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Purpose: To determine the feasibility of predicting the rate of an axillary lymph

node pathological complete response (apCR) using nomogram and machine

learning methods.

Methods: A total of 247 patients with early breast cancer (eBC), who underwent

neoadjuvant therapy (NAT) were included retrospectively. We compared pre-

and post-NAT ultrasound information and calculated the maximum diameter

change of the primary lesion (MDCPL): [(pre-NAT maximum diameter of

primary lesion – post-NAT maximum diameter of preoperative primary

lesion)/pre-NAT maximum diameter of primary lesion] and described the

lymph node score (LNS) (1): unclear border (2), irregular morphology (3),

absence of hilum (4), visible vascularity (5), cortical thickness, and (6) aspect

ratio <2. Each description counted as 1 point. Logistic regression analyses were

used to assess apCR independent predictors to create nomogram. The area

under the curve (AUC) of the receiver operating characteristic curve as well as

calibration curves were employed to assess the nomogram’s performance. In

machine learning, data were trained and validated by random forest (RF)

following Pycharm software and five-fold cross-validation analysis.

Results: The mean age of enrolled patients was 50.4 ± 10.2 years. MDCPL

(odds ratio [OR], 1.013; 95% confidence interval [CI], 1.002–1.024; p=0.018),

LNS changes (pre-NAT LNS – post-NAT LNS; OR, 2.790; 95% CI, 1.190–6.544;

p=0.018), N stage (OR, 0.496; 95% CI, 0.269–0.915; p=0.025), and HER2 status

(OR, 2.244; 95% CI, 1.147–4.392; p=0.018) were independent predictors of

apCR. The AUCs of the nomogram were 0.74 (95% CI, 0.68–0.81) and 0.76

(95% CI, 0.63–0.90) for training and validation sets, respectively. In RF model,

the maximum diameter of the primary lesion, axillary lymph node, and LNS in
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each cycle, estrogen receptor status, progesterone receptor status, HER2, Ki67,

and T and N stages were included in the training set. The final validation set had

an AUC value of 0.85 (95% CI, 0.74–0.87).

Conclusion: Both nomogram andmachine learningmethods can predict apCR

well. Nomogram is simple and practical, and shows high operability. Machine

learning makes better use of a patient’s clinicopathological information. These

prediction models can assist surgeons in deciding on a reasonable strategy for

axillary surgery.
KEYWORDS

breast cancer, axillary lymph node pathological complete response, neoadjuvant
therapy, nomogram, machine learning
Introduction

Neoadjuvant therapy (NAT) is a systemic treatment that

precedes local surgery and not only monitors the response to

systemic therapy, but also offers patients with early breast cancer

(eBC) a higher rate of breast-conserving surgery and omission

from axillary lymph node dissection (ALND) (1). While traditional

anatomic pathological features are important in predicting the risk

of recurrence and deciding on adjuvant treatment options for

patients with eBC, the response of the primary breast lesion and

lymph node post-NAT are also important for any subsequent

adjuvant treatment regimen (2). At the same time, when patients

achieve an axillary lymph node pathological complete response

(apCR) post-NAT, an opportunity exists to omit ALND and avoid

postoperative complications such as lymphedema, arm pain, and

arm dyskinesia (3). According to the results of Z1071 (4),

SENTINA (5), and SN FNAC (6) trials, although the proportion

of patients who achieved apCR post-NAT was within acceptable

range (40%–70%), the proportion of patients with a negative

clinical evaluation of axillary lymph node post-NAT who

obtained an ALND exemption through sentinel lymph node

biopsy (SLNB) was small in the real world. Although the

National Cancer Database shows that 42.2% of NAT patients are

exempted from ALND by SLNB (7), many countries and regions

show a far lower ALND rate. A cross-sectional survey of 110 large

hospitals in mainland China showed that more than 50% of

hospitals preferred to perform SLNB before NAT. If SLNB is

positive at this time point, further ALND is required and the

opportunity to perform SLNB post-NAT is lost (8). The reasons for

this may be because of the high false negative rate (FNR) of 8.4–

14.2% for SLNB. Although a subgroup analysis of the Z1071 trial

found that the placement of marker clips in positive lymph nodes

reduced the FNR of post-NAT sentinel lymph node biopsies to

6.8%, 20% of marker clips were not placed in sentinel lymph nodes

and 17% were lost (9). If SLNB was only performed for patients
02
with no suspicious lymph nodes on a post-NAT ultrasound, the

FNR decreased to 9.8%. But of 138 patients with suspicious lymph

nodes on ultrasound, no metastases were found in the

postoperative lymph node pathology of 39 patients (10).

