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Abstract

Background: Recent experimental studies provide evidence indicating that manipulation of the mononuclear
phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and
fibrosis. Mineralocorticoid receptor (MR) has been reported as a target to regulate macrophage polarization. The
present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute
lung injury and fibrosis.

Methodology/Principal Findings: We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/
CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF) from
C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20mg/kg/day by oral gavage)
revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated
monocyte chemoattractant protein-1, transforming growth factor 1, and interleukin-138 at mRNA and protein levels)
and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson’
trichrome staining) in bleomycin treated (2.5mg/kg, via oropharyngeal instillation) male C57BL/6 mice. Moreover,
serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone
could partially inhibit bleomycin-induced circulating Ly6C" monocyte expansion, and reduce alternative activation
(F4/80+CD11c+CD206+) of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage
(F4/80+CD11c-) remained unaffected by spironolactone during investigation.

Conclusions/Significance: The present work provides the experimental evidence that spironolactone could
attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating
monocyte and alveolar macrophage phenotype switching.
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Introduction fibroblast proliferation, and excessive extracellular matrix
synthesis and deposition [1-3]. Although evidence showed that
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, the persistent inflammatory response is associated with

interstitial fibrotic lung disease characterized by chronic lung

i ) i i ) - progressive development of IPF, therapies currently used for
inflammation, disruption of alveolar structure, interstitial

IPF, namely anti-inflammatory or immunosuppressive drugs,
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are largely ineffective [4]. Therefore, novel therapies capable of
targeting inflammation without compromising body’s immunity
can still be a challenge in this area.

Macrophages in lung tissue play an important role in the
clearance of pulmonary pathogens and steady-state
homeostasis maintenance. Emerging evidence suggests that
there is a causal link between lung macrophage mediated
inflammation and excessive tissue destruction elicited by
variety of exogenous stimuli, i.e., silica and asbestos exposure,
virus infection, etc., which will ultimately lead to a failure of
inflammation resolution, a key feature that progressively
promotes the development of lung fibrosis [5-8]. On the other
hand, macrophages are a cell population with high plasticity,
and display functional diversity during different stage of
inflammatory response [9,10]. The activation state of
macrophage can be generally characterized as classical
activation (M1 polarization) that is associated with a Th1
immune response, or alternative activation (M2 polarization)
that is associated with Th2 immune response [11]. In lung
tissue, M1-like macrophages are the first line defense in acute
lung injury and are later replaced by M2-like macrophages that
contribute to tissue repair and fibrosis. It is generally believed
during inflammation, myeloid Ly6C" monocytes contribute to
lung macrophage replenishment [9,12]. The results from recent
basic studies indicate that manipulation of macrophage
phenotype switch might be a potential target for many
macrophage mediated disorders [13-15].

Recently, Usher and colleagues demonstrated that
macrophages from mice lacking myeloid mineralocorticoid
receptor (MR), exhibit a transcription profile that mimic
alternatively activated macrophages, and are protected against
angiotensin Il (Angll) induced cardiac hypertrophy and fibrosis
[16]. This work provides evidence indicating that MR in
mononuclear phagocytes might be a potential target for
therapeutic purpose. Based on current evidence, we
speculated that pharmacological inhibition of MR with clinically
approved drug, may regulate lung macrophage phenotype
switching, as well as their progenitors, bone marrow-derived
circulating monocytes, and may confer novel therapeutic
potential in a murine model of bleomycin-induced acute
pulmonary injury and fibrosis.

Materials and Methods

Animals

Eight to ten weeks male C57BL/6 mice, weighing 16-18g,
were purchased from Laboratory Animal Center of the
Academy of Military Medical Sciences (Beijing, China). Animals
received human care in compliance with the Regulations for
Management of Experimental Animals (Tianjin Municipal
Science and Technology Commission, revised June 2004)
which was in accordance with Guide for the Care and Use of
Laboratory Animals published by the National Institutes of
Health (NIH Pub. no. 85-23, revised 1996). All experimental
procedures were performed with the authorization of the
Animal Use and Care Committee of the Logistics University of
the Chinese People’s Armed Police Forces.
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MR expression in circulating monocytes and alveolar
macrophages

To validate the mRNA expression of MR in mouse circulating
monocytes, circulating monocytes from C57BL/6 mice were
purified from peripheral blood using a magnetic bead-based kit
(EasySep™ Mouse Monocyte Enrichment Kit, Cat No. 19761,
STEMCELL Technologies, Vancouver, BC, Canada). The
purity of enriched monocytes was confirmed by flow cytometry
(see below). Detailed methods for total RNA isolation, reverse
transcription, and real-time PCR analysis are shown below.

