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differentiation, and death. Recent studies suggest pivotal roles of

reactive oxygen species not only in pathogenesis under oxidative

insult but also in intracellular signal transduction. Glutathione is

present in several millimolar concentrations in the cytoplasm and

has multiple roles in the regulation of cellular homeostasis. Two

enzymes, γ�glutamylcysteine synthetase and glutathione synthe�

tase, constitute the de novo synthesis machinery, while glutathione

reductase is involved in the recycling of oxidized glutathione.

Multidrug resistant proteins and some other transporters are

responsible for exporting oxidized glutathione, glutathione conju�

gates, and S�nitrosoglutathione. In addition to antioxidation,

glutathione is more positively involved in cellular activity via its

sulfhydryl moiety of a molecule. Animals in which genes respon�

sible for glutathione metabolism are genetically modified can be

used as beneficial and reliable models to elucidate roles of gluta�

thione in vivo. This review article overviews recent progress in

works related to genetically modified rodents and advances in the

elucidation of glutathione�mediated reactions.
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IntroductionAntioxidative and redox systems constitute defense mecha-
nisms against the oxidation accompanying vital activity and

diseased conditions, and their dysfunction causes oxidative stress
that exacerbates various injuries. Glutathione is the most abundant
nonprotein thiol in cells and plays pleiotropic roles among many
low molecular weight antioxidants and redox molecules.(1) Anti-
oxidative functions of glutathione are expressed by either direct
interaction with reactive oxygen species (ROS) or the donation of
electrons to other redox systems, such as glutathione peroxidase
(GPX) and glutaredoxin (Grx).(2) In addition to antioxidation and
electron donation, glutathione is required for maintaining homeo-
stasis in animals, such as detoxification, by forming conjugation
with toxicants and suppression of apoptosis.(3,4)

Glutathione is present in either the reduced form (GSH) or an
oxidized form (GSSG) where two molecules are linked by a
disulfide bond. The redox balance of glutathione affects cellular
homeostasis. Glutathione is also required for ROS-mediated

intracellular signal transduction by maintaining redox potential
within cells, because reactive protein thiols that can exist only
under a reducing environment are general acceptors of the ROS
signal.(5) Levels of glutathione are maintained by de novo synthesis
from constituent amino acids, Glu, Cys and Gly, and by the
recycling of GSSG (Fig. 1). De novo synthesis of glutathione is
catalyzed by two enzymes, γ-glutamylcysteine synthetase (γ-GCS)
and glutathione synthetase (GSS).(1) Oxidized glutathione is either
recycled by glutathione reductase (GSR) using NADPH provided
largely from the pentose phosphate pathway (PPP) or exported by
multidrug resistance protein (MRP).(6) Glutathione conjugates of
xenobiotic compounds and S-nitrosoglutathione (GSNO) are also
exported out of the cells and ultimately excreted by the kidney.
Transnitrosylation from GSNO in blood plasma is involved in
vasodilation and cardioprotection.(7)

Knowledge of the roles of glutathione in living animals has
been limited due to the difficulty in handling gene expression and,
hence, the metabolic process. On the other hand, in vitro studies
face limitations in understanding the physiologic functions of
glutathione because most experiments are performed under a
culture with atmospheric oxygen (~21%), which is about one
order higher than in vivo oxygen conditions (2–5%). Oxidative
stress occurs chronically in cells cultured under atmospheric
oxygen and, hence, may be a cause for inconsistency from in vivo

studies.
Advanced technology in establishing genetically modified

animals enabled us to elucidate the roles of individual genes in
the body. This manuscript is an overview of the progress made
thus far in understanding glutathione homeostasis and the in vivo

roles of the genes involved in glutathione metabolism.