However, the poor implementation of radioisotope and

placement of marker clips that occurred in many medical

institutions also influenced the performance of post-NAT SLNB.

Therefore, the development of other practical tools is urgently

required to screen for an appropriate population for post-

NAT SLNB.

Previous studies have described such a prediction model,

which were based on pre-and post-NAT clinicopathological and

imaging information (11–14). One study included data on

suspicious lymph nodes on post-NAT ultrasound in the

prediction model to improve accuracy (15). Unfortunately, the

dynamic changes in lymph node status post-NAT were not

considered. A meta-analysis showed that the accuracy of

ultrasound evaluation for lymph node status post-NAT was

only 0.58 (16). In addition, machine learning to predict total

pCR (tpCR) and long-term survival in patients with NAT eBC

has been developed in several studies. A study based on machine

learning to predict tpCR in patients with eBC had the highest

AUC value of 0.87 but required additional genomic and

transcriptomic profiles from patients (17). A report using

multiparameter magnetic resonance imaging (MRI) combined

with machine learning to predict tpCR and survival had the

highest AUC value of 0.86; only imaging features of the primary

lesion were extracted and the characteristics of lymph nodes

were ignored (18). Meti et al. combined tumor size, histological

grade, clinical stage, and molecular subtype to construct a

prediction model, but did not include imaging features (19).

Thus, these latest studies suggested an urgent need exists for

developing a tool that can accurately predict the status of axillary

lymph node post-NAT through routine examination and

clinical information.
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Therefore, the aim of our study was to predict the post-NAT

lymph node status of patients with eBC using clinicopathological

and ultrasound information during NAT by nomogram and

random forest (RF) methods respectively, and to compare the

advantages and disadvantages of the two methods. We expect that

these models may provide clinicians with a simple, accurate, and

easy-to-use method for predicting a candidate population for

SLNB post-NAT, thus avoiding complex technical approaches.
Methods

Study population

Data on a total of 382 patients with eBC, who underwent

NAT at the Second Hospital of Dalian Medical University and

the First Affiliated Hospital of China Medical University

between 2017 and 2021, were collected retrospectively. The

eligibility criteria for the study were as follows (1): at least four

cycles of NAT (2); surgery post-NAT (3); complete ultrasound

examination in all treatment cycles (4); complete pathological

information (5); treatment regimen containing anthracyclines

and/or paclitaxel; and (6) a primary lesion detected on

breast ultrasound.
Frontiers in Oncology 03
Based on the medical history and imaging findings, we

excluded (1): incomplete pathological information (2);

incomplete ultrasound information (3); no surgery (4); distant

metastasis (5); occult breast cancer (BC) (6); cN3; and (7)

inflammatory BC (Figure 1). In total, 247 patients were

included in the study.

Data collection

We collected clinical information including (1): age, and (2)

pre-NAT clinical T and N stages. Pre- and post-NAT pathological

information included (1): estrogen receptor (ER) status (2);

progesterone receptor (PR) status (3); human epidermal growth

factor receptor 2 (HER2) status; and (4) Ki-67 index. TNM staging

was performed according to the 8th edition of the American Joint

Committee on Cancer Staging Manual (20). ER and PR

expression ≥ 1% was considered positive (21). ER or PR positive

was considered hormone receptor (HR) positive (22).

Immunohistochemistry (IHC) 3+ was considered HER2

positive. IHC 2+ was tested using fluorescence in situ

hybridization (FISH): a HER2/CEP17 ratio ≥ 2.0 with a HER2

signal/cell ratio ≥ 4.0 or a HER2/CEP17 ratio < 2.0 with a HER2

signal/cell ≥ 6.0 were positive (23). Breast pCR (bpCR) was

defined as no invasive disease in the breast and apCR was
FIGURE 1

Study flowchart.
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defined as no metastatic disease in an axillary lymph node (24)

