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It has been generally hypothesized that mobile elements can induce genomic
rearrangements and influence the distribution and functionality of toxic/bioactive peptide
synthesis pathways in microbes. In this study, we performed in depth genomic analysis
by completing the genomes of 13 phylogenetically diverse strains of the bloom-
forming freshwater cyanobacteria Planktothrix spp. to investigate the role of insertion
sequence (IS) elements in seven pathways. Chromosome size varied from 4.7–4.8 Mbp
(phylogenetic Lineage 1 of P. agardhii/P. rubescens thriving in shallow waterbodies)
to 5.4–5.6 Mbp (Lineage 2 of P. agardhii/P. rubescens thriving in deeper physically
stratified lakes and reservoirs) and 6.3–6.6 Mbp (Lineage 3, P. pseudagardhii/P. tepida
including planktic and benthic ecotypes). Although the variation in chromosome size
was positively related to the proportion of IS elements (1.1–3.7% on chromosome),
quantitatively, IS elements and other paralogs only had a minor share in chromosome
size variation. Thus, the major part of genomic variation must have resulted from gene
loss processes (ancestor of Lineages 1 and 2) and horizontal gene transfer (HGT). Six
of seven peptide synthesis gene clusters were found located on the chromosome and
occurred already in the ancestor of P. agardhii/P. rubescens, and became partly lost
during evolution of Lineage 1. In general, no increased IS element frequency in the
vicinity of peptide synthesis gene clusters was observed. We found a higher proportion
of IS elements in ten breaking regions related to chromosomal rearrangements and
a tendency for colocalization of toxic/bioactive peptide synthesis gene clusters on
the chromosome.

Keywords: harmful algal blooms, secondary metabolites, insertion sequence elements, microevolution,
chromosomal rearrangements, genome size variation, horizontal gene transfer, cyanotoxins

INTRODUCTION

Cyanobacteria are an old form of life on earth, which occur in a wide range of aquatic and
terrestrial habitats. They made a tremendous impact on the evolution of life on our planet
because of oxygenic photosynthesis, and they are considered the ancestors of chloroplasts in
plants. To date, cyanobacteria still contribute to global primary production, that is fixing a
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substantial amount of carbon (Garcia-Pichel et al., 2003)
and nitrogen (Zehr et al., 2008). However, under favorable
conditions, benthic and planktonic cyanobacteria multiply
rapidly, and they may form dense harmful algal blooms
(HABs) in aquatic ecosystems causing toxic effects in plants,
invertebrates, and vertebrates, including humans and livestock.
An increasing number of bloom-forming cyanobacterial species
can produce over 1,100 distinct secondary metabolites (SM)
(Dittmann et al., 2015) primarily via three types of biosynthetic
machinery, namely, non-ribosomal peptide synthetases (NRPS),
polyketide synthases (PKS), and ribosomally synthesized and
post-translationally modified peptide (RiPPs) synthesis pathways
(Arnison et al., 2013; Calteau et al., 2014; Kurmayer et al.,
2016). Freshwater filamentous cyanobacteria Planktothrix are
one of the major cyanotoxin and bioactive peptide producers,
and they may serve as a niche constructor at ecosystem scale
(Kurmayer et al., 2016). The species assigned to the genus
Planktothrix, for example, P. agardhii and P. rubescens, are
recorded from toxic cyanobacterial blooms frequently (Fastner
et al., 1999; Willame et al., 2005). Planktothrix produce
various bioactive peptide families, including hepatotoxic
microcystins (MCs) (Christiansen et al., 2003; Briand et al.,
2008; Metcalf and Codd, 2012), aeruginosins (Ishida et al.,
2007; Kohler et al., 2014), anabaenopeptins (Itou et al.,
1999; Christiansen et al., 2011), cyanopeptolins (Grach-
Pogrebinsky et al., 2003; Rounge et al., 2007), microviridins
(Shin et al., 1996; Philmus et al., 2008), prenylagaramides
(Donia and Schmidt, 2011), and microginins (Rounge et al.,
2009; Pancrace et al., 2017). The gene clusters for aeruginosins,
anabaenopeptins, cyanopeptolins, microginins, and MCs
consist of genes encoding NRPS and/or PKS that follow a
stepwise synthesis pathway using either amino acids (NRPS)
or acetyl-coenzyme A (PKS) as substrate. RiPPs are formed
ribosomally through a precursor peptide (consisting of a leader
peptide and a core peptide), which is post-translationally
modified. Microviridins and prenylagaramides constitute two
cyanobactin peptide families produced by Planktothrix via
the RiPP pathway. Structural diversity of the cyanobactins is
additionally achieved by post-translational modification, such
as heterocyclization, oxidation, prenylation, and epimerization
(Sivonen et al., 2010). Although they are quite diverse in size,
composition, and arrangement, all cyanobactin biosynthesis
gene clusters share genes encoding two proteases for precursor
peptide cleavage and cyclization and accessory proteins
for post-translational modification (Sivonen et al., 2010;
Arnison et al., 2013).

Previous research has revealed that the genetic basis of MC
synthesis is frequently influenced by certain insertion sequence
(IS) elements (Christiansen et al., 2006, 2008; Chen et al., 2016;
Pancrace et al., 2017). IS elements constitute the most number
of mobile elements in prokaryotes, exhibiting a typical genetic
structure with terminal inverted repeats, direct repeat target
sequences, and an encoded transposase. IS elements may play a
key role in genomic plasticity, that is by genomic rearrangement
through homologous recombination in prokaryotes (Schneider
et al., 2000; Zhou et al., 2008; Koonin and Wolf, 2010; Larsson
et al., 2011). IS elements mutate the DNA sequence by four

mechanisms during cell cycle amplification or other selective
stress-induced processes: cut/paste, copy/paste, peel/paste, or
co-integrate. IS elements can influence cyanobacterial SM
biosynthesis gene clusters through insertion and subsequent
deletion (Christiansen et al., 2006; Entfellner et al., 2017).
Christiansen et al. (2008) and Chen et al. (2016) reported that
non-toxic strains of Planktothrix frequently resulted from the
(partial) deletion or inactivation of the MC synthesis gene cluster
(mcy) through IS elements. It has been reported earlier that IS
elements tend to cluster in the host genome (Zhou et al., 2008).
Thus, IS elements located in the vicinity of a specific SM synthesis
gene cluster might cause its inactivation, resulting in the loss or
modification of bioactive peptide production. The comparison of
complete genomes can reveal the potential physical relationship
between IS elements and SM synthesis gene clusters. However,
to date, for Planktothrix spp. only three strains of complete
genomes, namely, P. agardhii NIVA-CYA126/8, PCC7805, and
NIES-204, have been elucidated (Christiansen et al., 2014;
Pancrace et al., 2017; Shimura et al., 2021). In addition,
investigating the impact of IS elements on the population
level is important to understand the influence of IS elements
on a genomic scale. Therefore, in this study, we combined
genomics and population genetics to characterize the distribution
of IS elements and SM synthesis gene clusters within the
taxonomically well-defined HAB-forming genus Planktothrix.
Hence, we completed the genomes of 13 Planktothrix spp. strains
assigned to three major phylogenetic lineages by using the
reference genome (Christiansen et al., 2014). The phylogenetic
lineages have been established using 125 Planktothrix strains
originating from 40 water bodies located in 17 countries on
three different continents (Europe, North America, and Africa)
(Kurmayer et al., 2015; Entfellner et al., 2017). We focused on
(i) the relationship between SM biosynthesis gene clusters and
IS element distribution, (ii) the IS element-induced variation
and innovation in cyanobacterial SM production, and (iii)
the evolution of SM synthesis gene clusters as a result of
recombination events. In particular, we analyzed seven SM
biosynthesis gene clusters among 13 Planktothrix strains and
detected 1,622 IS element copies in all the genomes. Notably,
our results indicate the occurrence of IS elements with higher
proportion within breaking regions related to chromosomal
rearrangements resulting in colocalization of toxic/bioactive
peptide gene clusters on the chromosome.