Pleiotropic Functions of Glutathione

Glutathione was discovered more than 100 years ago, but
researchers continue to experiment with this tripeptidyl molecule.
While intracellular cysteine concentrations are kept low (several
μM) due to a cellular toxicity that is caused by the interaction of
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cysteine with pyridoxal-5'-phosphate, a cofactor for amino group-
transferring enzymes, glutathione present in the millimolar range
is a main compound for the maintenance of redox potential within
cells. Glutathione exerts its multiple functions by two means:
non-enzymatic and enzymatic reactions. Brief mentions of these
follow.

Non�enzymatic reaction of glutathione. GSH and ascor-
bate are major antioxidants with a strong reducing ability. The
direct ROS-scavenging function of GSH can be well characterized
by this chemical reaction. In fact, the pKa of a sulfhydryl group of
glutathione is comparable to that of cysteine, around 8.5–8.8, and
is not a very effective ROS scavenger.(8) Its presence in high
concentrations within cells (~10 mM) exerts a potential function
as an ROS scavenger and an anti-apoptotic compound in cells by
reducing oxidized cytochrome c.(9,10)

The sulfhydryl group of glutathione, as with protein sulfhydryls,
suffers from various oxidative and nitrosative modifications. The
oxidation of a sulfhydryl to sulfenic acid is fully reversible; that of
sulfenic acid to sulfinic acid is partly reversible, as can be seen in
the sulfiredoxin system; however, the reaction whereby sulfinic
acid converts to sulfonic acid is irreversible (Fig. 2).(11)

Electron donation from radicals, such as a superoxide or a
hydroxyl radical, produces a thiyl radical, which is highly reactive
to other sulfhydryls, and, consequently, glutathionylates proteins
as well as GSSG (Fig. 3).(12) The interaction of glutathione with
sulfhydryls in oxidatively modified proteins also causes protein S-
glutathionylation, a mixed disulfide between Cys-SH of protein
and glutathione. In normal liver, around 1% of total glutathione
appears to be constantly present as the mixed disulfide with
proteins, and the amount of glutathione bound to proteins could
increase by 20–50% depending on the cellular redox state.(13,14)

While glutathionylation consumes GSH in the cytoplasm and
results in a redox imbalance within cells, dysfunction occurs to

the glutathionylated proteins. A glutathionylated protein can be
reduced back to sulfhydryl by Grx, which transiently result in
glutathionylated Grx. The glutathione moiety of Grx can be freed
by another glutathione to form GSSG, while Grx returns to its initial
reduced form.(15) The reaction involving reversible glutathiony-
lation is used for the protective mechanism of essential sulfhydryls
in proteins under oxidative stress. This particular protective mecha-
nism by glutathionylation has attracted much recent attention.(16)

The interaction of glutathione with nitric oxide (NO) produces
GSNO that constitutes a major nitrosothiol in plasma, as well as in
cells. While GSNO exerts multiple functions, such as vaso-
dilatation and signal transduction via transnitrosation, it is also
regarded as an effective glutathionylating agent.(17,18) Several

Fig. 1. Roles and metabolism of glutathione. γ�GCS and GSS coordinately catalyze de novo synthesis of GSH from three amino acids: Cys, Glu, and
Gly. GPX reduces various peroxides, including hydrogen peroxide, by electrons from GSH. The resultant GSSG is reduced back to GSH by GSR via the
donation of electrons from NADPH supplied from the pentose phosphate pathway (PPP). GSH not only supplies electrons to peroxides, but also
plays multiple roles in cells.

Fig. 2. Oxidative conversion of the sulfhydryl group and its reversibility
in cells. Other than disulfide, the sulfhydryl group forms three oxidation
states: sulfenic, sulfinic, and sulphonic acid. Sulenic acid can be reduced
back to sulfhydryl by reductases but forms a disulfide bond with another
sulfhydryl group. It was a general understanding that sulfinic acid could
not be reduced back to sulfhydryl until the discovery of sulphiredoxin.
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methods can be used to detect glutathionylation; e.g., radio-labeling
with [35S]cysteine, glutathione S-transferase, and anti-glutathione
antibody.(19,20) Advances in the proteomic approach that are based
upon the separation of proteins by two-dimensional gel electro-
phoresis followed by identification by mass spectrometry have
enabled the efficient detection of glutathionylated proteins with a
high degree of reliability. This methodology has made it possible
to detect glutathionylated proteins as well as other modifications
in vivo, and has enhanced the understanding of their roles in the
physiological state.