including isolated tumor cells and micrometastases (25). Total

pCR (tpCR) was defined as ypTis/0N0M0.
Ultrasound

All patients ultimately included in the study underwent breast

ultrasound during each cycle of NAT. The maximum diameter of

the primary lesion (MDPL) and maximum diameter of a suspicious

lymph node (MDSLN) were recorded for each cycle. The

maximum diameter change of the primary lesion (MDCPL) was

calculated: [(pre-NAT MDPL – post-NAT MDPL)/pre-NAT

MDPL]. If multiple lesions were detected, information on the

lesion with the largest diameter was selected. An ultrasound

evaluation was made of the following suspicious axillary lymph

node features (1): unclear border (Figure 2A) (2); irregular

morphology (Figure 2B) (3); absence of hilum (Figure 2C) (4);
Frontiers in Oncology 04
visible vascularity (Figure 2D) (5); cortical thickness (Figure 2E);

and (6) aspect ratio <2 (Figure 2F) (26–29). The lymph node score

(LNS) was set up, with each abnormal description considered as a

score of 1. For example, a NAT patient with lymph node ultrasound

images showing an unclear border, irregular morphology, absence

of hilum, and cortical thickness would have an LNS of 4 points

(Figure 2G). Another patient with lymph node ultrasound images

showing an unclearborder, irregular morphology and cortical

thickness would have an LNSof 3 points (Figure 2H). The

difference between pre- and post-NAT was calculated and

divided into two groups, with 0 as the cutoff value (1): ≥0 (2) <0.
Machine learning

Machine learning was randomly divided into training and

validation sets and stratified 7:3. The feature values of the

training set sample data included patient pre-NAT T stage, N
G

A B

D E F

H

C

FIGURE 2

Specific image features for a lymph node score. (A), Unclear border (As shown in the red box, the border of the lymph node is unclear from the
surrounding tissue). (B), Irregular morphology (as shown in the red line, the loss of an elliptical shape led to a lobulated shape). (C), Absence of
hilum (the lymph nodes shown in the red boxes were almost all hypoechoic, and no echo of the hilum was seen). (D), Visible vascularity
(vascularity is visible in the cortex and hilum shown in the box). (E), Cortical thickness (significant cortical thickness shown in the red box). (F),
Aspect ratio <2 (ratio of vertical axis to horizontal axis <2). (G), Unclear border, irregular morphology, absence of hilum, cortical thickness (LNS =
4 points). (H), Unclear border, irregular morphology, cortical thickness (LNS = 3 points). LNS, lymph node score.
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stage, MDPL and MDSLN for each cycle, LNS for each cycle, ER

expression, PR expression, Ki67, and HER2 status.

The RF method is an integrated classification method (30).

This model is a commonly used classifier in the intersectional

field of medicine and artificial intelligence. It is composed of

multiple decision trees and the output category is determined by

majority voting according to the output category of each tree.

The software environment used in this study was Pycharm

and the Python interpreter version was 3.8.12. First, the training

and validation sets were stratified and randomly divided 7:3 to

ensure a consistent proportion of apCR and non-apCR sample

data. Second, the feature values of the sample data were

standardized to eliminate differences between features. In view

of the imbalance in the number of samples of various types in the

data set, SMOTE synthesis method was used to oversampling the

minority sample data (patients who reached apCR), so as to

improve the recognition ability of the model for minority

samples. When training the model, we try to use different class

weight to adjust the influence degree of different types of training

data on the loss function, in order to achieve the best

classification effect. With the aim of the problem being that

the total sample data was small, in the process of selecting the

optimal parameters for the training model, this experiment used

a cross-validation method to compare the advantages and

disadvantages of the model with different parameters in the

prediction result index on the validation set. Finally, after

determining the parameters, all sample data of the training set

was inputted to train the model, the final prediction results of the

validation set on the model were saved, the confusion matrix and

receiver operating characteristic (ROC) curve were drawn, and

the performance index accuracy, sensitivity, specificity and area

under the curve (AUC) of the ROC curve were calculated. For

this experimental dataset, which was classified with unbalanced

labels, the error could be well balanced. Python language was

used in its programming part. In order to obtain a stable and

reliable model, this experiment adopted a 5-fold cross-validation

method to select parameters. Finally, the ROC was drawn based

on predicted and true label values on the model. The AUC of the

ROC curve was calculated as the performance index of

the model.
Statistical analysis

Randomization into training and validation sets was

performed at 8:2. We used logistic regression to obtain an

odds ratio (OR) with 95% confidence interval (CI) for any

association with the response. Univariable logistic regression

was used to explore the clinicopathological and ultrasound

factors associated with lymph node pCR. Variables with p <

0.05 in the univariable logistic regression were included in the

multivariable logistic regression. Variables with p < 0.05 in the

multivariable logistic regression were retained in the nomogram.
Frontiers in Oncology 05
The AUCs of the ROC and calibration curves were employed to