MATERIALS AND METHODS

Planktothrix Strains and DNA Isolation
The genus Planktothrix is a monophyletic genus differentiated
from other related filamentous cyanobacteria of the family
Microcoleaceae of the order Oscillatoriales by genetic and
morphological characters linked to its planktonic lifeform
(Komárek, 2016). Eleven strains have been either assigned
to P. agardhii (Gomont) Anagnostidis and Komárek (1988)
or P. rubescens (DeCandolle ex Gomont) Anagnostidis and
Komárek (1988) as proposed by Suda et al. (2002), forming
basically two phylogenetic Lineages 1 and 2 (Kurmayer et al.,
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TABLE 1 | General characteristics of 13 Planktothrix spp. strains and genomes as well as origin and year of isolation (if known).

Taxonomic
affiliation

Strain Place and
year of

isolation

Phyl.
lineage

Total
genome

size
(Mb)

Chr.
size
(Mb)

Plasmid
size (Kb)3

GC cont.
(%)

No. of
genes

5/16/23S
rRNAs;
tRNAs

Total
IS

copy
number

% of
ISs

(Chr.)

% of
ISs

(Plasmid)

Genebank
assembly
access

no.

Planktothrix
agardhii

NIVA-CYA126/8 L. Langsjön (FI) 1984 1 5.10 4.841 51.8; 90.5; 119.6 38.8 4494 3/4/4; 42 105 1.6 3.5; 6.5; 7.5 GCA_904830765

Planktothrix
agardhii

No2A L. Markusbölefjärden
(FI), unknown

1 4.79 4.72 7.3; 62.3 38.4 4305 3/4/4; 42 75 1.3 0.0; 6.8 GCA_904830775

Planktothrix
agardhii

No66 Jägerteich (AT) 2001 1 4.95 4.74 44.1; 70.6; 94.1 39.8 4434 3/4/4; 42 81 1.2 6.7; 16.4; 0.0 GCA_904830855

Planktothrix
agardhii

No976 Ft. Lowell, Tucson
(US) 2009

1 4.91 4.75 5.3; 15.8; 36.1; 37.8; 61.1 38.9 4423 3/4/4; 42 67 0.8 0.0; 0.0; 0.0; 10.0; 13.7 GCA_904830935

Planktothrix
agardhii

PCC7805 Veluwemeer (NL)
1972

1 4.90 4.752 153.0 39.7 4446 3/4/4; 42 88 1.3 6.0 GCA_904830915

Planktothrix
agardhii

PCC7811 Paris, Vert le Petit
(FR) 1964

1 5.16 4.80 39.0; 48.5; 77.6; 88.9; 102.9 37.0 4645 3/4/4; 42 88 1.4 0.0; 0.0; 2.8; 1.3; 4.3 GCA_904830885

Planktothrix
agardhii

No365 Moose L. (CA) 2006 1A 4.85 4.71 23.0; 39.7; 64.5; 136.0 39.0 4482 3/4/4; 42 79 1.1 3.7; 0.0; 14.7; 0.7 GCA_904830845

Planktothrix
rubescens

No82 Ammersee (DE) 2001 2 5.69 5.45 14.7; 68.6; 153.4 39.3 5043 3/4/4; 42 137 2.1 15.6; 5.8; 0.9 GCA_904848565

Planktothrix
rubescens

No108 Irrsee (AT) 2001 2 5.58 5.41 63.1; 109.0 39.0 4970 3/4/4; 42 128 1.9 5.0; 7.7 GCA_904830785

Planktothrix
rubescens

PCC7821 L. Gjersjoen (NO)
1971

2 5.69 5.46 13.0; 48.5; 78.6; 94.0 39.5 5104 3/4/4; 42 165 2.6 0.0; 2.7; 4.4; 5.9 GCA_904830895

Planktothrix
agardhii

No758 L. Hormajärvi (FI)
2007

2A 5.64 5.64 – 39.5 4915 3/4/4; 43 145 2.5 n/a GCA_904830945

Planktothrix
pseudagardhii

No713 L. Saka (UG) 2007 3 6.65 6.60 53.0 39.7 5696 3/4/4; 56 282 3.7 4.3 GCA_904830925

Planktothrix
tepida

PCC9214 Banguis Landjia (CF)
1989

3 6.80 6.27 5.9; 49.9; 83.7; 386.0 37.6 5796 3/4/4; 48 182 2.1 0.0; 6.0; 3.6; 2.6 GCA_904830955

Taxonomic affiliation of P. agardhii, P. rubescens and P. pseudagardhii according to Suda et al. (2002) and of P. tepida (Gaget et al., 2015). Assignment of strains to phylogenetic lineages described by Entfellner et al.
(2017).
1Resequencing (de novo) and genome closing of previously published genome (Christiansen et al., 2014).
2 Identical strain for which genome was published previously, Access. No. LO018304 (Pancrace et al., 2017).
3Underlining indicates plasmids confirmed by PCR analysis; for strain NIVA-CYA126/8 plasmids were confirmed previously (Christiansen et al., 2014).
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FIGURE 1 | Phylogenomic tree calculated from 2,881 core genes using the
FastTree software (http://www.microbesonline.org/fasttree) to generate
approximately-maximum-likelihood phylogenetic trees (EDGAR 3.0) and
Shimodaira-Hasegawa local support values (Shimodaira and Hasegawa,
1999). Branches showing local support of 1.0 are indicated with thick lines.
Assignment of strains to phylogenetic lineages as described by Entfellner et al.
(2017). Kamptonema (Oscillatoria) strain PCC6506 was used as an outgroup
[for corresponding average amino acid identities (AAI) or nucleotide identities
(ANI) see Supplementary Additional File 3: Figure S2].

2015). Two strains were assigned to more distantly related species
P. pseudagardhii (Suda et al., 2002), that is Lineage 3 (Kurmayer
et al., 2016) or P. tepida (Gaget et al., 2015). Oscillatoria strain
PCC6506, which has been reassigned to Kamptonema (Strunecky
et al., 2014), was used as an outgroup for phylogenomic analysis.

In this study all clonal strains used for genome sequencing
were purified axenic following repeated isolation on agar and
grown in BG11 medium (Rippka, 1988) under sterile low-
light conditions (5–10 µmol m−2 s−1, 16/8 h light–dark
cycle, 15 or 23◦C). The bacteria-free growth condition was
confirmed regularly using DAPI staining in accordance with the
standard procedure (Porter and Feig, 1980). For 13 Planktothrix
strains assigned to the three major phylogenetic lineages,
namely, Lineage 1 (No2A, No66, NIVA-CYA126/8, No365,
No976, PCC7805, and PCC7811), Lineage 2 (No82, No108,
No758, and PCC7821), and Lineage 3 (No713 and PCC9214),
and Kamptonema PCC6506 axenic biomass were harvested by
centrifugation and stored at −20◦C. High-molecular-weight
(HMW) DNA extraction was performed using the Genomic-
tip 100/G kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol, i.e., following the sample preparation
and lysis protocol for bacteria. For each strain, 1 g of
frozen biomass was ground in liquid nitrogen and resuspended
using 3.5 ml of the buffer B1 (Qiagen, contains 18.61 g/L
Na2EDTA.2H2O and 6.06 g/L Tris base, 5% (v/v) of 10%
Tween-20, 5% (v/v) of 10% Triton X-100, pH = 8.0). RNase A
(final concentration 0.2 mg/ml), lysozyme (final concentration

5 mg/ml) and Proteinase K (final concentration 2.5 mg/ml) were
added and the DNA extraction was incubated at 37◦C (>30 min).
1.2 ml of buffer B2 (286.59 g/L guanidine HCL, 20% (v/v) Tween-
20) were added and incubated at 60◦C (>30 min). Following
centrifugation (14,000g, 10 min) the clear supernatant containing
HMW DNA was purified by ion exchange column purification
resulting in 130–1,100 or 120–412 ng/µl of DNA as recorded
in the Nanodrop spectrophotometer (ND 1000, Thermo Fisher
Scientific, Vienna, Austria) or via Qubit 2.0 (Thermo Fisher
Scientific), respectively.