Enzymatic reactions utilizing glutathione as a co�
substrate. Glutathione is also an electron donor for enzymatic
systems using GPX. Electrons from glutathione are used to reduce
various peroxides by GPX.(21) Conventional GPX constitutes 4
members and contains selenocysteine as the catalytic center. Since
replacement of the selenocysteine to cysteine shows much lower
GPX activity, the high catalytic activity of GPX can be attributed
to the selenocysteine residue in the catalytic center. Current
understanding of GPX family genes is overviewed elsewhere in
this serial review.

In addition to conventional GPX, other enzymes such as
glutathione S-transferase (GST), also exhibit glutathione-dependent
peroxidase activity, albeit with much less efficiency. In addition
to ROS scavenging activity, GST catalyzes the formation of
glutathione adduct with various biological molecules and func-
tions in the detoxification of xenobiotic compounds.(22) Mice have
been generated with deficiencies of mGSTP1/2, mGSTA4-4,
mGSTZ1-1, mGSTM1-1, mGSTO1-1 and mGSTS1-1,6 out of 21
GST genes, but the details are not provided here, because an exten-
sive overview of the phenotypes is available in the toxicological
report.(23)

Glutathione is also used as a building block of leukotriene
(LT), which is a lipid mediator triggering various physiological
responses. LTC4 synthase conjugates LTA4 with glutathione to
form LTC4,(24) which is then converted to LTD4, a cysteinyl
leukotriene, by hydrolytic removal of glutamate and glycine by
a family member of γ-glutamyltransferase, as described below.
Thus, in this case glutathione functions as a cysteine donor to form
cysteinyl leukotrienes (Fig. 4).

Genes Involved in Glutathione Metabolism

The rate-determining, first step of glutathione synthesis is

catalyzed by γ-GCS, which forms γ-glutamylcysteine by ligating
glutamate and cysteine using ATP. γ-GCS is a heterodimeric
enzyme composed of a catalytic subunit encoded by GCLC and
a modifier subunit encoded by GCLM. Buthionine sulfoximine
(BSO) is a specific inhibitor of the enzyme.(1)

Genes involved in glutathione metabolism, xCT, GCLM, GCLC,
and GSR are induced under oxidative stress in an Nrf2-dependent
manner.(25–28) Since disorders related to glutathione synthesis and
pathological phenotypes in humans are well documented,(29,30) they
are only briefly described here. While deficiencies of γ-GCS and
GGT are very rare, GSS deficiency is the more frequent disorder.
There are several reports concerning the mutation of GLCL.(31–37)

Decreased glutathione levels and hemolytic anemia are commonly
observed in γ-GCS and GSS deficiencies.

Mouse models for glutathione deficiency have been well docu-
mented.(38) However, roles of the genes in glutathione metabolism
have been reconsidered by focusing on the progress that is
reviewed here, because significant advances have been made in
this area.

Import of cysteine and cystine into cells. Since cysteine
exerts toxic effects by binding pyridoxial-5-phosphate (PLP), a
cofactor for amino group-transferring enzyme reactions, the intra-
cellular cysteine level is restricted (Fig. 5A) and is much less than
glutamate and glycine. Thus, cysteine availability determines the
synthesis of glutathione in cells. Under oxidative stress caused by
acetaminophen-induced hepatotoxicity, the augmented production
of ophthalmate—with a concomitant decrease of glutathione—can
be observed by metabolomic analysis.(39) Ophthalmate is synthe-
sized when 2-aminobutyrate is used in place of cysteine due to
structural similarity through consecutive reactions catalyzed by γ-
GCS and GSS (Fig. 5B). Thus, either glutathione or ophthalmate
would be an alternative product for γ-GCS and GSS reactions
depending on cysteine availability.

