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This study proposed an unsupervised machine-learning approach for analyzing spatially-resolved 
ARPES. A combination of non-negative matrix factorization (NMF) and k-means clustering was applied 
to spatially-resolved ARPES spectra of the graphene epitaxially grown on a SiC substrate. The Dirac 
cones of graphene were decomposed and reproduced fairly well using NMF.  The base and activation 
matrices obtained from the NMF results reflected the detailed spectral features derived from the 
number of graphene layers and growth directions. The spatial distribution of graphene thickness on 
the substrate was clearly visualized by the clustering using the activation matrices acquired via NMF. 
Integration with k-means clustering enables clear visualization of spatial variations. Our method 
efficiently handles large datasets, extracting spectral features without manual inspection. It offers 
broad applicability beyond graphene studies to analyze ARPES spectra in various materials.
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Angle-resolved photoemission spectroscopy (ARPES), is a powerful tool for investigating material properties 
by directly observing band dispersion in energy and momentum spaces. Recently, advancements in focusing 
optics have led to the development of spatially-resolved ARPES, significantly decreasing the beam size to a few 
micrometers or several ten nanometers1–3. These advances have enabled the measurement of local electronic 
structures previously difficult to measure, such as tiny flake samples and the local electronic structures for 
inhomogeneous materials, which consist of multiple domains with distinct electronic structures4–11.

In conventional spatially-resolved ARPES measurements, obtained data are visualized by creating spatial 
maps with the integrated intensity of specific energy and momentum windows of the spectra at each measurement 
point. Subsequently, representative spectra with distinct features were analyzed in detail at some selected 
points. This process involves arbitrary decisions in the selection of integrated windows and the extraction of 
characteristic points based on knowledge and experience. However, as the spot size of the light source reduced 
to the nanometer scale owing to the recent development of equipment, the amount of data generated through 
grid scanning with automated equipment and data acquisition increased, making it practically impossible to 
examine all data in detail. Consequently, there is a risk of overlooking fine electronic structures, such as weak 
bands or shoulder structures that appear in small regions. Therefore, it is crucial to apply a machine learning-
based approach to reduce the workload and extract features for handling large volumes of data. Recently, various 
machine learning approaches, such as PCA12, k-means method13,14, and convolutional neural network15,16, 
have been reported for analyzing the ARPES data. Non-negative matrix factorization (NMF) is a widely-used 
algorithm for dimensionality reduction and feature extraction that decomposes a matrix into the product of two 
matrices, such that all three matrices have no negative elements17–21. The resulting matrices served as basis and 
activation matrices. Because of this non-negativity, the physical meanings of the resulting matrices can be readily 
interpreted. The original matrix was reproduced using a linear combination of the basis and activation matrices. 
Applying NMF to spatially-resolved ARPES spectra is expected to decompose and group vast amounts of spectra 
to elucidate the underlying physics with less effort than in the conventional analysis.

In this study, we demonstrated an unsupervised approach for obtaining spatially-resolved photoemission 
spectra. NMF was performed on spatially-resolved ARPES spectra of graphene grown on a SiC substrate. The 
experimentally obtained spectra were decomposed into several features and well reproduced using the basis 
and activation matrices. The basis and activation matrices obtained using NMF revealed the spectral feature 
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modification depending on the measurement location. In addition, the distribution of graphene on the substrate 
was visualized by classification using activation vectors obtained with NMF.

Methods
The dataset used in this study included a spatial map of the ARPES spectra of a graphene sample grown on a SiC 
substrate. Graphene was grown on the n-doped 6 H-SiC(0001) using a face-to-face method22. The miscut angle 
of the wafers used in this study was < 0.05°. The thickness of the graphene layer was controlled by varying the 
annealing temperature. The thermal distribution of the substrate during annealing led to the spatial distribution 
of the thickness of the resulting graphene. The ARPES measurements were performed at the Saga University 
beamline (BL13) of the SAGA Light Source23, and the incident energy for ARPES was 40 eV. Thickness-dependent 
dispersions of monolayer (ML), bilayer (BL), and trilayer (TL) graphene around the K point, consistent with a 
previous report11,24–26, were used for the analysis.