Planktothrix Genome Sequencing and
Assembly
Genomes were sequenced using PacBio RS II platforms (GATC
Biotech, Constance, Germany) in 2014 and/or PacBio Sequel
Systems (Novogene, Beijing, China) in 2019. For PacBio RS
II platforms, three SMRT cells per strain were used, whereas
for PacBio Sequel Systems, only one SMRT cell per strain
was used. Libraries were prepared using the standard PacBio
10-kb protocol and sequenced on a PacBio RS II system
with P6-C4 chemistry (in 2014) and on the Sequel System
with Sequel Sequencing Kit 3.0 (in 2019). Raw reads were
filtered and assembled using the hierarchical genome assembly
process (HGAP) v3 (Chin et al., 2013) for PacBio RS II
platform and using HGAP v4 and Canu v2.0 (Koren et al.,
2017) for PacBio Sequel System. In brief, consensus sequences
were obtained using circular consensus sequencing command1

and converted to FASTA format using bamtools (Barnett
et al., 2011; Wenger et al., 2019). Consensus sequences were
assembled into contigs using Canu under “-pacbio-hifi” mode.
Coverages ranged between 17 and 455-fold for the Canu and
HGAP assembly reads (Supplementary Additional File 1: Table
S1).

Chromosome Completion and Plasmid
Confirmation
For a number of strains (NIVA-CYA126/8, No66, No82,
No108, No365, No758, PCC7805, PCC7821, and PCC9214),
chromosomes and plasmids were identified on the basis of
PacBio RS II assembly. Contig alignments or missing sequences
between contigs were obtained by PCR using specific primers
and Sanger sequencing of forward and reverse sequences
(Supplementary Additional File 1: Table S2) or by re-
sequencing via PacBio Sequel Systems in 2019 (No66, No108,
and No365). For the other strains (No2A, No713, No976, and
PCC7811), complete chromosomes and plasmids were directly
obtained through the PacBio Sequel Systems. The majority
of plasmids were physically confirmed by overlapping long-
distance PCR, showing that a specific DNA molecule was
circled as all of the primer sites could be shown to reveal
PCR products (Supplementary Additional File 1: Table S2 and
Supplementary Additional File 2). PCRs were performed using
Phusion High-Fidelity DNA Polymerase (Thermo Scientific)
according to the manufacturer’s protocol (HF Buffer, 500 nM of

1https://github.com/PacificBiosciences/ccs

Frontiers in Microbiology | www.frontiersin.org 4 July 2022 | Volume 13 | Article 901762

http://www.microbesonline.org/fasttree
https://github.com/PacificBiosciences/ccs
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-901762 July 23, 2022 Time: 15:59 # 5

Entfellner et al. Peptide Synthesis and IS Elements

TA
B

LE
2

|P
ar

al
og

ou
s

ge
ne

s
id

en
tifi

ed
fro

m
P

la
nk

to
th

rix
sp

p.
ch

ro
m

os
om

es
(le

ft)
an

d
de

vi
at

in
g

ge
ne

s
co

m
pa

re
d

to
th

e
re

fe
re

nc
e

N
IV

A
-C

YA
12

6/
8

(ri
gh

t).

P
ar

al
o

g
o

us
g

en
es

G
en

es
no

t
p

re
se

nt
in

re
fe

re
nc

e
N

IV
A

-C
YA

12
6/

8a

P
la

n
kt

ot
h

ri
x

st
ra

in
Li

ne
ag

e
N

um
b

er
o

f
p

ar
al

o
g

s
%

C
D

S
o

f
ch

ro
m

.
%

tp
n

o
f

p
ar

al
o

g
s

N
um

b
er

o
f

p
ar

al
o

g
s

(n
o

n-
tp

n)

%
C

D
S

o
f

ch
ro

m
.

(n
o

n-
tp

n)

%
un

ch
ar

.
hy

p
.p

ro
t.

N
um

b
er

o
f

g
en

es
%

C
D

S
o

f
ch

ro
m

.
%

un
ch

ar
.

hy
p

.p
ro

t.
N

uc
le

o
ti

d
es

(b
p

)

N
IV

A
-C

YA
12

6/
8

1
71

1.
7

46
.5

38
0.

9
18

.4
12

3
0.

6
83

.7
26

65
2

N
o2

A
1

65
1.

5
38

.5
40

0.
9

7.
5

37
4

6.
9

64
.2

27
96

81

N
o6

6
1

13
4

3.
1

15
.7

11
3

2.
6

55
.8

43
6

6.
9

69
.3

28
02

36

N
o9

76
1

44
1.

0
18

.2
36

0.
8

2.
8

45
4

7.
6

65
.2

30
73

98

P
C

C
78

05
1

60
1.

4
41

.7
35

0.
8

5.
7

44
8

7.
4

64
.5

30
37

68

P
C

C
78

11
1

72
1.

7
22

.2
56

1.
3

12
.5

41
4

7.
2

64
.3

29
75

04

N
o3

65
1A

63
1.

5
33

.3
42

1.
0

28
.6

42
9

7.
1

62
.9

28
52

46

N
o8

2
2

12
5

2.
6

52
.0

60
1.

2
25

.0
10

11
17

.1
54

.9
80

28
36

N
o1

08
2

12
6

2.
6

46
.0

68
1.

4
16

.2
10

39
17

.6
55

.2
82

21
32

P
C

C
78

21
2

17
0

3.
5

55
.3

76
1.

6
28

.9
10

42
17

.0
57

.8
79

84
41

N
o7

58
2A

14
5

3.
0

55
.2

65
1.

3
23

.1
11

73
20

.4
53

.1
99

53
94

N
o7

13
3

23
7

4.
2

82
.3

42
0.

9
28

.6
24

35
40

.7
46

.9
23

01
94

5

P
C

C
92

14
3

18
6

3.
5

55
.9

82
1.

5
7.

3
21

19
37

.5
46

.0
20

08
61

1

a
G

en
ba

nk
ac

c.
no

.N
Z_

C
M

00
28

03
.1

;C
D

S
,c

od
in

g
D

N
A

se
qu

en
ce

;t
pn

,t
ra

ns
po

sa
se

s.

each primer, 200 µM of each deoxynucleotide triphosphate, 0.1 U
polymerase, and 10 ng of HMW DNA). The size of PCR products
was determined by gel electrophoresis (0.8% agarose gels in
0.5 × Tris-borate-EDTA buffer) and visualized using Midori
Green. PCR products were either extracted from agarose gels
or purified using a commercial PCR purification kit (QIAquick,
Gel Extraction Kit, Qiagen) and directly sequenced (Eurofins
Genomics, Ebersberg, Germany). Thirteen complete genome
sequences have been submitted to EMBL-EBI under STUDY_ID
PRJEB40445 (ERP124090).

Genome Annotation and Phylogenetic
Analysis
Automated genome annotations and gene predictions were
performed using the genome annotation tool GenDB 2.4 (Meyer
et al., 2003) as compared with the reference genome of P. agardhii
NIVA-CYA126/8 (Christiansen et al., 2014) and reference
genomes from Arthrospira platensis C16 (NZ_CM001632.1),
Lyngbya aestuarii BL-J (NZ_AUZM00000000.1), and
Trichodesmium erythraeum (JAGGDU00000000.1) or if no
homolog was found via the SwissProt database. Genomic
comparison was performed using the online platform EDGAR
3.0 (Blom et al., 2009) regarding the core and pan genome,
average nucleotide identity (ANI), and average amino acid
identity (AAI) as well as a phylogenetic tree calculated from the
core genes using Kamptonema sp. PCC6506 as an outgroup.
The phylogenetic tree was calculated using the FastTree
software2 to generate approximately-maximum-likelihood
phylogenetic trees and Shimodaira-Hasegawa local support
values (Shimodaira and Hasegawa, 1999). All genes were
compared pairwise within chromosomes or plasmids using
97% identity cutoff and >90% query coverage to quantify
paralogs. In order to quantify gene functions the Clusters of
Orthologous Groups (COG) database was used as transferred
from the NIVA-CYA126/8 reference genome (Christiansen et al.,
2014).