Cysteine is synthesized in humans from methionine but is not
sufficient for the requirements of glutathione synthesis in most

Fig. 3. Reaction pathways of sulfhydryl modification among GSH and
proteins by ROS and GSH�mediated recycling.

Fig. 4. GGT5�catalyzed LTD4 formation using GSH followed by conver�
sion to LTE4.
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cells, because methionine is an essential amino acid and is present
only in a limited amount. Thus, cysteine availability sometimes
limits glutathione synthesis, especially under oxidative stress that
requires prompt glutathione synthesis. Cysteine and its oxidized
form, cystine, are imported into cells via several amino acid
transport systems.(40) Neutral amino acid transporters uptake
cysteine in either a Na+-dependent or -independent manner, while
cystine is taken up by the cystine/glutamate exchanging transport
system, designated as system xc

−, in exchange for glutamate and
by b0,+ in a Na+-independent manner.

In a cell culture system, cysteine is spontaneously auto-oxidized
to cystine by oxygen, which is then taken up via system xc

−. Once
cystine is entered into cells, it is simultaneously reduced to
cysteine and is utilized for glutathione synthesis as well as protein
synthesis. Thus, system xc

− activity indirectly controls intracellular
glutathione availability in various cells in culture.(41) System xc

−

is composed of two proteins, xCT and 4F2hc, and the transport
activity of xc

− is attributed to the xCT protein.(42) The xCT−/− mice

have higher concentrations of cystine in plasma compared with
their wild-type littermates, but are otherwise apparently healthy.(43)

A precise description of xCT and its physiological relevance is
accorded a special section in this serial review.

Deficiency of γ�glutamyl cysteine synthetase (γ�GCS).
GCLC-deficient mice have been generated by two groups.(44,45)

The GLCL-null mutant mice are embryonic lethal due to apoptotic
cell death.(44) GCLC+/− mice exhibit 20% diminution in GSH levels
and a compensatory increase (about 30%) in ascorbate.(45) GCLC-
null cells isolated from embryos die but can survive by supple-
mentation with glutathione (2.5 mM) or N-acetylcysteine (NAC)
(1.25–5 mM) in culture media.(44) Rapid onset of steatosis with
mitochondrial injury accompanying decreased ATP and increased
lipid peroxidation is observed in mice that lack GCLC in a
hepatocyte-specific manner.(46) GCLC-knockdown rats and cells
are established using short hairpin RNA against GCLC, and are
used to evaluate drug-induced hepatotoxicity.(47,48)

GCLM null mice are viable and fertile and have no overt pheno-

Fig. 5. Schematic representation of the reaction between Cys and PLP and the formation of opthalmate under oxidative stress. (A) The reaction of
Cys with PLP forms a Cys�PLP Schiff base, which then cyclizes to form a stable thiazolidine derivative. (B) Under Cys�deficiency by oxidative stress, γ�
GCS utilizes 2�aminobutyric acid (2AB) instead of Cys and causes production of ophthalmate instead of GSH. Adopted from reference 39 with
modification.
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type, but levels of glutathione comprise 9–16% of the liver, lung,
pancreas, erythrocytes, and plasma of wild-type mice.(49) MEF
isolated from GCLM null mice are highly sensitive to oxidants
such as hydrogen peroxide and arsenic.(49,50) GCLM null mice are
also sensitive to acetaminophen-induced liver damage and are
protected by administered NAC.(51) GCLM null mice are sensitive
to domoic acid, the causative agent for amnesic shellfish poisoning
by mussels, which causes a rapid decrease in cellular glutathione
by accelerating efflux from the cells, increases ROS and lipid
peroxidation, and induces apoptotic cell death.(52,53)

