mental State Exam
(MMSE).82,85 Scores were available within the last year of death.
For the ADRC cohort used in single-cell qPCR analysis,
patients were categorized as Control (n D 5) or moderate AD
(n D 9) (Table 2).

ICC

Formalin-fixed, human hippocampus (Table 4) was sectioned
at 40 mm on a vibratome (Leica Biosystems, Buffalo Grove, IL,
USA) for LC3 (MBL Int., M152-3; mouse monoclonal) and
CTSD (Scripps Laboratories, RC245; rabbit polyclonal) colocal-
ization, or paraffin embedded and sectioned at 7 mm for TFE3
and TFEB (Cell Signaling Technology, 14779 and 4240, respec-
tively; polyclonal rabbit) immunolabeling. Where applicable,
paraffin sections were deparaffinized. Antigen-retrieval was
performed by heating tissue sections in sodium citrate buffer
(10 mM, pH 6.0) at 95�C for 20 min. Sections were blocked
and incubated in primary antibody in 1xTris-buffered saline
(50 mM Tris-HCl, pH 7.4, 150 mM NaCl) containing 0.1%
Tween-20 (v:v; Fisher Scientific, BP337) and 3% normal goat
serum (v:v; Vector Laboratories, S-1000) for up to 3 days at
4�C. Alexa Fluor-conjugated secondary antibodies (Thermo-
Fisher/Life Technologies, A-11029, A-11010, A-11008, A-
11003) were used for immunofluorescence and ABC detection
was used for DAB (Vector Laboratories, PK-4005). Autofluor-
escence was quenched with 1-2.5 mM CuSO4 in 50 mM ammo-
nium acetate, pH 5.0 for 60 min at RT. For CTSD/LC3 stained
imaging, sections were stained in 600 nM DAPI (Sigma,
D9542) for 15 min at room temperature prior to mounting.
DAB labeling of TFE3 following cresyl violet staining for
15 min was inspected on a Zeiss AxioSkop II equipped with an
HrM digital camera (Zeiss USA, Thornwood, NY, USA). Sec-
tions labeled for TFEB were counterstained for Nissl using cre-
syl violet as described by Alvarez-Buylla.86 In CA1, glia were
differentiated from pyramidal neurons on the basis of mor-
phology and nuclear staining by DAPI or cresyl violet Nissl
staining.86 Immunofluorescent images for CSTD, LC3, or
TFEB were collected on a confocal microscope (Zeiss LSM510
or LSM810). Pearson’s correlation coefficient was quantified
using ZEN V. 2.1 software from Zeiss. Quantifications for LC3-
and CTSD-immunoreactive puncta were performed using FIJI
software.87 Fluorescence images were adjusted for brightness,
contrast and color balance by using Adobe Photoshop CS (San
Jose, CA, USA).

Single population microarray

Immunocytochemistry to identify neurofilament-immunoreac-
tive CA1 neurons for laser capture microdissection88 and ter-
minal continuation (TC) RNA amplification procedures have
been described in detail previously.38,40,89,90 Individual CA1
pyramidal neurons from fresh-frozen hippocampi (Table 1)
were microaspirated via LCM (Arcturus PixCell IIe, MDS,

Sunnyvale, California). Fifty cells were captured for population
cell analysis. A total of 212 custom-designed arrays were per-
formed on the cohort of subjects as described previously.38,39

The TC RNA amplification procedure has been employed pre-
viously using human CA1 pyramidal neurons accessed via
LCM as input sources of RNA.38,40,90 The TC RNA amplifica-
tion protocol is available at http://cdr.rfmh.org/pages/ginsber
glabpage.html. Array platforms consisted of 1 mg of linearized
cDNA purified from plasmid preparations adhered to high-
density nitrocellulose (GE Healthcare, Hybond XL). 578
cDNAs/ESTs were utilized on the current array platform. All of
the autophagic and endosomal-lysosomal genes were derived
from human sequences. Procedures for custom-designed
microarray analysis and patients’ demographics have been
described in detail.38,40,89,90 Microarray analysis was performed
on CA1 pyramidal neurons obtained from Controls (Br. 0-II, n
D 10), Br. III/IV (n D 14), and Br. V/VI (n D 15) cases
(Table 1). Briefly, expression of TC-amplified RNA bound to
each linearized cDNA minus background was expressed as a
ratio of the total hybridization signal intensity of the array,
enabling a profile of relative changes in mRNA levels. Relative
changes in total hybridization signal intensity were analyzed by
mixed models analysis for repeated measures, with random
intercept, fixed effect for diagnosis, Kenward-Roger denomina-
tor degrees of freedom, and unequal variance assumption as
warranted.38,40,89 The level of statistical significance was set at
(p < 0.01); trend level changes were characterized as (p < 0.02)
– (p < 0.05) as described previously.90-92