Insertion Sequence Element Assignment
Insertion sequence element transposases were assigned or
predicted using ISsaga 2.0 (Varani et al., 2011), available through
the ISfinder database (Siguier et al., 2006; date August 4th
2020). The IS elements annotated by GenDB were matched
with those identified by ISfinder and BlastX with an e value
of <10−20. Considering that terminal repeats of ISs are often
small and poorly characterized and in many cases do not allow
a precise definition, the predicted ORF of a specific IS element
was used for further analysis. Copy numbers of different IS
elements were calculated from all 13 sequenced genomes by
BlastN using a threshold e value of 1e−20. We used ORF
length, non-interrupted translation, and copy number as criteria,
that is shorter sequences occurring in higher copy number
only were considered as fragments, to differentiate full-length
transposases from fragments.

2http://www.microbesonline.org/fasttree
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FIGURE 2 | Relationship between chromosome size and (A) percentage of IS elements on a nucleotide basis (R2 = 0.81); (B) number of full-length IS element
copies per chromosome (R2 = 0.79); (C) number of IS element fragments per chromosome (R2 = 0.9). Symbols: Green (phylogenetic Lineage 1), turquoise (Lineage
1A), red (Lineage 2), orange (Lineage 2A), and blue (Lineage 3).

Secondary Metabolite Biosynthesis
Genes
Seven previously described SM biosynthesis gene clusters
were analyzed among the 13 Planktothrix strains: microcystin
(mcyT-J) biosynthesis (Christiansen et al., 2003), aeruginosin
(aerA-N) biosynthesis (Ishida et al., 2007), anabaenopeptin
(apnA-E) biosynthesis (Christiansen et al., 2011), cyanopeptolin
(ociD-C) biosynthesis (Tooming-Klunderud et al., 2007),
microginin (micA-E) biosynthesis (Rounge et al., 2009),
microviridin (mvdA-F) biosynthesis (Philmus et al., 2008), and
prenylagaramide (pagC-G) biosynthesis (Donia and Schmidt,
2011). In addition, the automatic annotation revealed some
unknown NRPS/PKS genes occurring in strains of Lineage 3. Net
distances between SM synthesis gene clusters (or fragments) and
individual IS elements were calculated and statistically compared
with normal distribution using the Kolmogorov-Smirnov test
(Sigma Plot 14.0).

Secondary Metabolite Peptides
In order to investigate peptide synthesis all strains were incubated
in liquid BG11 medium (Rippka, 1988) at 15◦C (P. agardhii, P.
rubescens) or 23◦C (P. pseudagardhii, P. tepida) under continuous
low light conditions (10 µmol m−2 s−1, Osram Type L30W/77
Fluora) and harvested during early logarithmic growth phase
(usually after 14 days). Harvested cells on glass fiber filters were
dried, and 2–14 mg (median 4.8) of dry weight were extracted in
50% (v/v) aqueous methanol as described previously by shaking
on ice (Kosol et al., 2009). Peptides were separated by HPLC
(HP 1100, Agilent, Vienna, Austria) using a water/acetonitrile
(0.05% trifluoroacetic acid) gradient from 80:20 to 50:50 in
45 min at a flow rate of 1 mL min−1 and at 30◦C oven

temperature via a LiChrospher 100 RP18e octadecylsilica (5 µm
particle size) sorbent packed in a LiChroCART 250-4 cartridge
system (Merck, Darmstadt, Germany) (Kosol et al., 2009). An
electrospray ionization mass spectrometer ion trap (amaZonSL,
Bruker, Vienna, Austria) was coupled to the HPLC as described
(Entfellner et al., 2017). Peptides were detected in positive-ion
mode using nitrogen as sheath gas (43 psi, 8 L min−1, 300◦C) and
helium as auxiliary gas. The capillary voltage was set to 5 kV. Mass
screening and automated fragmentation were performed within
one run using the two precursor masses with high intensity for
MS2 fragmentation and one for MS3 fragmentation. Peptides
were determined on the basis of the retention time, mass,
and fragmentation pattern and assigned to the peptide families
based on the fragmentation pattern or the predicted mass of a
precursor peptide.

Graphical Tools
SnapGene was used to visualize primer positions on plasmids.
Synteny plots between strains were calculated using R2cat
(Husemann and Stoye, 2010). BioCircos package in RStudio (Cui
et al., 2016) was used to visualize the position of SM synthesis
gene clusters, breaking regions of chromosomal rearrangements,
and individual IS element groups.

RESULTS

Comparison of Planktothrix Genomes
We completed the genome of 13 Planktothrix strains, which
were previously assigned to three different phylogenetic lineages
(Entfellner et al., 2017). For each strain, a single circular
chromosome and a variable number of plasmids (0–5) were
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FIGURE 3 | Occurrence and frequency of insertion sequence (IS) elements among 13 Planktothrix spp. strains. (A) Copy number of 27 IS element groups per
genome of a strain. (B) Percentage of full-length IS elements vs. fragments of IS elements per genome. (C) Percentage of full-length IS element group vs. fragments
of IS element group. NGY, no IS element group has been assigned.
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TABLE 3 | Occurrence and frequency of 27 insertion sequence (IS) element groups among Planktothrix spp. genomes.

IS element group Closest homolog by BLASTp in NCBI and ISfinder Lineage1 and 1A (n = 7) Lineage 2 and 2A (n = 4) Lineage 3 (n = 2)

Number of
strains

Length (bp) Copy
number

Number of
strains

Length (bp) Copy
number

Numberof
strains

Length (bp) Copy
number

1a IS630, transposase P. agardhii 3 1074 1–13 3 1059–1074 5–8 2 1059 2 (1)

2b IS701, transposase P. agardhii, ISPlag1 7 1014 1–13 (5–11) 4 – (1) – – –

3 IS200/IS605, transposase ISAsp12, Anabaena sp. 5 1107–1371 1–4 4 1215–1362 1-7 (4-10) – – –

4c IS1634, transposase Planktothrix sp. 7 1569–1644 2–10 (2–3) 3 1644 4–7 2 – (3–4)

5 IS5, transposase, P. agardhii 6 921 4–10 2 921 5–9 2 921 14–19 (1–3)

6 IS200/IS605, transposase ISAsp6, Anabaena sp. 7 1272–1281 1–4 (1–2) 4 1272–1410 6–13 (1–4) – – –

7 IS200/IS605 transposase TpnB P. prolifica 7 1212 1 (2) 4 1218 4–6 (1–4) 2 1227–1230 1–20 (1)

8 IS200/IS605, transposase ISMae41, Microcystis aeruginosa 7 1173 1–3 (1) 4 1170–1173 2–3 (1–2) – – –

10 Transposase P. tepida 7 – (1) 4 – (1) 2 – (1)

11 Transposase P. agardhii 4 – (1) 1 – (1) 1 – (1)

12 IS200/IS605, transposase Planktothrix sp. UBA8407 5 – (1) – – – 2 – (1)

13 IS630, transposase P. tepida PCC 9214 – – – – – – 2 – (2)

14 IS200/IS605, transposase P. tepida – – – – – – 2 1230 1–2 (2)

15 IS701, transposase P. tepida 3 – (1–2) – – – 2 1236–1335 11–13 (12–13)

16 S701, transposase Planktothrix – – – 4 1266 1–12 (1) 1 – (1)

17 IS630, transposase Planktothrix – – – 2 1113 3–9 (1) 1 1113 57 (2)

18 IS5, transposase ISMae6, Microcystis aeruginosa 1 1497 1 1 – (1) 2 1494 1–10 (3)

19 IS200/IS605, transposase Planktothrix – – – 3 1203–1215 1 2 1212 2 (1–2)

20 IS4, transposase P. mougeotii – – – – – – 2 1326 6 (1-4)

21 ISAs1, transposase Planktothrix – – – 4 1119 12 (3–10) 2 – (1)

22 ISAzo13, transposase P. tepida 1 – (1) 3 – (1) 2 1212 4–9 (1–4)

23 IS630, transposase P. tepida – – – – – – 2 1038 3–10 (9–14)

757 IS200/IS605, transposase TnpB P. agardhii 7 1143 1 4 1143 1–2 – – –

919 IS200/IS605, transposase TnpB Planktothrix 5 1251 1 (1–2) 4 1251 1 (1) – – –

3678 IS200/IS605, transposase TnpB Planktothrix 4 1173–1182 1–3 (1) 4 1143–1173 2–8 (0–2) 1 1140 1

ISPlr1d ISAs1, transposase ISPlr1, P. rubescens – – – 4 1092 6–17 (2–7) 2 1092 2 (2)

ISpagF Transposase, Planktothrix 4 753–816 1 3 702–768 1 – – –

For full-length IS element copies, the length of encoded transposases is indicated. Numbers in brackets indicate copy numbers of corresponding fragments. aFlanking the mcy gene cluster. b Inactivating/deleting the
mcy gene cluster. cAdjacent to ana gene cluster. d Inactivating the mcy gene cluster.
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TABLE 4 | Occurrence and nucleotide length (in kbp) for seven SM synthesis gene clusters among Planktothrix spp.