While compounds that increase cellular glutathione, such as
curucumin, quercetin, and tert-butylhydroquinone, induce GCLM

much more than GCLC, they fail to increase γ-GCS activity and
glutathione levels in GCLM null mice,(54) suggesting an essential
role for GCLM in the upregulation of γ-GCS activity. Moreover,
early onset of senescence, which is characterized by diminished
cellular proliferation and increased senescence, which is associated
with β-galactosidase activity, is evident in GCLM-null fibro-
blasts.(55) These characteristics are accompanied by an increase in
intracellular ROS. Administration of NAC increases glutathione
levels and concomitantly prevents premature senescence, sug-
gesting that an increased redox potential attributed to an elevated
glutathione can delay cell aging. Moreover, transgenic expression
of GCLM increases resistance to acetaminophen-induced liver
damage in mice(56) and hydrogen peroxide-induced single-strand
DNA breakage in cells.(57)

Deficiency of glutathione synthetase. GSS deficiencies
are seen more frequently in patients than either GCLC or GCLM

deficiencies, but fewer than 100 have been documented world-
wide, which defines them as rare genetic disorders.(29) The patients
show 5-oxoprolineuria, hemolytic anemia, and neurological dys-
function.(58,59) About one-third of all patients with this condition
die in childhood due to acidosis, electrolyte imbalance, infections,
and convulsions. Examination of metabolites in cultured fibro-
blasts from 9 patients indicates that decreased glutathione and
increased cysteine and γ-glutamylcysteine.(60) Since cysteine and
γ-glutamylcysteine can partly compensate for the roles of gluta-
thione, this indicates that γ-glutamylcysetine, the product of γ-
GCS and a substrate of GSS, accumulates and would compensate
redox potential with its sulfhydryl moiety. Hydrolysis of γ-
glutamylcysteine by γ-glutamyl cyclotransferase, which was
recently identified,(61) produces 5-oxoproline and cysteine. Clarifi-
cation of the pathogenesis of a GSS deficiency would require the
establishment of an animal model and precise analysis.

Recycling oxidized glutathione by glutathione reduc�
tase. Glutathione reductase (GSR) is a homodimeric flavo-
protein (55-kDa each subunit) that regulates cellular GSH homeo-
stasis by catalyzing the reduction of GSSG to GSH using NADPH
as a reducing cofactor (Fig. 1). Anticancer agent 1,3-bis(2-
chloroethyl)-1-nitorsourea (BCNU) is a well-known inhibitor for
GSR and is used to examine the roles of the enzyme. GSR is pre-
dominantly present in liver and erythrocytes and is also expressed
at high levels in the epithelia of the lungs(62) and in the reproduc-
tive organs of both sexes.(63,64)

Until now, there has been no report regarding the generation of
GSR knockout mice by a gene-targeting technique. However,
Gr1a1Neu mice are a strain that is generated by treating male mice
with a mutagen, isopropyl methanesulfonate, that exhibits less
than 10% GSR activity in liver compared with control mice.(65)

Sequence analysis of the GSR shows the deletion involves
nucleotides 10,840 through 23,627 of the genomic DNA corre-
sponding to deletion of exons 2 through 5. The deletion also
causes a frame shift in exon 6 and introduces premature stop
codon in exon 7. Thus, the Gr1a1Neu mouse is incapable of
producing a functional GSR protein.(66) Although the mouse does
not show hemolytic anemia,(65) which is implicated as a result of a
defect in the erythrocyte GSR, proximal tubule injury is induced
more severely by a redox cycling toxicant, diquat, compared

with wild-type mice.(67) Unexpectedly, however, Gr1a1Neu mice are
less susceptible to acute lung injury from continuous exposure to
95% oxygen,(68) although GSR is present predominantly in lung
epithelia.(62)