The ARPES maps were acquired by sampling approximately 400 points in an (x, z) grid spanning the sample. 
All ARPES spectra were indexed simultaneously with the measured locations (x and z). The measurement 
locations during spatially-resolved measurement were changed with steps of 0.5 and 0.2 mm for the x and z 
directions, respectively. These steps were sufficiently large compared with the spot size of incident beam 
(approximately 100 μm × 150 μm). The observed ARPES images were flattened into one-dimensional vectors 
and stacked to convert them into a two-dimensional matrix for applying NMF. As a preprocessing step, a binning 
of spectra to suppress the data size and the effect of the spectral noise were carried out. The photoelectron 
intensities were normalized. The background intensity was removed from the spectra to avoid reproducing the 
background noise in the NMF. NMF and clustering using the k-means method were performed using the scikit-
learn library, distributed for machine learning in Python27. In NMF, the matrix constructed from experimentally 
obtained spectra is decomposed into the product of a basis matrix W and an activation matrix H. Each column 
of W represents the frequent patterns within the dataset, while each row of H corresponds to the contribution of 
these patterns to the original spectra. In the subsequent sections, we will refer to the columns or rows extracted 
from the W and H matrices as vectors. The initial W and H matrices of NMF were set as non-negative random 
matrices.

Results and discussions
Figure 1a shows the basis vector W obtained from the NMF results for the ARPES dataset of graphene. The 
vertical and horizontal axes correspond to binding energies and angles, respectively. The angle is output as a 
detected angle in the measured data and is then converted to a momentum for a general analysis, but in this 
study it was treated as a dimensionless quantity. The basis vectors correspond to the common patterns in the 
relevant dataset. Because the dataset consists of Dirac cone structures observed in the ARPES spectra of graphene, 
which vary with the number of graphene layers at various locations on the substrate, the basis vectors reflect the 
thickness-dependent spectral features. The ARPES spectrum of ML graphene exhibits a linearly dispersed Dirac 
cone, whereas that of BL graphene shows two linearly dispersed Dirac cones24–26. For TL graphene, the spectrum 
show three π bands that differs depending on stacking sequence of layers11.

The components referred to as W0 and W1 exhibit features of the ML graphene. A difference in the 
photoelectron intensity exists along the energy direction between components W0 and W1. Specifically, 
component W0 exhibited a strong intensity near the Fermi level, whereas component W1 exhibited a weaker 
intensity in the same energy region. The components labeled W2, W3, and W4 were similar to the spectrum 
of TL graphene, which consisted of two linear dispersions and one hole-like dispersion, consistent with ABA 
stacking11. These spectral features were nearly same, but the center of the spectrum in W3 shifts slightly to 
a smaller angle side relative to other components. In addition, component W4 exhibited weaker intensity at 
higher energies than W2 and W3. Although the spectra of BL graphene were also included in the dataset, the BL 
graphene-derived spectral features were not displayed as basis vectors.

The number of base vectors is a hyperparameter for NMF. For too many base vectors, NMF attempts to 
reproduce slight differences in the spectrum, such as the difference derived from spectral noise. This results in 
basis vectors that have nearly identical appearances, differing only in noise intensity. In addition, an increase 
in the basis vector complicates the interpretation of the results. Therefore, the number of basis vectors must be 
selected carefully. To determine the number of base vectors, the summation of the squared error (SSE) between 
the experimental and reconstructed spectra with the product of the basis and activation vectors acquired from 
NMF was calculated. Figure 1b shows SSE as a function of the number of basis vectors. The SSE decreased as 
more basis vectors were used. Because the decrease in the SSE slowed down over the five basis vectors applied, 
the number of basis vectors used was set to five in this study, based on the elbow method.