Planktothrix strain Phylogenetic lineage aerA-N apnA-E ociD-C mcyT-J micA-E mvdA-F pagC-G

NIVA-CYA126/8 1 30.0 23.9 28.0 53.2 – 5.1 13.1

No2A 1 26.8 23.9 31.2 –1 – 5.2 15.8 (1)

No66 1 26.8 23.9 31.2 –1 21.1 (1) 5.2 15.3

No976 1 26.5 –1 32.6 –1 – 5.6 11.4

PCC7805 1 27.2 –1 32.6 –1 – 4.8 13.4 (1)

PCC7811 1 26.8 23.9 28.8 –1 – 4.8 12.0 (1)

No365 1A 30.7 24.0 32.9 –1 – 5.6 13.5 (1)

No82 2 26.6 24.0 31.2 52.0 – 4.8 12.5 (1)

No108 2 23.5 23.9 32.6 52.0 – 4.8 9.5

PCC7821 2 26.6 23.9 33.2 52.0 17.1 (1) 5.6 13.9 (1)

No758 2A 23.9 2 23.9 32.8 53.0 – 5.1 12.8 (1)

No713 3 – – – – – – –

PCC9214 3 – – – – – – –

The number of IS elements located within a SM synthesis gene clusters is indicated in parentheses (see also Supplementary Additional File 3: Figure S5). aer,
aeruginosin synthesis (NRPS/PKS); apn, anabaenopeptin synthesis (NRPS); oci, cyanopeptolin synthesis (NRPS); mcy, microcystin synthesis (NRPS, PKS); mic, microginin
synthesis (NRPS/PKS); mvd, microviridin synthesis (RiPP); pag, prenylagaramide synthesis (RiPP). 1Fragments (remnants) only. 2Partial deletion.

identified (Table 1). For strain NIVA-CYA126/8 the previously
published genome (Christiansen et al., 2014) was re-sequenced
and closed. For strain PCC7805 the genome was published
earlier by Pancrace et al. (2017), however, has been resequenced
during this study. For both strains the resequenced total genome
sizes were found 50 kbp increased (1.1% of genome size). For
NIVA-CYA126/8 the larger plasmids (119, 90, and 52 kbp)
were confirmed while the two smaller plasmids (5 kbp) were
found integrated into the 90 kbp plasmid. For PCC7805 the
megaplasmid was confirmed while the 5 kbp plasmid was not
found. Within Planktothrix spp. the chromosome size varied
between 4.72 Mbp (i.e., strain No2A) and 6.8 Mbp (PCC
9214), resulting in 4,305–5,796 predicted protein-coding genes
(ORFs). Planktothrix agardhii strains of Lineage 1 (1A) had the
smallest chromosomes; P. rubescens or P. agardhii strains of
Lineage 2 had larger chromosomes, whereas those of Lineage
3 had the largest chromosomes. All strains had the same
number of rRNA copies (three 5S, four 16S, and four 23S).
However, tRNAs varied from 42 among strains of Lineages 1
and 2 up to 48 (PCC9214) or 56 (No713) in Lineage 3. In
13 chromosomes, we obtained 2,881 core genes and 9,284 pan
genes (Supplementary Additional File 3: Figure S1A). The
core genome development curve reached a stable minimum,
indicating that the number of core genes will not decrease when
Planktothrix spp. strains were further considered. For the pan
genome, we obtained a saturation curve with a slight increase;
therefore, we could obtain additional gene information when
further strains assigned to Planktothrix spp. were considered.
Considering closely related P. agardhii/P. rubescens strains, not
only reduced variability but still no saturation was reached for
the pan genome (Supplementary Additional File 3: Figure
S1B). When calculated for each lineage, again no saturation
for pan genes was observed (Supplementary Additional File
3: Figure S1C). Instead pan genes increased distinctly between
Lineages 1 and 2 and Lineages 2 and 3 by 34–41 and 52–54%,
respectively (Supplementary Additional File 3: Figures S1C,D).

The phylogenomic tree calculated from core genes (Figure 1)
revealed that Lineages 1 and 2 are sister lineages, to the exclusion
of basal Lineage 3. In agreement the AAI and ANI matrices
revealed that strains of Lineages 1 and 2 were found most closely
related, whereas strains of Lineage 3 (No713 and PCC9214) were
found more distinct (Supplementary Additional File 3: Figure
S2). Lineage 1 differed from Lineage 2 between 97.8 and 98.3%
(AAI) or 95.3–96.3% (ANI) which is close to the cutoff frequently
used for species demarcation (Jain et al., 2018).

We used synteny plots to investigate chromosomal gene
arrangement and explore differences in genomic structure among
strains. We found a similar chromosomal structure among strains
within a lineage and only a few chromosomal rearrangements
among Lineages 1, 1A, 2, and 2A. By contrast, the chromosomal
arrangement of P. agardhii/P. rubescens strains (Lineages 1 and
2) compared with strains of Lineage 3 (No713 and PCC9214)
was completely different but rather indifferent between the two
strains No713 and PCC9214 (Supplementary Additional File 3:
Figure S3).

Paralogous genes were calculated to identify the factors
contributing to chromosome size variation, which contributed
only 1.0% (strain No976) to 4.2% (strain No713) of all genes
(Table 2). Paralogs comprised IS elements ranging from 15.7%
(strain No66) to 82.3% (strain No713). The other duplicated
genes were assigned to photosystem II, gas vesicle proteins,
reverse transcriptases, and unknown proteins (Supplementary
Additional File 1: Table S3). Thus, on a nucleotide basis, the
percentage of duplicated genes (without transposases) was <1%.
Therefore, apart from a relatively minor influence of IS elements,
duplication of genes was also of relative minor importance for
chromosome size increase among Planktothrix spp. Thus, the
major part of chromosome size variation must have resulted from
gene loss processes (ancestor of Lineages 1 and 2) and horizontal
gene transfer (HGT).

Based on synteny analysis, many deviating genes appeared
singular. We also found some larger regions encoding putatively
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TABLE 5 | Peptide products resulting from seven SM synthesis pathways among 13 genome-sequenced Planktothrix spp. strains.

Planktothrix strain Aeruginosins Anabaenopeptins Cyanopeptolins Microcystins Microginins Microviridins Planktocyclins/Prenylagaramides

NIVA-CYA126/8 Aer 126A, put. Aer
730

AP 908, AP 915 Cpt 960 [D-Asp3]MC-
LR,
[D-Asp3]MC-
RR

n/a Mvd K n.d.

No2A put. Aer 714, 716 AP B put. Cpt 1153 n/a n/a Mvd I put. Pla 1060

No66 put. Aer 714, 716 AP B put. Cpt 1153 n/a put. Mic 548,
582, 616

Mvd I Planktocyclin

No976 put. Aer 820, 854,
868

n/a put. Cpt 993 n/a n/a n.d. put. Pla 992, 1580, 1827

PCC7805 put. Aer 740, 754,
774, 788, 834, 868

n/a put. Cpt 993, 1088 n/a n/a n.d. Pag B, Pag C

PCC7811 put. Aer 714, 716 AP F, Oscillamide Y n.d. n/a n/a n.d. Pag B

No365 put. Aer 868, 892 AP A, AP B put. Cpt 1136 n/a n/a put. Mvd 1640,
1803

put. Pag 1064

No82 put. Aer 592, 616,
632

AP F, Oscillamide Y Oscillapeptin J [D-Asp3]MC-
LR,
[D-Asp3]MC-
RR

n/a n.d. put. Pla 1125

No108 put. Aer 770, 804 AP B, AP C, AP F
put. AP 822, 836

put. Cpt 1074 [D-Asp3]MC-
LR,
[D-Asp3]MC-
RR

n/a n.d. n.d.