assess the nomogram’s performance (31). Statistical analyses

were carried out in SPSS 25 and R (version 4.2.1) software. In

addition, “glm,” “rms,” “pROC,” “Calibration Curves” packages

were used.
Results

Pre-NAT characteristics

In total, 247 patients were included in this retrospective

study. The pre-NAT clinical and pathological characteristics of

patients in the training and validation sets are shown in Table 1.

The mean patient age ± standard deviation was 50.4 ± 10.2 years.

The majority of patients with a T stage were T2 at 64% (158 of

247) of the population, followed by T3–T4 patients accounting

for 27.5% (68 of 247), and T1 patients accounting for a

minimum of 8.5% of the population (21 of 247). The highest

percentage of patients with an N1 stage was 73.7% (182 of 247).

97.6% of patients were invasive ductal carcinoma (IDC). We

classified molecular subtypes into (1): HR+/HER2- (2), HR

+/HER2+ (3), HR-/HER2-, and (4) HR-/HER2+. The most

frequent were HR+/HER2- at 49.8% (123 out of 247) of

patients, and HR+/HER2+ at 23.5% (58 of 247) of patients.

The rest of the types were HR-/HER2- at 12.5% (31 of 247) of

patients and HR-/HER2+ at 14.2% (35 of 247) of patients,

respectively. Anti-HER2 drugs were used in 81% (75 of 93) of

HER2+ patients. The tpCR rate was 23.9%, and the rates for

bpCR and apCR were 26.7% and 48.1%, respectively (Table 2).
Factors associated with apCR

In the training set (n=199), apCR was achieved in 48.7% of

patients (Table 1). A total of 10 variables were included in the

statistical analysis (Table 3). In a univariable logistic regression

analysis, clinicopathological characteristics: ER expression (OR,

0.989; 95% CI, 0.982–0.996; p = 0.001), HER2 status (OR, 2.715;

95% CI, 1.511–4.876; p = 0.001), Ki67 index (OR, 6.560. 95% CI,

1.457–29.532; p = 0.014), and N stage (OR, 0.554; 95% CI, 0.319–

0.962; p = 0.036) were associated with apCR. For ultrasound

features, MDCPL (OR, 1.015; 95% CI, 1.005–1.025; p = 0.004)

and LNS changes (OR, 3.650; 95% CI, 1.621–8.220; p = 0.002)

were associated with apCR. The p values for T stage, PR

expression, molecular subtype and age were less than 0.05 so

they were not included in the multivariable logistic regression

analysis (Table 3).

The above variables with p < 0.05 were included in a

multivariable logistic regression analysis, which showed that

the MDCPL (OR, 1.013; 95% CI, 1.002–1.024; p = 0.018), LNS

changes (OR, 2.790; 95% CI, 1.190–6.544; p = 0.018), N stage

(OR, 0.496; 95% CI, 0.269–0.915; p = 0.025), and HER2 status
frontiersin.org

https://doi.org/10.3389/fonc.2022.1046039
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2022.1046039
(OR, 2.244; 95% CI, 1.147–4.392; p = 0.018) were associated with

apCR (Table 4).
Nomogram construction and validation

The ER was a predictor of apCR in previous studies (31–34).

Although we did not see a statistically significant difference in

ER expression in a multivariable logistic regression analysis (OR,

0.993; 95% CI, 0.985–1.001; p = 0.104), we still included ER

expression in the nomogram. The total score of the nomogram

was obtained by summing the respective scores of MDCPL, ER

expression, LNS changes, HER2 status, and N stage. The

probability of achieving apCR for an individual patient was
Frontiers in Oncology 06
obtained by applying the total score to the scale at the bottom of

the nomogram (Figure 3).