Because the activation vectors of each spectrum differ depending on the spectral shape, these differences 
in activation vectors enabled us to distinguish spectra. We performed clustering of ARPES spectra using the 
k-means method with the activation vectors as the feature values. Optimization of the number of clusters is 
based on a plot of the within-cluster sum of squared errors as a function of the number of clusters (Fig. 2). If the 
number of clusters was determined using the elbow method, it was set to n = 5. However, a further increase in 
the number of clusters enabled the classification of slight differences in the spectra. The number of clusters was 
determined to be n = 8 for the following discussion.

Figure 3a–h show representative NMF results. The left panel shows the experimental ARPES spectra of the 
dataset. The numbers in the left panel represent labels obtained by clustering using the k-means method. The 
middle panel shows the spectrum reconstructed using the product of the base vector W and activation vector H 
obtained by NMF. The left panel shows the ratio of activation vector H to each basis vector W used to calculate 
the spectrum in the middle panel. As shown in Fig. 3, the measured spectra are well reproduced by the products 
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Fig. 2.  Within-cluster summation of sum of squared error is plotted as a function of the number of cluster.

 

Fig. 1.  (a) Basis vectors W obtained using non-negative matrix factorization (NMF) are shown. Angle axis 
are arbitrary. (b) Summation of mean squared errors between experimental ARPES spectra and reproduced 
spectra by NMF are plotted as a function of number of basis vector W.

 

Scientific Reports |        (2024) 14:24200 3| https://doi.org/10.1038/s41598-024-73795-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of the basis and activation vectors. Spectral features that varied depending on the measured locations were 
reproduced well by adjusting the activation vector H, which determines the weights of the basis vector W.

Figure 3a shows the results of the spectrum labeled as zero via clustering. The experimental spectra of label 
zero show weak or no graphene-derived spectral features, indicating that minimal amount of graphene grew at 
that measured position. When NMF was performed on the ARPES dataset without the background removal as 
a preprocessing step, the basis vectors attempted to reproduce the background region. Consequently, multiple 
basis vectors derived from the background were included in the results and affected the SSE value, which led 
to a misunderstanding of the results. Therefore, in this study, background removal was performed by setting 
the intensity below the maximum intensity in the background region to zero. This process does not affect the 
spectral features derived from graphene in regions of strong spectral intensity originating from graphene. 
However, because of the background processing, noisy spectra with weak intensities derived from graphene were 
also removed as background noise. Consequently, the spectra labeled zero were treated as having no spectral 
intensity, and the resulting reconstructed spectra and activation vector H also exhibited an empty image and an 
array of zeros.

Figure 3b,c show the spectra of ML-graphene labeled 1 and 7, respectively. Dirac cone features were observed 
in both spectra, whereas the spectral intensities differed along the energy direction. Whereas the spectrum 
labeled 1 (Fig. 3b) is reproduced primarily with component W1, the spectrum labeled 7 (Fig. 3c) is reproduced 
with a combination of the components W0 and W1. Although only one spectrum is shown here, the intensity 
in the energy direction differed depending on the position of each spectrum of ML graphene, and the spectrum 
was reproduced by adjusting the values of the basis vectors W0 and W1.

Figure 3d–f are spectra labeled 4, 5, and 6. Features derived from BL graphene were observed in these spectra. 
Similar to the ML spectra, the intensities along the energy direction in these spectra were different. In Fig. 3d, 
the spectral intensities are similar at the high- and low-binding energy sides, whereas in Fig. 3e,f, the intensities 
of the high-binding energy side are weaker than those in the vicinity of the Fermi level. The contribution of 
component W4 was small for label 4 (Fig. 3d), whereas the contribution of component W4 was large for label 
5 (Fig. 3e) and label 6 (Fig. 3f). The difference between Fig. 3e,f was attributed to the contribution of W2 and W4. 
NMF can fairly well reproduce the experimentally observed spectra that exhibit various spectral features with 
the modification of the activation vector.

Conversely, the basis vectors W2–W4 used for the primary reconstruction of the experimental spectra of BL 
graphene exhibited features consistent with the spectrum of TL graphene, but the TL- derived dispersions were 
unclear in the reconstructed spectra. This was achieved by the band distribution of TL becoming blurred by the 
addition of other components, such as W1, during the reproduction of the spectra for BL graphene.