To validate the protein expression of MR in circulating
monocytes and alveolar macrophages, the purified monocytes
and cells from bronchoalveolar lavage fluid (BALF) were
seeded on glass slides for immunohistological detection of MR.
Briefly, the cells were fixed with methanol, followed by
permeabilization with 0.1% Triton X-100. Then, the cells were
incubated with the primary anti-mouse mineralocorticoid
receptor monoclonal antibody (1:200, ab41912, Abcam,
Cambridge, MA, USA) at 4°C overnight. To ensure specificity,
isotype control (IgG2a) was prepared. For alveolar
macrophages, the cells were further incubated with the primary
anti-mouse F4/80 antibody (1:200, ab6640, Abcam) at 37°C for
2 h. After washing with 0.01 M PBS, the cells were incubated
with tetramethylrhodamine isothiocyanate (TRITC)-conjugated
goat anti-mouse secondary antibody [for alveolar macrophage,
fluorescein isothiocyanate (FITC)-conjugated goat anti-rat
secondary antibody was also added] in dark. Then, cell nuclei
were stained by 4,6-diamidino-2-phenylindole (DAPI, Sigma-
Aldrich, St. Louis. MO, USA) with light protection. Images were
visualized by a fluorescence microscope (Eclipse 80i, Nikon,
Tokyo, Japan). The unstained samples and samples stained
with the secondary antibody without incubation with primary
antibodies were used as negative controls and showed no
signal during analysis.

Animal model and experimental design

To induce pulmonary fibrosis, mice were lightly anesthetized
by inhalation of ether. Bleomycin A5 (2.5mg/kg body weight in
40yl saline) or saline was administered by oropharyngeal
instillation as described previously [17]. Animals were then
randomly allocated into four treatment groups: 1) 0.9% normal
saline (NS) only; 2) bleomycin (BLM) only; 3) bleomycin plus
0.9% normal saline (BLM+NS); 4) bleomycin plus 20mg/kg of
spironolactone (BLM+SP). From the day of the administration
(day 0), vehicle (0.9% saline), SP (dissolved in 0.9% saline)
were delivered by oral gavage once daily, and continued for 21
days. At 1, 3, 7, 14 or 21 days, animals were sacrificed by
exsanguinations under sodium pentobarbital anesthesia (10
mice each time point). Blood, BALF and lung tissues were
collected for the following assays.

BALF analysis

The BALF was collected through an intratracheal cannula
with three sequential 1 mL of 0.9% sterile saline and
centrifuged at 300 g for 10 min at 4°C. The cell-free
supernatant was stored at -80°C for analysis of cytokines. The
cell pellet was resuspended in sterile 0.9% saline for total cell
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counts, differential cell counts, immunohistochemical staining,
and flow cytometry analysis.

Histological analysis

The left lung (from which no BALF was harvested) was fixed
in 4% paraformaldehyde solution for 24h. After embedding in
paraffin, 5 um sections were prepared and stained with
hematoxylin-eosin or Masson’s trichrome, and examined on a
light microscope (E600POL, Nikon, Tokyo, Japan). For
detection of myofibroblasts, a smooth muscle actin (a-SMA,
1:600, A2547, Sigma-Aldrich, St. Louis. MO, USA)
immunofluorescent staining was carried out as previously
described [18]. For the evaluation of inflammatory response
induced by bleomycin, semi-quantitative scoring criteria by
Szapiel and coworkers were used in a blinded fashion [19].
Fibrosis and collagen was determined from 10 non-overlapping
fields by using digital quantitative analysis (Image Pro Plus
software version 4.5, Media Cybernetics, Silver Spring, MD,
USA). The lung fibrosis index was defined as the sum of the
total area of collagen in the entire visual field divided by the
sum of total connective tissue area in the entire visual field.