There remains ambiguity concerning what is responsible for
the 10% NADPH-dependent GSSG reducing activity in Gr1a1Neu

mice. In mammal cells, redox homeostasis of many cellular pro-
cesses is maintained by thioredoxin (Trx) as well as by glutathione
systems.(69,70) NADPH supplies reducing equivalents for these
redox systems via pyridine nucleotide disulfide oxidoreductases
that include Trx reductase and GSR.(71) These reductases are struc-
turally similar and appear to have evolved from the same ancestral
gene, although Trx-reductase has an essential C-terminal exten-
sion with a selenocysteine residue at the penultimate position.(72)

Pretreatment with aurothioglucose, a Trx reductase inhibitor, in
fact exacerbates the effects of hyperoxia on lung injuries in mice.
This result suggests that Trx/Trx reductase has a more important
protective function than GSR in hyperoxic lung injury.

Recently, a novel pyridine nucleotide disulfide oxidoreductase
has been found. The enzyme possesses specificity for both
thioredoxin and glutathione and is referred to as thioredoxin/
glutathione reductase.(73) This novel reductase appears to have a
role in sperm maturation.(74,75) Since this enzyme can reduce oxi-
dized GSSG in a similar manner to GSR, it may at least be partly
responsible for the remaining GSSG-reducing activity of Gr1a1Neu

mice.
Export of oxidized glutathione and glutathione conju�

gates via MRP. Depletion of cellular glutathione is mainly
caused by exporting GSSG, glutathione S-conjugates, and S-
nitrosoglutathione. The export of these compounds is mediated by
a subset of proteins belonging to the ATP-biding cassette trans-
porter (ABC transporter) protein superfamily that contains 49
members in humans.(76) Several members of the ABC subfamily C,
also known as the multidrug resistance regulator subfamily, appear
to mediate the export of them.(6) MRP1 (gene symbol ABCC1) has
been extensively characterized among the MRP members and
provides knowledge of the molecular mechanisms and its physio-
logical functions concerning the transport of glutathione and
glutathione conjugates.(77) Overexpression of MRP1 is found in
multidrug-resistant cancer cells and causes the failure of chemo-
therapy. Certain forms of MRP2 (ABCC2), MRP4 (ABCC4),
MRP5 (ABCC5), MRP6 (ABCC6), MRP8 (ABCC8), and CFTR
(ABCC7; cystic fibrosis transmembrane conductance regulator)
also transport some glutathione-related compounds, but different
physiological functions from MRP1 are implied. Some glutathione-
related compounds can also be transported by members of the
solute carrier (SLC) superfamily of proteins.(77)

Extracellular metabolism of glutathione by γ�glutamyl
transferase (GGT). γ-Glutamyl transferase (GGT) is localized
at the cellular surface in the form of a membrane protein and
enhances cellular glutathione synthesis by increasing the avail-
ability of component amino acids, especially cysteine.(1) Extra-
cellular glutathione is hydrolyzed to its γ-glutamyl moiety and
cysteinylglycine, which is further cleaved into cysteine and glycine.
The released amino acids are taken up by corresponding trans-
porters and reused by cells. GGT also catalyzes transferring reac-
tion of γ-glutamyl moieties from glutathione and other γ-glutamyl
compounds to acceptor molecules.

GGT is one of the most widely used clinical indicators of tissue
damage. The best-characterized form is GGT1, which is an extra-
cellular enzyme that is anchored to the plasma membrane of the
cells. The human genome contains additional related genes.
Systematic designation has been proposed for the human GGT

family in collaboration with the HUGO Gene Nomenclature
Committee.(78) The family includes genes encoding full-length
proteins, GGT1 to GGT8P, and light chain only, GGTLC1 to
GGTLC5P. Hereafter, this paper will use this nomenclature in
reference to the GGT family genes.
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GGT deficiency in humans is rare and has been reported in less
than 10 cases worldwide, but no mutations are known either in
GGT1 or in other family members. Other than a low GGT activity,
these patients commonly have glutathionuria, increased plasma
glutathione levels and the presence of γ-glutamylcysteine and
cysteine in urine.(79) Three of the patients show deficiencies in
LTD4 that are generated by a GGT-catalyzed reaction from the
primary cysteinyl leukotriene LTC4.(80)

There are now four mouse models of GGT deficiency: GGTenu1

mice generated by treatment with N-ethyl-N-nitrosourea and
found to have a point mutation within the protein coding region
of GGT1;(81) dwarf grey (dwg) and dwg (Bayer) mutations have
been identified in GGT1;(82) and, two genetically modified mice
with targeted disruption of GGT1(83) or GGT5(84) also have been
generated.