PCC7821 put. Aer 592, 616,
632

AP F, Oscillamide Y Oscillapeptin G
Frag. Osc. G

[D-Asp3]MC-
LR,
[D-Asp3]MC-
RR

Oscillaginin A,
Oscillaginin B

n.d. Oscillatorin, put. Pag 1969

No758 n.d. AP B, AP C put. Cpt 1003,
1037, 1049, 1083

put. [D-
Asp3]MC-RY,
[D-Asp3]MC-
RR

n/a n.d. put. Pla 839, put. Pag 1501

No713 n/a n/a n/a n/a n/a n/a n/a

PCC9214 n/a n/a n/a n/a n/a n/a n/a

The raw data of HPLC-MS analysis as well as a list of protonated masses and assigned peptides for all 13 strains have been included in Supplementary Additional File 1: Tables S5, S6. n/a, not applicable; n.d., not
detected; put., putative; Aer, Aeruginosin; AP, Anabaenopeptin; Cpt, Cyanopeptolin; MC, Microcystin; Mic, Microginin; Mvd, Microviridin; Pag, Prenylagaramide; Pla, Planktocyclin.
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functional gene clusters. Two of these operons were described
earlier as the phycoerythrin gene cluster among red-pigmented
P. rubescens/P. agardhii strains (Tooming-Klunderud et al.,
2013) or the nitrogen-fixation gene cluster described for strain
PCC9214 in Lineage 3 (Pancrace et al., 2017). When compared
with the NIVA-CYA126/8 reference genome, strains among
Lineage 1 slightly differed in deviating genes by 6.9–7.6%
only. Strains among Lineage 2 differed by 17.0–20.4%, whereas
strains among Lineage 3 differed by 37.5–40.7%. Based on the
phylogenomic tree described above (Figure 1), the strains of
Lineage 2 gained 14–20% of their genomic information possibly
through HGT, whereas ancestors of Lineages 1 and 2 possibly
lost up to 40.7% from more basal genotypes of Lineage 3.
Correspondingly Venn diagrams revealed a higher overlap for
both core and pan genes between lineages 1 and 2, while the
overlap with Lineage 3 was smaller (Supplementary Additional
File 3: Figure S4). In order to find out whether for disjunct core
and pan genes certain gene functions occurred more frequently
the COGs were assigned. It should be noted that only 20–43%
and 20–34% for core and pan genes, respectively were assigned
to COG categories. Overall for core genes the COG categories
showed a rather similar proportion when compared between
lineages. Lineage 3 showed higher percentage of COGs related
to primary metabolism (i.e., C, G, E, H, and I). For pan genes,
notably COG X (Mobilome: prophages, transposons including
transposases) occurred most frequently among Lineage 2.

Insertion Sequence Elements
Using the completed genomes, we performed an exhaustive
comparison of the composition and localization of IS elements.
In total, we found 1,622 IS element copies among the 13
genomes (Supplementary Additional File 1: Table S4). Thereof
865 (53.7%) full-length transposases of IS elements were found
and classified as putatively active. The IS element copy number
per strain varied between 68 (No976) and 273 (No713). In
the chromosomes, IS element transposases made up 0.8–3.7%
(Table 1) on nucleotide basis, which increased with the increase
of chromosome size (Figure 2). Similarly the copy number of
full-length transposases and fragments thereof increased with
chromosome size. The percentage of IS elements on plasmids
was more variable as some plasmids were found without any IS
elements, and others were found carrying up to 16.4% (Table 1).

We identified 15 known IS element families by using the IS
finder platform. Nevertheless, 7.8% of IS element copies were
not classified to IS element families yet. The most abundant IS
element family was IS200/IS605 (30%). For a precise insight, we
further subdivided the main part of IS elements (58.7%) into 27
groups because of blastN similarity (Figure 3A and Table 3).
The majority of IS element groups occurred chromosomally only,
whereas some IS element groups occurred on chromosomes
and plasmids (e.g., groups 2, 4, 5, and 16). The frequency of
these IS element groups and its phylogenetic distribution differed
enormously: For IS element group 10, we found 13 copies in total,
i.e., each strain had exactly one copy. Group 7 was also present
in all strains; however, the copy number varied remarkable,
as some strains had only one copy, and strain PCC9214 of
Lineage 3 hosted 20 full-length copies. In addition, IS element
group 5 was present in all lineages in a high copy number. IS

element group 1, flanking the mcy gene cluster (Christiansen
et al., 2003), occurred in full length in Lineages 1 and 2 in
high copy number, whereas only few copies were found in
Lineage 3. Opposite results were found for IS element group
15 and 23, which showed high copy numbers and occurred
only in strains No713 and PCC9214 and thus appeared to be
phylogenetically restricted to Lineage 3. Furthermore, with one
exception IS element group 16 occurred in Lineage 2 only. IS
element group 2 (ISPlag1), which is known to cause inactivation
and deletion of the mcy gene cluster (Christiansen et al., 2008),
showed the most copies (43 full-length copies and 56 fragments)
and occurred mostly among strains of Lineage 1. Only fragments
of ISPlag1 were found in strains of Lineage 2. ISPlr1, which
is also known to inactivate the mcy gene cluster by insertion
(Chen et al., 2016), was found frequently in Lineage 2, and few
copies were found in Lineage 3. Furthermore, IS element group
4 was found adjacent to the anatoxin biosynthesis gene cluster in
Kamptonema (Oscillatoria) strain PCC6506 (Mejean et al., 2009),
and it occurred in full-length in Lineages 1 and 2, whereas Lineage
3 carried fragments only.

In general, the ratio between full-length IS elements and
fragments of IS elements was balanced and strain specific but
not lineage specific. Strain No976 and strain No758 had the
lowest (36%) and the highest (68%) content of full-length
transposases, respectively (Figure 3B). We found no general
difference between chromosomes and plasmids with regard to
full-length vs. fragments. With regard to the 27 IS element
groups, the ratio of full-length IS elements and fragments differed
remarkably. Numerous IS element groups (groups 1, 16, 17,
757, and ISpagF) contained a high proportion of full-length
copies (>90%). Other IS element groups had less full-length
copies; in particular, groups 10, 11, 12 and 13 occurred only as
fragments (Figure 3C).

Secondary Metabolite Synthesis Gene
Cluster Distribution
We localized seven previously elucidated SM synthesis gene
clusters, including two NRPS gene clusters (apnA-E and ociD-C),
two NRPS/PKS hybrid gene clusters (aerA-N and mcyT-J), two
RiPP gene clusters (mvdA-F and pagC-G) on the chromosomes,
and another NRPS/PKS gene cluster (micA-E) occurring on
plasmids (Table 4 and Figure 4). Strains of Lineage 1 carried
4–6 of these SM synthesis gene clusters, whereas strains of
Lineage 2 had 6–7 clusters. Four biosynthesis gene clusters
(aer, mvd, oci, and pag) were present among all strains of
Lineages 1 and 2. By contrast, the apn and mcy gene clusters
were distributed irregularly, that is apn and mcy genes occurred
irregularly among strains of Lineage 1, but they were always
present among strains of Lineage 2. The mic gene cluster, located
on plasmids, was randomly distributed, as it was only found in
two strains, namely, No66 (Lineage 1) and PCC7821 (Lineage
2). By contrast, the two strains of Lineage 3 had none of these
abovementioned SM synthesis gene clusters. However, we found
several putative NRPS/PKS genes among strains of Lineage 3.
Similarly, among strains of Lineage 1 and 2, unknown NRPS/PKS
genes were found.
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FIGURE 4 | Location of seven secondary metabolites (SM) synthesis gene clusters among 11 Planktothrix agardhii/P. rubescens chromosomes and plasmids (Only
the mic genes have been located on plasmids). The star indicates that synthesized peptide products have been detected by HPLC–MSn.