Hydroxyproline assay

The collagen content in the whole left lung was determined
by analysis of hydroxyproline as previously described [20]. In
brief, lung lobes were homogenized in 1 mL of phosphate
buffered saline (PBS, pH=7.4) and then hydrolyzed in 1 mL of 6
N hydrochloric acid for 16 hours at 110°C, and neutralized to
pH 7.0 with NaOH. Chloramines T reagent (1 mL of 0.5 mol/L)
was then added and the samples were left at room temperature
for 20 minutes. Then 20% p-Dimethylaminobenzaldehyde
solution (dissolved in 3.15 N perchloric acid) was added to
each sample, and the mixture was incubated at 60°C for 15
minutes. Absorbance was measured at 550 nm on a NanoDrop
2000c spectrophotometer (Thermo Scientific, Waltham, MA,
USA).

Flow cytometry analysis

Cells from blood, BALF and lungs were subject flow
cytometry analysis on a Cytomics FC500 cytometer (Beckman
Coulter, Miami, FL, USA). All antibodies were obtained from
Biolegend (San Diego, CA, USA). All data were analyzed with
FlowJo software (Treestar, Ashland, OR, USA).

For validation of the purity of magnetic bead-enriched
circulating monocytes, anti-mouse CD11b- phycoerythrin (PE)
(clone M1/70) and anti-mouse Ly6G- PerCP-Cy5.5 (clone 1A8)
were used.

For analysis of circulatihng monocyte  subsets,
ethylenediaminetetraacetic acid (EDTA) anti-coagulated whole
blood was stained with anti-mouse CD11b- phycoerythrin (PE)
(clone M1/70) and anti-mouse Ly6C-FITC (clone HK1.4),
incubated for 30 min at room temperature in the dark.
Following red cell lysis, samples were analyzed.

For immunophenotypic analysis of alveolar macrophages
(AM), cells isolated from BALF were first centrifuged (10 min at
400 g at room temperature), and the supernatant was
discarded to remove dead cells. For each flow cytometry
analysis, the cells were first suspended in 0.4% trypan blue in
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PBS, and the number of live and dead cells was measured
using an automatic cell counter (CounterStar™, Rui Yu
Biotechnology Co.,Ltd, Shanghai, China). By this method, the
number of live cells in each sample is more than 95%. For
subsequent flow cytometry analysis, the cells were incubated
with anti-mouse F4/80-PE-Cy5 (clone BMS8), anti-mouse
CD11c- PE-Cy7 (clone N418) and anti-mouse CD206-PE
(clone C068C2). Following incubation, flow cytometry analysis
was carried out. For immunophenotypic analysis of interstitial
macrophages (IMs), lung single-cell suspensions were
prepared from lavaged lung (from which the BALF was
harvested) to reduce the contamination of AM. In brief, the
lower lobe of right lung were minced and incubated with 0.1
mg/mL collagenase solution (type I, Sigma-Aldrich) at 37°C for
60 min. After filtering through 40 um nylon mesh, similar
procedure to remove dead cells was carried out as did during
sample preparation for AM analysis, then the cell suspension
was stained anti-mouse F4/80-FITC (clone BM8), anti-mouse
CD11c-PE-Cy7 (clone N418) and anti-mouse CD206-PE (clone
C068C2). Following incubation, samples were analyzed with
flow cytometer. Isotype antibodies (clone RTK2758 for F4/80;
clone HTK888 for CD11c; clone RTK2758 for CD206; clone
RTK4530 for CD11b; clone RTK4174 for Ly6C; clone RTK2758
for Ly6G) were used to detect nonspecific binding. The gating
strategies for analyzing AM and IM were according to previous
report [21].

Real-time quantitative polymerase chain reaction (RT-
PCR)

Total RNA from purified blood monocytes and lung tissue
was isolated using TRIzol Reagent (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions. Total RNA
(2 ug) was reverse-transcribed into the cDNA using a reverse
transcription assay (Promega, Madison, WI, USA) in 25 uL of
reaction volume according to the manufacturer’s instructions.
Real-time PCR was performed with SYBR Green PCR Master
Mix (Roche Diagnostics, Indianapolis, IN, USA) on an ABI
Prism 7300 sequence detection system (Applied Biosystems,
Foster City, CA, USA) in triplicate and according to a two-step
PCR protocol (5 min at 95°C, 40 cycles for 30 s at 95°C, 1 min
at 60°C). The primer sequences are shown in Table 1. Relative
expression of real-time PCR products were normalized for
expression of the B-actin and expressed as transcript fold
change over NS mice using the 224t method [22].