Internal validation on a training set with a AUC value of 0.74

(95% CI, 0.68–0.81) and independent external validation on a

validation set with a AUC value of 0.76 (95% CI, 0.63–0.90)

indicated that the reformulated model had good predictive

ability (Figures 4A, B). The calibration curve of the nomogram

showed good agreement between actual observations and

predicted outcomes in training and validation sets (Figures 4C,

D). As the prediction curves were close to the standard curve

(Y=X), the final model showed good performance and had

high practicability.
Validation of machine learning (RF model
construction)

In this study, we used features that were already available in

the data; however, the values of individual features needed to be

preprocessed. First, the values of ER, PR, and HER2 were

binarized according to the critical values of negative and

positive in medicine, and the remaining eigenvalues were

retained. The processed training set data were sent to the RF

model for training, and the appropriate model parameters were

selected by comparing the mean of the 5-fold cross-validation

result. Finally, pre-NAT T stage, N stage, MDPL and MDSLN

for each cycle, LNS for each cycle, ER expression, PR expression,

Ki67, and HER2 status were included in the model and the

performance of the model was examined in the validation set.

The indicators used in this experiment were AUC, accuracy,

sensitivity, specificity, and ROC (Figure 5A), showing an AUC

value of 0.85 (95% CI, 0.74–0.87). The confusion matrix in

Figure 5B shows that the RF model has a prediction accuracy of

0.78, sensitivity of 0.74, and specificity of 0.83. These results

indicated that this model was predictive.
TABLE 2 Breast, axillary lymph node and total pCR rates for different
molecular subtypes.

Molecular subtype bpCR rates apCR rates tpCR rates

All 26.7% 48.1% 23.9%

HR+/HER2- 17.9% 37.4% 16.3%

HR+/HER2+ 32.8% 63.8% 31.0%

HR-/HER2- 19.4% 45.2% 16.1%

HR-/HER2+ 54.3% 62.9% 45.7%
TABLE 3 Results of variables associated with apCR in univariable
logistic regression analysis.

Characteristic P value OR 95%CI

MDCPL 0.004 1.015 1.005-1.025

LNS changes 0.002 3.650 1.621-8.220

T stage 0.619 0.884 0.544-1.437

N stage 0.036 0.554 0.319-0.962

ER expression 0.001 0.989 0.982-0.996

PR expression 0.133 0.501 0.204-1.235

HER2 status 0.001 2.715 1.511-4.876

Ki67 index 0.014 6.560 1.457-29.532

Molecular subtype 0.371 1.326 0.714-2.462

Age 0.833 0.997 0.970-1.025
fro
TABLE 1 Basic characteristics of patients at baseline.

Characteristic All Training set Validation set
n=247 n=199 n=48

Age 50.3 ± 10.2 50.5 ± 10.2 49.6 ± 10.8

T stage

1 21(8.5%) 17(8.5%) 4(8.3%)

2 158(64%) 126(63.4%) 31(64.6%)

3、4 68(27.5%) 56(28.1%) 13(27.1%)

N stage

0 33(13.3%) 26(13.1%) 7(14.5%)

1 182(73.7%) 147(73.9%) 35(73%)

2 32(13%) 26(13%) 6(12.5%)

Pathological type

IDCa 241 (97.6%) 196 (98.5%) 45 (93.8%)

ILCb 2 (0.8%) 1 (0.5%) 1 (2.1%)

Other types 4 (1.6%) 2 (1%) 2 (4.1%)

Molecular subtype

HR+/HER2- 123(49.8%) 95(47.7%) 28(58.2%)

HR+/HER2+ 58(23.5%) 48(24.1%) 10(21%)

HR-/HER2- 31(12.5%) 24(12.1%) 7(14.6%)

HR-/HER2+ 35(14.2%) 32(16.1%) 3(6.2%)

apCR rates 48.1% 48.7% 45.8%
aInvasive ductal carcinoma.
bInvasive lobular carcinoma.
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Discussion

Due to the iterative update of new targeted drugs and the

increasing refinement of molecular subtype, the proportion of

patients with eBC who achieve surgical downstaging through

NAT is increasing (34). Thus, more patients have conditions that

lead to preservation of breast and axillary lymph nodes,

especially those with triple-negative and HER2+ BC (35).

Previous studies have shown better disease free survival (DFS)

and overall survival (OS) rates could be obtained in patients who

achieved pCR compared to those with residual lesions (22). An

OS benefit is also seen in some subtypes with pCR in a single

breast or axilla (36, 37). Also, several studies have reported that

axillary lymph nodes appear to be more likely to reach pCR

compared to the breast (2, 38, 39). A total of 48.1% of patients in

our study achieved apCR, similar to previous studies (40–42). It

is essential to perform an SLNB for patients who may then be
Frontiers in Oncology 07
exempted from ALND after NAT. How to select such feasible

SLNB candidates by scientific methods is the key to constraining

this problem.