Figure 3g,h show the spectra attributed to TL graphene. The reproduced spectra have a larger contribution 
from component W3 and are labeled 2 and 3 by clustering. The center position of component W3 in Fig. 1 shifts 
to a lower angle compared to the other components. The experimental spectra in Fig. 3g,h also shifted to lower 
angle, and the spectrum in Fig. 3h show larger shift than that in Fig. 3g. To reproduce the center shifts of the 
Dirac cone, the contribution from W3 was adjusted for these spectra.

Fig. 3.  NMF results for graphene ARPES dataset. Representative of the cluster based on the clustering with 
activation vector H are shown. The numbers indicated in left panels are the labels acquired from the clustering. 
Experimentally observed spectrum, reconstructed spectrum by the product of basis and activation vectors, 
and the ratio of the activation vectors for reconstructions are indicated from left to right panels. Angle axis are 
arbitrary.
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The intensity modulation along the energy direction the ML and BL graphene was observed in Fig.  3. 
These intensity modulations were also observed when the measurement angle was rotated along the polar 
direction, deviating from normal emission. In this study, the measurement angle was fixed during spatially-
resolved measurements of the dataset. The modulation of the spectral intensity along the energy direction 
might be attributed to the terrace structure of the substrate with domains of graphene growing in a non-normal 
direction28,29, or the SiC substrate being twisted when it was fixed to the holder.

Figure 4 shows a spatial map of the labels acquired using the k-means method for the activation matrix. 
The vertical and horizontal axes represent the setting values of the x- and z-axes of the ARPES measurement 
manipulator, respectively. These setting values of locations correspond to the relative locations of graphene 
grown on the SiC substrate. The spatial distribution of the labels shows that the number of graphene layers 
increases from right to left, as shown in Fig. 4. The thickness of graphene grown on a substrate depends on the 
temperature22,30,31. Therefore, the left-hand side of the spatial map with a higher number of layers exhibited 
a higher substrate temperature during annealing than the right-hand side. The labels were distributed in the 
spatial map without mixing labels, indicating that NMF and clustering by the activation vectors obtained by 
NMF worked well for the relevant sample. However, clustering is based on the similarity of activation vectors 
that reflect the intensity distributions in the spectra. The neighboring spectra were similar, but a slight difference 
in the activation vectors resulted in the assignment of different clustering labels. Therefore, for convenience, the 
spectra in this study were clustered into eight clusters; however, in reality, the spectral shape changed gradually.

The shifts of center angle of the spectra are observed in Fig. 3g,h. The spectra labeled 2 and 3 are located 
at the periphery of the substrate, as shown in Fig.  4. At ARPES measurements, the graphene grown on SiC 
substrate was fixed onto the sample holder with a Mo foil. Since the SiC substrate and Mo foil have different 
work functions, a slight electric field is generated at the edge of the sample. The generated electric field bends the 
emitted photoelectrons, affecting the detected emission angle. This is consistent with the fact that the amount of 
shift was larger for label 3 compared to label 2.

In general, since NMF is an NP-hard problem, its solution is not unique and is sensitive to initial values 
of matrices W and H. To investigate the dependence on initial values, we performed NMF while varying the 
number of basis vectors W and changing the initial matrices. In this work, even though more than 20 different 
initializations were tested, the resulting basis vectors W showed negligible difference. In addition, differences 
among the outputs from tested initializations appeared only in slight variations in the intensity of the basis 
vectors W and values of the activation vectors H. Therefore, the clustering results based on the activation vectors 
H were not affected by different initializations. In the case of two-dimensional materials, where the spectral 
shape changes significantly with the number of layers, similar results are expected even if NMF is sensitive 
to the initial matrices. Nevertheless, it is important to keep in mind and verify whether the NP-hard problem 
causes issues. NMF uses a two-dimensional matrix constructed by stacking the experimentally obtained spectra 
which were transformed into one-dimensional arrays as input. The input spectra contain information about 
the initial and final states as well as matrix elements. As a result, the generated basis matrix W displays the 
asymmetric band-dispersion derived from the intensity of experimental spectra that are affected by the initial, 
final states, and the matrix element. Even when using this method, it is necessary to consider the matrix elements 
effects, just as in standard ARPES measurements. Optimization of the experimental setup parameters, such 
as the incident angle of photon, emission angle of electron, photon energy, and photon polarization so that 
target bands can be observed clearly on the measurement, will be helpful. In addition, the basis matrix W, that 
is obtained as common patterns involved in many spectra, are treated as common images without considering 
their physical meanings of photoelectron intensities in NMF. Therefore, it is essential to carefully compare 
and evaluate the reconstructed spectra by NMF with the experimentally obtained ones individually, while 
also examining the effect of initialization and appropriately adjusting hyperparameters such as the number of 
components. Moreover, validating the significance of the results based on physical insights is crucial. In this 
context, comparing the calculated spectral images obtained as basis vectors with bands that include the matrix 
elements effects from theoretical calculations can be particularly effective.