Enzyme-linked immunosorbent assay

The levels of transforming growth factor B1 (TGF-$1),
monocyte chemoattractant protein-1 (MCP-1)/chemokine (C-C
motif) ligand 2 (CCL2), interleukin-4 (IL-4), and interleukin-13
(IL-1B) in the BALF were measured by commercially available
ELISA kits (R&D Systems, Minneapolis, MN, USA), according
to the manufacturer’s instructions.

Statistical analysis

All data are presented as the mean + standard error of mean
(SEM). Statistical analysis was performed using GraphPad
Prism 5.0 software (GraphPad, San Diego, CA, USA).
Statistical comparison of multiple groups was performed by
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Table 1. Primer sequences used in this study.

Primers Sequences (5’-3°) PCR products (bp)

MR GGCTACCACAGTCTCCCTGA 7
AGAACGCTCCAAGGTCTGA

Col | CATGTTCAGCTTTGTGGACCT 94
GCAGCTGACTTCAGGGATGT

Col Il TCCCCTGGAATCTGTGAATC 63
TGAGTCGAATTGGGGAGAAT

CCL2/MCP-1 TTAAGGCATCACAGTCCGAG 129
TGAATGTGAAGTTGACCCGT

TGF-B1 AAACGGAAGCGCATCGAA 63
GGGACTGGCGAGCCTTAGTT

IL-1B AACGTGTGGGGGATGAATTG 130
CATACTCATCAAAGCAATGT

Arg-1 AGGAGAAGGCGTTTGCTTAG 115
AGGAGAAGGCGTTTGCTTAG

B-actin CTAAGGCCAACCGTGAAAAG 104
ACCAGAGGCATACAGGGACA

Abbreviations: Arg-1, arginase-1, Col I, collagen type I; Col lll, collagen type IlI;
CCL2, chemokine (C-C motif) ligand 2; MCP-1, monocyte chemoattractant
protein-1; MR, mineralocorticoid receptor; TGF-B1, transforming growth factor $1;
IL-1B, interleukin-1.

doi: 10.1371/journal.pone.0081090.t001

one-way ANOVA with Bonferroni post-hoc test or Kruskal-
Wallis test followed by Dunn’s multiple comparisons
(inflammation score and fibrosis index). A two-tailed P value
less than 0.05 was considered statistically significant.

Results

MR is expressed in in mouse circulating monocytes
and alveolar macrophages

By using magnetic bead-based monocyte enrichment
method, more than 90% of the harvested cells were Ly6G-
CD11b+ (Figure 1A). Then we confirmed MR mRNA
expression in these cells by real-time PCR and PCR product
electrophoresis (Figures 1B). Then, the MR protein expression
of enriched monocytes was further validated by
immunofluorescent staining (Figure 1C). Using mouse BALF,
we also confirmed MR expression in alveolar F4/80+
macrophages (Figure 1D). These results suggest that MR is
expressed in mouse mononuclear phagocytes, which provides
a basis for pharmacological intervention.

Spironolactone reduces bleomycin-induced alveolitis

Figure 2 shows the detailed research protocol of in vivo
pharmacological intervention study. Figure 3 (A to H) shows
the representative H.E. stained lung sections on day 7, which
represents the peak magnitude of lung inflammatory response
following bleomycin instillation. Spironolactone treatment could
significantly reduce the inflammatory response induced by
bleomycin (Figure 3I).

Panel J in Figure 3 shows the results of differential cell
counts from the BALF that harvested on day 7. Typically, the
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total fluid recovery was over 80% in all animals and the
percentages of fluid recovered were not significantly different
across all treatment groups. In agreement with histological
findings, spironolactone treated lungs exhibited decreased total
cell, macrophage, lymphocyte, neutrophil infiltration and
esosinophils in alveoli.

Next, we measured the levels of inflammatory and profibrotic
cytokines in the BALF and determined related gene expression
levels in lung tissue. As shown in Figure 4, compared with BLM
and BLM+NS groups, spironolactone treatment was associated
with downregulated CCL2/MCP-1, TGF-f1 and IL-138 both at
the mRNA and the protein levels. In addition, markers for M2
polarization, such arginase-1 (Arg-1) mRNA level in lung tissue
(Figure 4G), and IL-4 protein content in BALF (Figure 4F) were
downregulated by spironolactone.