The 2022 edition of the National Comprehensive Cancer

Network breast cancer guidelines (43), and the 2021 edition of

the Chinese breast cancer guidelines (CBCS, CSCO) (44, 45),

generally recommend SLNB in selected cases when nodes are

clinically negative after NAT. Conditions for SLNB were the pre-

NAT placement of marker clips and their removal during

surgery, use of dual tracers including radioisotopes, and

removal of at least three sentinel lymph nodes. The rates for

the utilization of radioisotope tracing in Z1071 (4), SENTINA

(5), and SNFNAC (6) trials were 95.9%, 95%, and 100%,

respectively. Unfortunately, the clinical prevalence of

radioisotopes and marker clips has limited the widespread

implementation of SLNB after NAT in many countries such as

China. A cross-sectional study of 110 large hospitals in mainland

China showed that only 14.5% of hospitals chose dual tracers

containing a radioisotope (46). Another cross-sectional study

showed that only 11% of hospitals chose to localize primary

breast lesions and lymph nodes with marker clips (8).

Our study was designed to address this clinical challenge by

using a scientific approach to help clinicians screen for patients

who can truly avoid ALND through monitoring the axillary

lymph node response of NAT dynamically. We also sought to

develop an effective method for SLNB post-NAT that does need

not be restricted by conditions, such as radioisotopes and marker

clips. In this study, a prediction model based on nomogram and
TABLE 4 Results of variables associated with apCR in multivariable
logistic regression analysis.

Characteristic P value OR 95%CI

MDCPL 0.018 1.013 1.002-1.024

LNS changes 0.018 2.790 1.190-6.544

N stage 0.025 0.496 0.269-0.915

HER2 status 0.018 2.244 1.147-4.392

ER expression 0.104 0.993 0.985-1.001
FIGURE 3

Nomogram for predicting the probability of apCR. Variables including MDCPL, LNS changes, percentage ER expression, HER2 status, and N
stage were assigned points. Adding the total score of these variable points indicates the probability of apCR. The vertical line between the five
variables and the first row can be summed as a total point, and by drawing a vertical line between the total point and the last row, the final
probability of apCR was obtained. apCR, axillary lymph node pathological complete response; ER, estrogen receptor; HER2, human epidermal
growth factor receptor 2; LNS, lymph node score; MDCPL, maximum diameter change of primary lesion.
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RF methods was developed to discriminate patients who could

undergo SLNB post-NAT. The AUC values of nomogram and

RF methods were 0.76 and 0.85, respectively, and both methods

showed good predictive ability. The variables incorporated in the

final nomogram by logistic regression analysis were MDCPL,

LNS changes, ER expression percentage, HER2 status, and pre-

NAT N stage. The eigenvalues incorporated in the RF model

were MDPL by cycle, MDSLN by cycle, LNS by cycle, T stage, N

stage, ER, PR, HER2, and Ki67. In our study, whether

nomogram or machine learning, the included variables can be

obtained during routine examination, which does not require

additional examination and is more consistent with actual

clinical operation.

ER, HER2, and other IHC indicators have been shown to

have predictive value for apCR post-NAT in several studies (11–

14). Ultrasound is a general screening tool, with the advantage of

being low-cost and can simultaneously assist in lymph node

biopsies. A previous study shows that ultrasound is more

accurate than mammography and MRI in the evaluation of
Frontiers in Oncology 08
axillary lymph nodes (47). Thus, the predictive value of

ultrasound for axillary lymph nodes is controversial. The

essential problem is the homogeneity of different medical

centers cannot be guaranteed due to strong subjective

judgment (sensitivity of 87% and specificity of 53%–97%) (48).