In GGTenu1 mice, GGT protein synthesis is prematurely termi-
nated and the enzyme is inactive,(85) which causes an altered redox
balance and oxidative stress in tissues of the mouse even under
normoxic conditions.(86) Total glutathione content in the liver of
GGTenu1 mice is reduced but can be restored by oral supplementa-
tion of the cysteine prodrug L-2-oxothiazolidine-4-carboxyate.(87)

GGTenu1 mice show an increase in extracellular glutathione in lung
lining fluid and are protective against epithelial cell induction of
asthma.(88) This suggests that local inhibition of GGT in the lining
fluid of lungs may be beneficial in preventing asthma.

The dwg is the result of a spontaneous mutation in mice.
Homozygous (dwg/dwg) mice are characterized by a gray coat, a
smaller body size, and the development of cataracts by 3–4 weeks
after birth.(89) Dwarf grey Bayer (dwgBayer) mice are also mutants
that arise spontaneously from an embryonic stem (ES) cell line
during gene targeting of an unrelated gene and show abnormalities
similar to those of dwg/dwg mice. The gene locus of dwgBayer was
confirmed as allelic with the dwg mutation. These abnormalities
observed in dwg/dwg and dwgBayer/dwgBayer mice resemble those of
GGT1-knockout mice.(83) Analyses of the genomic DNA show that
13 nucleotides on exon 7 of the GGT1 are deleted in dwg/dwg
mice while 46.7 kb containing complete coding sequences of
GGT1, AI646023 gene, and the first exon of the GGT5 are deleted
in dwgBayer/dwgBayer mice.(82)

GGT1 knockout mice have been reported by Lieberman
et al.,(83) and the roles of GGT1 in individual organs become
evident under various pathophysiological conditions using GGT1-
deficient mice. Observed abnormal phenotypes include growth
retardation, sexual immaturity, cataract development, and gray
coat color. While expression of genes involved in glutathione
metabolism, γ-GCS, GSS, and cystathionase are induced con-
comitantly with the marked decrease in levels of glutathione in the
GGT1-deficient mouse liver, antioxidative enzymes, CuZn- and
Mn-superoxide dismutase, catalase, and glutathione peroxidase,
are not changed.(90) DNA damage accumulates in the organs of
mice deficient in GGT1, which is due to decreased redox capacity
with low cysteine and GSH.(91)

Oral administration of NAC to the GGT1-deficient mice partially
restores normal phenotypes, suggesting a role of GGT in the
supply of cysteine and GSH homeostasis. A decrease in mito-
chondrial glutathione is correlated with negative effects on
mitochondrial respiration with respect to ATP production.(92)

Supplementation of NAC again fully restores mitochondrial
GSH and respiratory function. The testes and seminal vesicles
of GGT1-knockout mice are reduced in size, and the mice are
infertile.(93) Consistent with the significant role of GSH in fertility,
the administration of GSH or NAC to these mice completely
restores the testis and seminal vesicle size to values comparable
to those of wild-type mice, which renders the mutant mice fertile.
Skeletal abnormalities and dwarfism is caused by proliferative
defectiveness in GGT1-deficient mice. Although cells involved
in osteoclast biology do not express GGT1, chondrocytes are
reversed by NAC administration.(94) Because purified GGT1

protein, even if in an enzymatically inactive form, activates
receptor-mediated osteoclast formation,(95) GGT1 may have
additional roles other than the well-known enzymatic activity.