Spironolactone reduces bleomycin-induced collagen
accumulation

Figure 5 shows the profibrotic response using lung tissue
that harvested on day 21. The histological analysis showed that
MR antagonism was associated with reduced collagen
deposition and a-SMA positive cells (myofibroblasts).
Compared with NS group, the expression of type | and type Il
collagen mRNA in the lungs from BLM and BLM+NS groups
were significantly upregulated, whereas spironolactone
treatment could partially regress bleomycin-induced collagen
expression upregulation, which was consistent with the
histological findings.

Spironolactone reduces bleomycin-induced circulating
Ly6C" monocytosis

We next evaluated the effect of spironolactone treatment on
circulating monocyte subset change. Figure 6A shows the
gating strategies for circulating monocyte subset analysis. As
shown in Figure 6B, compared with NS group, BLM treated
mice exhibited a significant increase of Ly6C" monocytes,
starting from day 1, reaching the plateau level on day 3, then
followed a gradual decrease till day 14. Spironolactone
treatment could significantly reduce bleomycin-induced the
Ly6C" monocyte pool expansion on day 3 and thereafter. The
reciprocal changes of Ly6C" monocyte subset is shown in
Figure 6C.

Spironolactone has no obvious impact on pulmonary
interstitial macrophage phenotype

Using enzymatically digested lung tissue, we evaluated
interstitial macrophage phenotype changes during drug
intervention. As shown in Figure 7B, one day after bleomycin
challenge, the majority (more than 90%) of interstitial
macrophages presented with a M1-like phenotype
(F4/80+CD11c-CD206-), followed by a gradual decreasing
trend of the proportion of M1-like macrophages, and this trend
reached statistical difference on day 21. Moreover, compared
with BLM and BLM+NS groups, spironolactone has no obvious
influence on interstitial macrophage phenotype switching
induced by bleomycin.
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Figure 1. MR is expressed in circulating monocytes and alveolar macrophages. A shows the purity analysis of enriched

Ly6G-CD11b+ monocytes by flow cytometry. The left dot plot shows the monocyte (CD11b+ and Ly6G-) purity is 9.51% before
enrichment. After enrichment (the right dot plot), the percent of monocytes is 92.8%. B shows the PCR product agarose gel
electrophoresis for MR detection after amplification by real-time PCR (from 2 mice, product length 75 bp). Panel C shows the
immunofluorescent staining of purified circulating monocytes. Note that all monocytes are positive for MR (red color). Panel D
shows the immunofluorescent staining of cells from mouse BALF. Note that cells positive for F4/80 (green) were also positive for
MR (red). Abbreviations: DAPI, 4,6-diamidino-2-phenylindole; FITC, fluorescein isothiocyanate; MR, mineralocorticoid receptor;

TRITC, etramethylrhodamine isothiocyanate.
doi: 10.1371/journal.pone.0081090.g001

Spironolactone partially normalizes bleomycin-induced
alveolar macrophage M2 polarization

Then we investigated the impact of spironolactone on
alveolar macrophage phenotype changes. As shown in Figure
8B, alveolar macrophages in NS group were mainly (more than
80%) presented with a M1-like phenotype (F4/80+CD11c
+CD206-). After bleomycin challenge, there was a quick
decrease of M1-like macrophage with a concomitant increase
of M2-like phenotype (F4/80+CD11c+CD206+). Whereas in
spironolactone treated mice, this trend was partially
normalized, indicating an inhibitory effect on alternative
activation by MR antagonism.

Discussion

Recent studies showed that the renin angiotensin
aldosterone system (RAAS) plays an important role in the
pathogenesis of lung injury [23-25]. In addition, the therapeutic
efficacy of drug intervention targeting this system has been
reported in bleomycin-induced lung injury models [26-31]. Zhao
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and coworker first demonstrated the therapeutical potential of
spironolactone in ameliorating bleomycin-induced lung fibrosis
[32], which is also supported by a recent study [33]. A growing
body of evidence suggests that manipulation of the
mononuclear phagocyte phenotype switching could be a
feasible approach to alter the severity and persistence of
pulmonary injury and fibrosis in experimental models [34-36]. It
has been demonstrated that MR plays an important role in
regulating myeloid cell phenotype switching in different disease
conditions [16,37-40]. To our knowledge, the role of
mononuclear cell MR in mediating acute lung injury induced
pulmonary fibrosis has not been addressed. The present work
confirmed that MR antagonism by a clinically approved drug,
spironolactone, could attenuate bleomycin-induced acute lung
injury and fibrosis. Specifically, MR inhibition partially
attenuates LyBC" monocyte expansion in circulating
compartment and normalizes disturbed balance of macrophage
polarization in alveolar compartment, leading to reduced
alveolitis and collagen deposition in lung tissue. These findings
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Flow Cytometry Analysis (blood, BALF, and lung tissue)