Ultrasound features of metastatic lymph nodes are generally as

follows (1): unclear border (2), irregular morphology (3),

absence of hilum (4), visible vascularity (5), cortical thickness

(6), and an aspect ratio <2 (26–29). It is usually thought that if

one of these descriptions is met, the lymph node is likely to be a

metastatic lymph node. However, our clinical experience has

found that post-NAT ultrasound features showing metastatic

lymph nodes postoperatively usually correlate with the number

of these features present. A study found that the post-NAT

ultrasound detection of suspicious lymph nodes predicted a

lower rate of apCR (15). We believe that the various

descriptions associated with abnormal lymph nodes may have

inconsistent weights for evaluating lymph node metastasis. But

we do not know whether they are the independent factors.
A B

DC

FIGURE 4

The receiver operating characteristic (ROC) curves of a nomogram for predicting the probability of apCR in (A) the training set and (B) validation
set. Calibration curves of a nomogram for predicting the probability of apCR in the training set (C) and validation set (D). apCR, axillary lymph
node pathological complete response.
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Therefore, we originally established LNS as an observation

index, assigning scores to each abnormal description, and

calculating the difference pre- and post-NAT. Interestingly,

patients with an LNS difference ≥0 are more likely to achieve

apCR. To our knowledge, this is the first study to considerthe

“LNS” as an independent factor influencing the evaluation of

lymph node metastasis post-NAT.

NAT is a process, and therefore, patients’ primary breast and

lymph node metastatic lesions also show a dynamic process of

change as treatment advances. Whether such a change process is

reflected in imaging features that can be suggestive in predicting

pCR is also a recent hot topic. A study that predicted tpCR, by

assessing the change in depth and width of primary foci

described by ultrasound pre- and post-NAT, showed that the

greater the reduction in depth of primary foci in triple-negative

BC, the easier it was to achieve tpCR (49). Li et al. comparing

ultrasound changes during NAT to predict apCR, found that the

clinical response of the primary focus and the percentage of

lymph nodes showing a reduction in their short diameter after

NAT predicted apCR (50). The results of the above study suggest

that changes in imaging features before and after NAT do have

an important predictive value for pCR. This also inspired us to

choose the pre-NAT and post-NAT LNS difference when

conducting this study, instead of selecting the LNS at a

separate time point pre- or post-NAT.

Moreover, the response of primary and metastatic axillary

lymph nodes to NAT is generally consistent, but occasionally

discordant cases occur, sometimes not exactly with the same

treatment effect (51). We therefore ventured to see if the

inclusion of MDCPL in the model would improve its

predictive ability. In our study, an interesting phenomenon

was observed was that some patients showed a trend of
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enlargement of the primary breast lesion while the axilla got

pCR (6 of 27). Previous studies have shown that about 14.5% of

patients show different post-NAT outcomes in breast and

axillary lymph nodes (52). We therefore retained this group of

patients and included them in the study.

The nomogram is simple to construct and easy to apply. The

apCR probability can be derived by calculating the score from

post-NAT clinical characteristics; however, some variables were

excluded after statistical analysis that resulted in data

compression. The RF model is more complex to construct

than a nomogram, and its AUC results are greater than those

of the nomogram. Machine learning can use all available

clinicopathological information and prediction results are

more reliable. However, when using this algorithm, the

training time is relatively long. In addition, the process of data

pre-processing and finding the optimal parameters of the model

requires some knowledge of machine learning and practical

experience in programming. This makes the whole process

more tedious in general.

Our study has several limitations. First, this was a

retrospective study with a limited number of enrolled patients,

but efforts were made to collect data from different study centers

in order to minimize sample selection bias. Second, it is generally

accepted that MRI is more accurate than ultrasound for primary

breast lesion assessment (53), but ultrasound was used for

primary lesion assessment because of excessive missing MRI

data. This is also in line with the Chinese context and we believe

that it would be more in line with Chinese clinical practice if we

could indeed find a way to use ultrasound to achieve increased

accuracy in being predictive. Third, not all suspicious axillary

lymph nodes by clinical evaluation pre-NAT in our study

underwent biopsy, which may influence the results to a greater
A B

FIGURE 5

The receiver operating characteristic (ROC) curve of a random forest (RF) model in the validation set (A) and confusion matrix of a random
forest (RF) model (B).
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or lesser extent. We also plan to increase the numbers of

observed samples and design a prospective study in future.

In conclusion, our study developed a practical prediction

model to help clinicians decide on an optimal surgical approach

for axillary lymph node post-NAT based on nomogram and RF

algorithm methods. Both prediction models can lead to the

accurate prediction of apCR and guide the mode of surgical

intervention of axillary lymph nodes in order to avoid non-

essential ALND and minimize injury.
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