Fig. 4.  Spatial distribution of the labels acquired by the clustering based on the activation vectors H.
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At NMF, the basis matrix W and the activation matrix H are optimized to minimize the reconstruction 
error across the entire dataset using the given shape of W and H. When the number of basis vectors is small 
and there are few spectra containing subtle structures, including subtle structures in the basis matrix results in 
a larger overall error. To ensure that subtle structures are included and extracted as the resulting basis matrix, 
it is necessary that a sufficient proportion of the spectra contain these subtle structures. Alternatively, using a 
sufficiently large number of basis vectors might allow for the incorporation of subtle spectral features, thereby 
reducing the overall dataset error and potentially including components associated with subtle structures in the 
results. The spatially-resolved ARPES are often conducted to observe subtle spectral features that appear only 
in specific regions using sufficiently small spot. The present NMF and k-means analysis would be applicable to 
resolve subtle spectral features that commonly appear in specific regions even when insufficiently small spot is 
used.

Recent development of the instruments enables ‘data-heavy’ ARPES measurement, such as ky- or kz-
resolved measurements using deflection-type electron lens or varying the excitation photon energy. Moreover, 
dependence on the polarization of excitation light, spin-resolved measurement, and time-resolved measurement 
with pump-probe method generates data-heavy multi-dimensional spectra. Although the computational load 
will increase, we believe that situations with increased data volume are precisely when automated methods like 
proposed in this article are most needed.

The application of k-means clustering to the ARPES spectra has been reported previously13,14, and compared 
with previous reports, the NMF-based method used in this study can extract specific band dispersions as basis 
vectors and screen regions of physical interest. This feature enables the detection of spectra with characteristic 
band structures and even eliminates spectral components arising from contamination or defects. In ARPES, 
the spectra sometimes contain mixed-phase information, depending on the measured location, relative sizes of 
the incident beam, and domain size. The ARPES spectra from various locations reflected the differences in the 
ratios of the mixed phases. By distinguishing these mixed features using NMF, it is possible to extract the spectral 
features originating from a single phase without arbitrariness as a hyper-spatial resolution that exceeds the spot 
size. By performing the same analysis on datasets with worse signal-to-noise ratios than the dataset used in this 
study, we expect to provide comprehensive information on the sample in a shorter scan time. In the future, we 
intend to apply this procedure to datasets with poor signal-to-noise ratios to evaluate its robustness.

Conclusions
In this study, an unsupervised approach was proposed to efficiently analyze large amounts of data obtained using 
spatially-resolved photoelectron spectroscopy. NMF was applied to a dataset of ARPES spectra of graphene on 
a SiC substrate. The spatial distributions of graphene with different numbers of layers on the substrate were 
visualized using k-means clustering on the activation matrix. NMF can extract frequent patterns from a large 
number of ARPES spectra using various features as the basis vectors. The activation vectors were adjusted to 
reproduce slight differences between the spectra. The spatial distribution of the graphene grown on the substrate 
was also revealed by applying k-means clustering to the obtained activation vectors. The proposed method can 
be applied to any ARPES spectrum and the spectral features can be extracted without examining the individual 
spectra.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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