Lung Histology (cell counting in BALF; H.E., Masson's trichrome, and a-SMA staining)
Cytokine Expression (real-time PCR and ELISA); Lung Tissue Hydroxyproline Assay

Day 0 Day 1 Day 3

Day 7 Day 14  Day 21
]

> Normal Saline Instillation (NS)

® | { | l

Y

Bleomycin Instillation (BLM)

M

Y

Bleomycin Instillation treated with Normal Saline (BLM+NS)

> Bleomycin Instillation treated with Spironolactone (BLM+SP)

Figure 2. In vivo drug intervention study protocol. Abbreviations: a-SMA, a smooth muscle actin; BALF, bronchoalveolar
lavage fluid; BLM, bleomycin; H.E., hemotoxylin and eosin; NS, normal saline; SP, spironolactone.

doi: 10.1371/journal.pone.0081090.g002

highlight mononuclear phagocyte MR as a promising target for
ameliorating acute lung injury and profibrotic response in lungs.

The RAAS is a hormone system which acts on multiple
physiologic pathways by regulating blood pressure and fluid
balance. As the terminal effector of the RAAS cascade, the role
of aldosterone/MR signaling has been recently implicated the
pathogenesis of cardiovascular diseases, insulin resistance
and diabetes, and chronic inflammation associated fibrosis
[41-43]. These effects are supported by the fact that in addition
to the kidney, there is a wide tissue distribution of MR, such as
cardiomyocytes, endothelial cells, vascular smooth muscle
cells, adipocytes and macrophages [44]. Here, we
demonstrated that MR is expressed both in purified murine
circulating Ly6G-/CD11b+ monocytes and in F4/80+ alveolar
macrophages, providing a basis for MR regulation of monocyte/
macrophage phenotype switching.

Macrophages are professional phagocytic cells with different
transcriptional profiles and functional capabilities depending on
their origins from various organs [45]. Broadly speaking, the
lung tissue contains two tissue-resident macrophage
compartments, i.e., alveolar macrophages and interstitial
macrophages. The traditional belief that tissue-resident
macrophages are derived from circulating monocyte
progenitors has been challenged by recent fate mapping
studies by showing that the steady-state turnover of alveolar
macrophages is extremely low: 8 to 12 months after bone
marrow transplantation, 70%-60% of alveolar macrophages are
host derived [35,46]. In addition, recent studies demonstrated
that lung alveolar macrophages are established prior to birth
and maintains themselves subsequently during adulthood
independent of replenishment from circulating monocyte input
in steady state [47,48].
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On the contrary, during acute lung inflammatory response,
circulating monocytes have an important impact on the lung
macrophage dynamics. In general, recent studies are in
agreement with the notion that following injury, there is an
increased accumulation of M2-like mononuclear cells in alveoli
[10,49-52]. Moreover, in patients with chronic obstructive
pulmonary disease, a skewing of alveolar macrophages from
an M1 to M2 phenotype has been observed [50,53]. However,
with regard to the origin of these M2-like cells, some
controversy existed. In an endotoxin-induced lung inflammation
model, Maus and coworkers showed that despite a rapid
recruitment of monocytes in lung tissue, the resident alveolar
macrophage pool remained static throughout the duration of
inflammation and the expansion of the lung macrophage pool
was mainly mediated by an influx of the circulating monocytes,
followed by their differentiation into tissue macrophages [46]. In
agreement with this finding, recently Osterholzer et al [54],
using a gene-targeted alveolar injury model, demonstrated an
increased exudate macrophages and their progenitors, Ly6C"
monocytes, both exhibiting M2 polarization in alveoli. In
another study [36], Gibbons and colleagues adoptively
transferred LyBC" monocytes into bleomycin-treated mice
during the progressive phase of lung fibrosis, which led to an
exacerbation of disease progression and an increased
accumulation of M2-like macrophage in the lung. Surprisingly,
these alternatively activated macrophages were host derived
and not from the donor Ly6C" monocytes. As a corollary,
regardless of their origins, our current knowledge points to a
general scheme of their relationship: initially, acute lung injury
induces a rapid expansion and infiltrating Ly6C" monocytes in
lung tissue, which contributes to a paralleled increase of M2-
like macrophages (by direct differentiation or by paracrine
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Figure 3. Spironolactone reduces bleomycin-induced alveolitis. Figures A to D, hemotoxylin and eosin (H.E.) stained lung
tissue on day 7 after bleomycin challenge. E to H show the magnified fields as indicated by black frames in A to D, respectively.
Figure | shows the comparisons of the semi-quantitative inflammation scores across all groups on day 7. Panel J shows the results
of differential cell counting from the bronchoalveolar lavage fluid (BALF) that harvested on day 7. Abbreviations: BLM, bleomycin;