Figure 4 shows the distribution of SM synthesis gene clusters
on the chromosomes. Notably, individual gene cluster positions
changed in congruence with the phylogeny of the strains. Strains
of Lineage 1 (e.g., No66) were found to have the apn and oci
gene clusters distant to the mvd gene cluster, whereas among all
strains of Lineage 2 and some strains of Lineage 1 (e.g., NIVA-
CYA126/8) the apn and oci genes were found rather close to the
mvd genes, i.e., forming a so-called meta gene cluster of mvd–
apn–oci. Similar evolution can be observed for the pag gene
cluster, which was located far away from all other SM synthesis
gene clusters among strains of Lineages 1, 1A, and 2A, but pagC-
G genes became localized closer to the meta gene cluster among
strains of Lineage 2.

Secondary Metabolite Synthesis Gene
Cluster Functionality
In general, whenever we found one of the abovementioned
NRPS or NRPS/PKS gene cluster in the genome, we also
detected corresponding putative peptides, confirming a high
share of SM synthesis gene cluster functionality in Planktothrix
(Table 5, Supplementary Additional File 1: Tables S5, S6 and
Supplementary Additional File 3: Figure S5). In addition, for
the mic gene cluster carried on plasmids (No66, PCC7821),
the produced microginins were detected. However, an inactive
aer gene cluster of strain No758 occurred because of partial
deletion as well as a putatively inactive oci gene cluster of strain
PCC7811. In contrast to NRPS, the two RiPP gene clusters were
found frequently inactive. Within the mvd gene cluster, strains
were found to carry one or two potential precursor peptide
genes (mvdE and mvdF). For strains carrying mvdE (No66,
No2A, No365, and NIVA-CYA126/8), the predicted peptides
were detected. Strain No365 had two slightly different mvdE
precursor peptide genes resulting in two different microviridin
structural variants. On the contrary, for strains carrying only
the mvdF precursor peptide gene, the corresponding peptide

could not be detected. The pag gene clusters in Planktothrix
showed a variable number of precursor peptide genes (pagE)
ranging from one pagE copy in strain No108 to 12 pagE
copies in strain No66 (Supplementary Additional File 3:
Figure S5), indicating gene duplication and potential structural
diversification. Some strains seemed to carry several active
pagE genes (e.g., three in No976), whereas other strains had
no active pagE (e.g., NIVA-CYA126/8). Consistent with Donia
and Schmidt (2011), both genes encoding prenylagaramide B
1 (pagE6) and C 2 (pagE7) were detected in P. agardhii. It
is interesting to note that active pagE genes often were found
to contain a core motif GLTPH/L (Supplementary Additional
File 1: Table S7) which has been suggested as a restriction
site for the N-terminal protease A previously (Gu et al.,
2018). Moreover, some strains of P. rubescens were reported
to produce one or two variants of planktocyclin (Baumann
et al., 2007; Kurmayer et al., 2015). Using backtranslation of
the amino acid sequence constituting planktocyclin Pro-Gly-Leu-
Val-Met-Phe-Gly-Val (resulting in 12,288 possible nucleotide
sequences of 24 bp in length), only one exact BLASTn hit
was found in the genome of strain No66. This exact match
formed part of the precursor genes pagE described for the pag
gene cluster previously (Donia and Schmidt, 2011). Therefore,
we concluded that the pag gene cluster corresponded to
the synthesis of prenylagaramide and planktocylin (lacking
prenylation). Furthermore, we found a correlation between
the presence of prenylated peptides and prenyltransferases
(pagF). The strains PCC7805, PCC7811, No365, and No758
carried a highly similar pagF gene, and these strains also
produced O-prenylated tyrosine-containing peptides (e.g., Pag
B 1 and C 2). For strains No2A and No82 (and also in the
planktocyclin-inactive strain NIVA-CYA126/8), we detected a
lower similarity of the pagF gene (Supplementary Additional
File 3: Figure S6). Recently, Shimura et al. (2021) reported
dissimilarity of the pagF gene using strain PCC7821, resulting in
C-prenylation of tryptophan, which has been previously known
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FIGURE 5 | Relationship between IS element frequency (on a nucleotide basis) and the distance to (A) six SM synthesis gene clusters among eleven Planktothrix
agardhii/Planktothrix rubescens chromosomes and (B) putative breaking regions for observed chromosomal rearrangements. (C) Frequency of IS element copy
number within breaking regions (BR, putative breaking point ± 10 kbp).
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as oscillatorin (Sano and Kaya, 1996). Other strains (No66 and
No976) lacking prenyltransferase produced planktocyclins but no
prenylagaramides.

Relationship Between Insertion
Sequence Elements and Secondary
Metabolites Synthesis Gene Clusters
We calculated net distances between the location of SM synthesis
gene clusters and the location of full-length IS elements to
systematically compare the distribution of IS element groups in
relation to individual SM synthesis gene clusters (or fragments).
When comparing IS element net distance among the SM
synthesis gene clusters, the majority of IS elements showed a
non-normal distribution (Kolmogorov–Smirnov test p < 0.01).
Notably, for nearly all IS element groups, the range in variation
of net distance from a specific SM synthesis gene cluster exceeded
1 Mbp. Only for IS element group 3, a more narrow range in
relation to the pag gene cluster was recorded, that is 0.12 Mbp.
Therefore, any IS element group showed a clustering of its
copies in the vicinity of a specific SM synthesis gene cluster.
Nevertheless, a few copies of IS elements were found most closely
located to a specific SM synthesis gene cluster (<11 kbp in
distance), that is IS element group 2 (ISPlag1) for mvd genes,
group 4 for oci and apn genes, group 3678 for pag genes, and
group 1 and ISPlr1 for mcy genes.

We calculated the frequency of IS elements (including the
remnants) in the adjacent regions (10–30 kbp) of the seven
SM synthesis gene clusters (Figure 5A). In general, the strains
did not show an increased IS element content in the vicinity
of SM synthesis gene clusters when compared with the entire
chromosome. Only PCC7821, No108, and No66 indicated an
IS element frequency that increased in the vicinity of SM
synthesis gene clusters.

However, the pag and mic gene clusters included single IS
element copies. The pag gene cluster of seven strains included
a transposase (Supplementary Additional File 3: Figure S5) as
reported for P. agardhii NIES-596 and ISpagF previously (Donia
and Schmidt, 2011). The two mic gene clusters included a specific
transposase, i.e., for strain No66 an IS element of group 4 was
found, and for strain PCC7821 ISPlr1 was located within the mic
gene cluster. Only a few transposases were found adjacent to SM
synthesis gene clusters, for example, ISPlag1 (group 2) was found
close to the apn gene cluster (or apn remnants) in many strains
of Lineages 1 and 1A. Therefore, relatively few IS elements were
found in proximity to one of the seven SM synthesis gene clusters
among P. agardhii/P. rubescens strains.

Chromosomal Rearrangements
Influencing (Co)Localization of
Secondary Metabolites Synthesis Gene
Clusters
As mentioned previously, P. agardhii and P. rubescens strains
showed a similar chromosomal structure. In total, ten major
chromosomal rearrangements were observed (Figure 6 and
Supplementary Additional File 3: Figure S7). We investigated
the breaking regions of the ten chromosomal rearrangement
events (approximately 30 kbp up and downstream of the putative

breaking point) with regard to general gene composition,
gene duplications, IS elements, and repetitive sequences
(Supplementary Additional File 4: Tables S8–S16). In general,
within putative breaking regions, we observed not only
IS elements but also genes of the primary metabolism or
uncharacterized genes.