RNA preparation

For routine qPCR analyses 100 mg of gray matter from hippo-
campus procured from the Harvard Brain Tissue Resource
Center (HBTRC), part of the NeuroBioBank organism
(Table 3), was dissected and extracted in 1.5 ml Trizol reagent
(ThermoFisher/Life Technologies, 15596026) using a hand-
held homogenizer (6 £ 15 s bursts; Pro-Scientific, Oxford, CT,
USA) followed by mixing with 300 mL of chloroform. Samples
were centrifuged at 12000 g for 15 min at 4�C. The aqueous
phase was collected and 750 mL isopropanol was added; sam-
ples were spun again at 12000 g for 10 min at 4�C. Supernatant
was removed and the pellet washed 2 times with 75% ice-cold
ethanol and centrifuged at 7500 g for 5 min at 4�C. The pellet
was redissolved in 100 mL of RNAase-free distilled water. Total
RNA quality (RNA Integrity Number) was assessed on an Agi-
lent Bioanalyzer using an RNA Nanochip (2100; Agilent Tech-
nologies; Santa Clara, CA).

For analysis of transcriptional activators, slides were pre-
pared from 40-mm sections cut from fresh-frozen samples of
CA1 region obtained from Emory University Alzheimer’s Dis-
ease Research Center (see Table 2) in a cryotome (MICROM,
Walldorf, Germany). Slides were placed on a precooled metal
plate and regions enriched in CA1 pyramidal neurons were
visualized under a dissecting microscope using the Human
Brain Atlas to reconnoiter landmarks. Cells were scraped using
an ice-cold scalpel and collected in microcentrifuge tubes. Cells
were extracted for total RNA using the TaqMan Gene Expres-
sion Cells-To-CT kit (ThermoFisher/Life Technologies,
439902) as per the manufacturer’s instructions with the
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following modifications: Cells were lysed in 50 ml Lysis Buffer
containing DNAse1 to remove contaminating genomic DNA
for 5 min at room temperature, followed by the addition of
5 ml Stop solution for 2 min. Two reactions per sample were
pooled and 22.5 ml subjected to reverse transcription in a final
volume of 40 ml. Following reverse transcription, aliquots of
10 ml in triplicate were used for qPCR analysis as described
below.

Preparation of cDNA and qPCR

cDNA was prepared from total RNA using TaqMan Reverse
Transciption Reagent kit (ThermoFisher/Life Technologies,
N808-0234) according to the manufacturer’s instructions. Fol-
lowing reverse transcription, 20 ng of sample cDNA was loaded
in triplicate into wells of a 96-well optical reaction plate (Ther-
moScientific, AB-2100) containing appropriate target gene
primer (Table 5; ThermoFisher/Life Technologies). Three
housekeeping genes were run and assessed for stability:
GAPDH (glyceraldehyde 3-phosphate dehydrogenase), ACTB
(actin b), and HPRT1 (hypoxanthine phosphoribosyltransfer-
ase 1). Total reaction volume per well was 20 mL. In the case of
single cell transcriptional activators, the housekeeping genes
used were GAPDH and SDHA (succinate dehydrogenase com-
plex flavoprotein subunit A) and total reaction volume was
10 ml. qPCR was performed in the ABI Prism 7900HT
Sequence Detection System (Applied Biosystems Branchburg,
NJ, USA) as described previously.91,92

Gene Ontology (GO) analysis

The GO analysis was done using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) v6.7 as
described previously.55 A unique list of gene symbols was
uploaded including all significantly upregulated genes in MCI
and AD compared to control, detected by the single population
microarray.

Calculation of qPCR results

Following qPCR, the target genes were normalized against the
housekeeping genes. Results were calculated using the DDCt
method (Applied Biosystems, Branchburg, NJ, USA, Bulletin
#2). Control values were averaged as a geometric mean and
sample values were recalculated and expressed as percent con-
trol.93,94 Outliers were recognized as values falling beyond 2
standard deviations of the mean, and were discarded from the
analyses.