NS, normal saline; SP, spironolactone.
*P<0.05; **P<0.01 (n = 7).
doi: 10.1371/journal.pone.0081090.g003

effects) in alveolar compartment, and the severity and
persistency of M2 polarization in alveolar macrophages would
ultimately influence inflammation resolution and fibrosis.

The above model highlights the circulating Ly6C" monocytes
as a therapeutic target. Although we did not use a monocyte-
targeted approach to suppress Ly6C" monocytosis, it is likely
that spironolactone would also exert its major pharmacological
effect on circulating monocyte pool since the efficacy of orally
administered drug is significantly compromised by its inability to
reach alveolar space at an appropriate concentration [55].
Additionally, because evidence shown that monocyte infiltration
would facilitates alveolar neutrophil emigration and determines
the ongoing neutrophil influx in the persistent phase of acute
lung injury [56-58], suppression of Ly6CM monocytosis by
spironolactone would concomitantly lead to a decreased tissue
accumulation of neutrophils, which is also observed in our
study.

PLOS ONE | www.plosone.org

The present work has the following limitations. First, because
spironolactone has anti-androgen effect, the observed effects
of this work cannot be totally ascribed to MR antagonism.
Indeed, there is a sex discrepancy in bleomycin-induced lung
fibrosis, and estrogen may have protective effect on this model
[59,60]. In this regard, MR knockout mice are preferred to
address this issue. Second, we did not observed significant
changes in lung interstitial macrophages by spironolactone.
Previous study showed this population might have a role in
limiting inflammation and fibrosis [61]. Thus it remains unclear
whether CD206 is an appropriate M2 marker for this population
as recent study showed that the change of CD206 is modest
after bleomycin challenge [51], or this population is insensitive
to MR inhibition, or due to enzymatic digestion-induced surface
marker loss during sample preparation, a commonly
encountered technical issue. Third, due to the wide distribution
of MR in the body, the mechanistical explanation of global MR
antagonism is fairly complex. For example, aldosterone has
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Figure 4. Spironolactone reduces bleomycin-induced inflammatory and profibrotic cytokine expression. Figures A to C
show the protein levels of CCL2, TGF-1 and IL-1Bin the bronchoalveolar lavage fluid (BALF) detected by ELISA at selected time
points. Figures D to F represent the mRNA levels of above three cytokines in lung tissue at selected time points. G shows the
dynamic profiles of Arg-1 mRNA expression in lung tissue; H shows the IL-4 protein dynamics in BALF. Abbreviations: CCL2,
chemokine (C-C motif) ligand 2; TGF-B1, transforming growth factor 31; IL-18, interleukin-1(3; Arg1, arginase-1; IL-4, interleukin-4.
For Figures A to G, *P<0.05; **P<0.01 (n = 5 to 7); For Figure H, *P<0.05 vs. NS group. #P<0.05 vs. BLM and BLM + NS groups (n
=5t07).

doi: 10.1371/journal.pone.0081090.g004

been implicated in the pathogenesis of pulmonary hypertension functional expression of MR has been demonstrated in
[62], and spironolactone has been shown to attenuate neutrophils [66], which may also participate in spironolactone
experimental pulmonary hypertension via MR inhibition in induced amelioration of lung fibrosis, as shown by reduced
pulmonary artery smooth muscle cells [63].Admittedly, neutrophil count in BALF. Thus, in addition to its effect on
bleomycin is also a frequently used tool drug to induce mononuclear phagocytes, the mechanisms underlying
pulmonary hypertension [64,65]. The downregulation of a-SMA therapeutic effect of systemic use of spironolactone on
by spironolactone observed in this study, also support an anti- bleomycin-induced lung injury is multifactorial. Forth, it seems