When exposed to 80% oxygen, the GGT1-deficient mice
develop diffuse pulmonary injury and die within 8 days.(96)

Investigation of the repair mechanism in bleomycin-induced pul-
monary fibrosis suggests participation of increased neutrophils and
matrix metalloproteinase-9 in the early inflammatory response.(97)

When the nephrotoxic effects of cisplatin are examined, wild-type
mice suffer from nephrotoxicity of cisplatin, but GGT1-deficient
mice show no evidence of nephrotoxicity regardless of NAC
supplementation. These results suggest that the nephrotoxicity of
cisplatin is caused by metabolic conversion via GGT activity.(98)

GGT deficiency in human T and B-lymphocytes appears to
enhance the lifetime of GSNO,(99) which is a major reaction
product of glutathione with reactive nitrogen oxide species in
plasma. This results from increased extracellular glutathione
concentrations, and decreased intracellular GSNO breakdown. A
decrease in GSH levels in GGT1 deficiency causes a decrease in
cytotoxic T lymphocytes and a defect in T cell-dependent immune
responses.(100)

A few pathological cases suggest that GGT1 is not simply
advantageous to animals. For example, when the role of GGT1 in
the elimination of methylmercury is investigated, the GGT1-
deficient mice excrete methylmercury more rapidly than wild-type
mice, but eliminate inorganic mercury with an efficiency that is
similar to wild-type mice.(101) Cataract development in GGT1-
deficient mice appears to be a consequence of multiple causes,
including exogenous damage (exposure to light), decreased lens
glutathione levels, and nutritional effects of low cysteine avail-
ability.(102)

Other than GGT1, a physiological role of GGT5 is now shown
among the GGT family. LTC4 is formed by conjugation of LTA4

with GSH and is converted to LTD4 by removing the glutamyl
moiety by GGT activity. Substantial conversion of LTC4 to LTD4

in GGT1-null mice enabled identification of γ-glutamyl leukot-
rienase, now designated as GGT5, that catalyzes the conversion
and other glutathione conjugates.(103,104) Analyses of GGT5-
deficient mice indicate that GGT5 is specifically responsible for
LTD4 formation in vivo and attenuation of the acute inflammatory
response.(84,105) Interactions between LTC4 and interleukin 13
signaling pathways are implied using a GGT5-deficient mice
model of airway diseas.(106)

Perspective

Pleiotropic roles have been established for glutathione in cells,
but it is difficult to demonstrate the physiological relevance of
them in vivo. Technology regarding gene manipulation has
enabled analysis of the functions of individual genes in vivo.
Application of this technique to genes involved in glutathione
metabolism has provided us a clear picture of the functions of
glutathione. Here, we have reviewed mainly mice models that
have been established by either transgenic expression or by
targeted disruption of the genes. Despite precious data obtained
from these animals, it is sometimes claimed that overexpression or
null mutation is far removed from the physiological state. In this
regard, the application of small interfering RNA (siRNA) or small
hairpin RNA (shRNA) to animal models makes it possible to fine-
tune gene expression, and, hence, leads to a better understanding
of their functions under more physiologic conditions.
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Abbreviations

2AB 2-aminobutyric acid
ABC transporter ATP-biding cassette transporter
BCNU 1,3-bis(2-chloroethyl)-1-nitorsourea
BSO buthionine sulfoximine
γ-GCS γ-glutamylcysteine synthetase
GGT γ-Glutamyl transferase
GPX glutathione peroxidase
Grx glutaredoxin
GSH reduced form of glutathione
GSNO S-nitrosoglutathione
GSS glutathione synthetase

GSSG oxidized form of glutathione
GSR glutathione reductase
GST glutathione S-transferase
LT leukotriene
MRP multidrug resistant proteins
NAC N-acetylcysteine
NO nitric oxide
PLP pyridoxial-5-phosphate
PPP pentose phosphate pathway
ROS reactive oxygen species
SLC solute carrier
Trx thioredoxin
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