Preparation of tissue extracts

100 mg of brain tissue procured from HBTRC correspond-
ing to samples used for qPCR (Table 3) was homogenized
as previously described95 in a Tissue Homogenization
buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM
each EDTA, EGTA and DTT, 250 mM sucrose (EMD
Millipore, SX1075, 1 mM b-glycerophosphate, 1 mM NaF,
0.2 mM NaVO4, 5 mg/ml each leupeptin (Sigma, L5793,
antipain (Sigma, A6191) and pepstatin (Enzo Life Sciences,
260-009) and 1 mM each benzamidine (Sigma, 434760)
and PMSF (Sigma, P7626)). For enzymatic activity assays,
extracts were acidified with 0.4 M NaAc, pH 5 and super-
natants used as described previously.31 Protein content
was determined by the BCA method.96 The lysates were
solubilized in Laemmli buffer for western blotting.

SDS-PAGE and western blotting

SDS-polyacrylamide gel electrophoresis followed by west-
ern blotting was performed as described previously.97 The
immunoreactive bands were visualized with ECL reagent
(Amersham, RPN2209) and the bands were quantified
using MultiGauge V. 3.0 (Fuji Film) software. Target pro-
teins were normalized against ACTB/b-actin, unless other-
wise noted.

Table 5. Primers used for qPCR analyses.

Function Gene name Protein name Probe I.D.

Housekeeping ACTB actin b Hs99999903_m1
GAPDH glyceraldehyde-3-phosphate dehydrogenase Hs00266705_g1
HPRT1 hypoxanthine phosphoribosyltransferase 1 Hs00266705_g1
SDHA succinate dehydrogenase complex flavoprotein subunit A Hs00417200_m1

Transcriptional activator TFEB transcription factor EB Hs01065086_m1
TFE3 transcription factor binding to IGHM enhancer 3 Hs00232406_m1
FOXO1 forkhead box O1 Hs01054576_m1
FOXO3 forkhead box O3 Hs00818121_m1

Autophagosome formation-elongation ULK1 unc-51 like autophagy activating kinase 1 Hs00177504_m1
ATG5 autophagy related 5 Hs00169468_m1
ATG12 autophagy related 12 Hs01047860_g1
ATG7 autophagy related 7 Hs00894898_m1
MAP1LC3B/LC3B microtubule associated protein 1 light chain 3 b Hs00917683_m1
BECN1 beclin 1 Hs00186838_m1
PIK3C3/VPS34 phosphatidylinositol 3-kinase catalytic subunit type 3 Hs00176908_m1
SQSTM1/p62 sequestosome 1 Hs00177654_m1

Lysosome CTSD cathepsin D Hs00157205_m1
CTSB cathepsin B Hs00947433_m1
LAMP1 lysosomal associated membrane protein 1 Hs00174766_m1
LAMP2 lysosomal associated membrane protein 2 Hs00174474_m1

Taq-Man validated primers purchased from Life Technologies/ThermoFisher.
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Antibodies for western analyses

TUBB3 (Clone TU-20; Sigma, SAB4700544), GFAP (Sigma,
SAB4501162), TFE3 (Sigma, HPA023881), ATG7 (Cell Signal-
ing Technology, 2631), TFEB (Cell Signaling Technology,
4240), FOXO1 (Cell Signaling Technology, 2880), FOXO3
(Cell Signaling Technology, 2497) ULK1 (Cell Signaling Tech-
nology, 4773), BECN1 (BD Biosciences, 612113), SQSTM1/p62
(BD Biosciences, 610832), LC3 (Novus Biologics, NB100-
2220), LAMP1 and LAMP2 (Developmental Studies Hybrid-
oma Bank, University of Iowa, H4A3 and H4B4, respectively),
CTSD D-2-3,98 CTSB (Cortex Biochemicals, CR6009RP) and
TFEB (Bethyl Laboratories, A303-672 and -673).

Statistical analysis of qPCR and western blot analyses

Statistical significance was tested using one-way analysis of var-
iance (ANOVA) with post-hoc analysis of Dunnett’s Compari-
son to Control test, assessed with Graphpad Prism software, V.
6.0. If the ANOVA was found significant (�p � 0.05), then the
Family-Wise Error Rate is protected at 0.05 using Student t test
as reported in the text or shown in Figures. Alternatively, if the
ANOVA is not significant, it is necessary to use the Dunnett’s
Multiple Comparison Test of the Family-Wise Error Rate at
0.05 as reported in the text or shown in Figures. For size distri-
bution analyses, significance was determined by 2-way
ANOVA assessed with Graphpad Prism software.

Abbreviations

AD Alzheimer disease
ALs autolysosomes
AP autophagosome
CTSD cathepsin D
ICC immunocytochemistry
LCM laser capture microdissection
TC terminal continuation
TFE3 transcription factor binding to IGHM enhancer 3
TFEB transcription factor EB
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