fibrotic effect of spironolactone on fibroblasts. Moreover, the obscure to interpret the effect of MR antagonism on alveolar
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Figure 5. Spironolactone ameliorates bleomycin-induced pulmonary fibrosis. Figures A to D, Masson’ trichrome staining of
lung tissue from day 21. E to H show the magnified fields as indicated by black frames in A to D, respectively. Figures | to L show
the immunofluorescent staining of a-SMA (FITC-labled, green; nuclei were counterstained by DAPI). Figures M to Q show fibrosis
index, total lung hydroxyproline content, collagen type | and collagen type Il mMRNA expression and a-SMA positive area
comparisions in lung tissue from day 21, respectively. Abbreviations: a-SMA, a smooth muscle actin; BLM, bleomycin; Hyp,
hydroxyproline; Col |, collagen type I; Col Ill, collagen type Ill; NS, normal saline; SP, spironolactone. *P<0.05; **P<0.01 (n = 5to 7).

doi: 10.1371/journal.pone.0081090.g005

macrophage polarization, since macrophages lacking myeloid
MR exhibit alternative activation (M2 polarization), whereas our
results showed that MR inhibition could reduce alveolar M2
polarization. It should be noted the long-established binary
classification of macrophage in terms of classical (M1) and
alternative activation (M2) is based on in vitro studies [67].
Indeed, a recent study demonstrated eplerenone, another
clinically approved MR antagonist, promotes alternative

PLOS ONE | www.plosone.org

activation in human monocyte-derived macrophages [68].
However, macrophages in vivo maintain their plasticity and can
alter their phenotype based on the microenvironment, including
cytokine milieu among other factors [10]. As pointed early, drug
administration via oral route, cannot reach alveolar space at an
appropriate concentration. Therefore, the alterations in alveolar
macrophage polarization state cannot be ascribed to MR
antagonist’s direct effect. It is conceivable that suppression of
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Figure 6. Spironolactone reduces bleomycin-induced circulating Ly6C" monocytosis. A shows the gating strategies for
mouse blood monocyte subsets. B and C show the dynamic profiles of Ly6C" and Ly6C'° monocytes in all treatment groups,
respectively. Panel D shows the representative temporal profiles of flow cytometry analysis (pseudocolor plots) of monocyte subsets
in all treatment groups. Abbreviations: BLM, bleomycin; FSC, forward-scattered light; NS, normal saline; SP, spironolactone; SSC,
side-scattered light. *P<0.05 vs. NS group. #P<0.05 vs. BLM and BLM + SP groups (n =5to 7).

doi: 10.1371/journal.pone.0081090.g006

inflammatory (Ly6CM subset) monocyte expansion should be
the direct effect by spironolactone, which ameliorates lung
injury via the “Ly6C"' directed pulmonary alterative activation”
mechanism [36]. Thus, future monocyte-targeted approaches,
as well as in vitro studies are warranted to elucidate the
molecular mechanism  underlying  suppressed Ly6CM
monocytosis by MR antagonism. Finally, the algorithms used in

PLOS ONE | www.plosone.org

10

this study are relatively simple, and may inadvertently contain
dendritic cells and eosinophils. More rigorous and sophisticated
algorithms have been published and suggested [51,69].

In conclusion, the present work provides the experimental
evidence that MR antagonism by spironolactone could
attenuate bleomycin-induced acute pulmonary injury and
fibrosis, partially by reducing circulating inflammatory Ly6CM
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Figure 7. Spironolactone has no obvious impact on pulmonary interstitial macrophage phenotype. A shows the gating
strategies for mouse pulmonary interstitial macrophage phenotying after enzymatical digestion. B and C show the dynamic profiles
of lung interstitial M1-like (F4/80+CD11c+CD206-) and M2-like (F4/80+CD11c+CD206+) macrophages in all treatment groups,
respectively. Panel D shows the representative temporal profiles of flow cytometry analysis (pseudocolor plots) of pulmonary
interstitial macrophages in all treatment groups. Abbreviations: BLM, bleomycin; FSC, forward-scattered light; NS, normal saline;
SP, spironolactone; SSC, side-scattered light. *P<0.05 vs. NS group. #P<0.05 vs. BLM and BLM + SP groups (n =5 to 7).

doi: 10.1371/journal.pone.0081090.g007

monocyte expansion and inhibiting alternatively activation of monocyte-mediated inflammatory response in acute lung injury
mononuclear phagocyte in alveolar compartment. Our findings and fibrosis.
highlight MR as a potential therapeutic target to inhibit Ly6C"
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