The chromosomal rearrangements A and H influenced the
chromosomal positions of some SM synthesis gene clusters and
contained duplicate genes. As described previously, some strains
of Lineage 1 had two copies of apnE (ABC transporter encoded
by the apn gene cluster) possibly because of apn gene loss and
regaining of the apn gene cluster (Entfellner et al., 2017). The
presence of the entire apn gene cluster and the additional apnE
was related to chromosomal inversion (approximately 270 kbp),
moving the apn and oci synthesis gene clusters close to the
mvd gene cluster and thus forming a meta gene cluster, namely,
mvd–apn–oci (Figure 7), which is ubiquitously present among
strains of Lineage 2. Alternatively, some strains in Lineage 1
(e.g., strain No66) lost the meta gene cluster formation by the
same event. Notably, within Lineage 2, another chromosomal
rearrangement H (approximately 2.3 Mbp) resulted in the
movement of pag synthesis genes closer to the meta gene cluster
(distance approximately 280 kbp).

In general, among the putative breaking regions, repetitive
sequences were observed (Supplementary Additional File
4: Tables S9, S10, S14–S16): WD repeat-containing protein
genes were found at the breaking regions of chromosomal
rearrangements B, C, G, H, I, and J. In particular, for
chromosomal rearrangement J, we found repetitive sequences at
both and very close to the putative breaking points in all strains
of Lineage 2. Repetitive sequences that are part of an unknown
ORF encoding a tetratricopeptide protein were found at breaking
regions of chromosomal rearrangements H and I.

Furthermore, we observed increased IS element frequency
among the breaking regions. Notably, a correlation between
IS element frequency (proportion of nucleotides) and the
distance to the assumed breaking points of chromosomal
rearrangements was observed (Figure 5B). The percentage of
IS elements (transposases on nucleotide basis) among breaking
regions was highest within 10 kbp up and downstream (1.9–
4.5%) and lowest for the entire chromosome (0.9–2.6%), and
it decreased with distance from breaking point. For all ten
chromosomal rearrangements, at least one IS element was found,
whereas most breaking regions showed several copies of IS
elements (Figure 5C). Therefore, an increased proportion of IS
elements occurred within breaking regions, which was related
to chromosomal rearrangements predominantly within Lineage
2 (rearrangements C, E, and G–J) and to a less extent within
Lineage 1 (rearrangements A, B, and D).

DISCUSSION

Relationship of Genome Size and
Insertion Sequence Element Proportion
Zhou et al. (2008) compared 1,356 IS elements from the
IS finder database for 19 complete genome sequences of
cyanobacteria and concluded that the genome size tends to
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FIGURE 6 | Location of secondary metabolites (SM) synthesis gene clusters and insertion sequence (IS) elements on chromosomes of Planktothrix agardhii/
Planktothrix rubescens strains, including No66 and NIVA-CYA126/8 (Lineage 1), No365 (Lineage 1A), No758 (Lineage 2A), and No82 (Lineage 2). Putative breaking
regions of chromosomal rearrangements are indicated by drawn lines (circular plots for other strains have been included in Supplementary Additional File 3:
Figure S7).

FIGURE 7 | Chromosomal rearrangement A related to colocalization of mvd and apn gene clusters. Homologous gene loci are indicated by gray shading, which
enabled the inversion of a 300 kbp fragment leading to a meta peptide gene cluster comprising mvd, apn, and oci genes.

increase with the number of recently active IS elements in
a genome. In this study, not only full-length copies but
also fragments were found to correlate, which might be due
to the presence of repetitive sequences. Similarly, Larsson
et al. (2011) reported a highly significant correlation between
genome size and the number of duplicated genes. When
comparing 58 cyanobacterial genomes, the authors concluded
that numerous paralogs (resulting from gene duplication)
assigned to COG L (replication) were mostly linked to

transposases. In general, transposases (IS elements) could be
used to create/maintain genomic plasticity, thereby potentially
allowing rapid adaptation to environmental changes (Frangeul
et al., 2008; Kusumoto et al., 2011; Humbert et al., 2013;
Nzabarushimana and Tang, 2018). Details on IS-based molecular
adaptation mechanisms are less clear, but partial IS elements
rather facilitate homologous recombination processes because
of sequence similarity than actively inducing it by cut and
paste mechanism.
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By contrast, in this study, the chromosome size slightly
increased with the frequency of IS elements, and the content
of other paralogs was smaller than that of IS elements. Thus,
likely orthologous genes inserted by HGT led to genome
increase during evolution of Lineage 2. A large share of these
orthologous genes was composed of uncharacterized hypothetical
proteins (Table 2). However, Tooming-Klunderud et al. (2013)
demonstrated earlier that the strains assigned to P. rubescens
gained a gene cluster encoding phycoerythrin synthesis through
HGT, which is considered as a selective advantage in deep
stratified lakes (Kurmayer et al., 2015). Understanding the
physiological function of the acquired total genetic basis ranging
from 0.8 to 0.995 Mbp is considered important to understand the
ecophysiological adaptation of Lineage 2 on a genomic level.

According to the botanical definition (Anagnostidis and
Komárek, 1988) the green vs red pigmentation is the major
criterion to differ between P. agardhii and P. rubescens
(Suda et al., 2002). The two major phylogenetic lineages
identified through multi-locus sequence analysis (MLSA)
previously were confirmed via phylogenomic analysis in
this study (Figure 1 and Supplementary Additional File 3:
Figure S2). However, as found earlier both lineages comprise
green and red pigmented strains not reflecting the current
species definition according to Suda et al. (2002). HGT of
phycoerythrin synthesis only is unlikely to be the sole factor for
evolutionary diversification. On the other hand the observed
high genetic dissimilarity between phylogenetic Lineages 1
and 2 points to a more stable phylogenetic barrier which
would imply genetic differentiation even if genotypes from
both lineages occur in the same habitat (Jain et al., 2018).
In the future for Lineage 2 the functional consequences
of the acquired additional genetic information need to be
explored concerning its role in the observed phylogenomic
differentiation.

Secondary Metabolites Synthesis Gene
Clusters Influenced by Mobile Elements
In general, the observed patchy SM synthesis gene cluster
distribution among genera/strains has been considered the result
of mobile elements, that is plasmids and transposases (i.e., Bolch
et al., 1997; Nakasugi et al., 2007). Based on this study, most
SM synthesis gene clusters have been stably integrated into the
chromosome, which show a distribution congruent to phylogeny.
Moreover, within Lineage 2, all four strains contained at least
six SM synthesis gene clusters (aer, mvd, apn, oci, pag, and
mcy) probably because an ancestor genotype already carried
all of these clusters. By contrast, the number of SM synthesis
gene clusters among Lineage 1 was reduced because of gene
loss processes possibly influenced by IS elements (loss of mcy
and apn genes related to insertion of ISPlag1). Only the mic
gene cluster has been found on a plasmid, which may be the
first example of a plasmid encoding a functional SM synthesis
gene cluster for bloom-forming cyanobacteria (strains No66,
PCC7821). However, for the genus Planktothrix, the genomic
mobility of the six most abundant SM synthesis gene clusters
is considered low.

Similar to plasmids, various IS elements located within or in
the vicinity of SM synthesis gene clusters have been suggested
to facilitate HGT (e.g., Tillett et al., 2000; Christiansen et al.,
2003). Correspondingly, in this study, for all SM synthesis
gene clusters, a few IS elements were found closely located
(<10 kbp), for example, strain No66 carried ISPlag1 and IS
element group 4 flanking the apn gene cluster in a distance
of 4 kbp. ISPlag1 also was found in the vicinity of apn gene
clusters in strains No2A and No365. Considering that apn genes
might have been re-introduced through HGT recently (Entfellner
et al., 2017), the IS elements, namely, ISPlag1 and IS group 4,
might have been involved. Two IS elements were part of the mic
gene cluster, that is IS group 4 (No66) and ISPlr1 (PCC7821).
Considering that the percentage of IS elements on plasmids
ranged from 0 to 16.4%, the IS element share on plasmids is
generally more flexible when compared with the chromosome.
If the incoming DNA contains parts similar to the recipient
plasmid/chromosome such as IS elements (Herrero and Flores,
2008), then IS elements present in plasmids can serve as the
recognition site for homologous recombination.

Based on another hypothesis, active IS elements might cluster
in host genomes (Zhou et al., 2008). Such clustering may affect
the mutation rate in certain regions of the host genome, including
functional operons such as SM synthesis gene clusters. Indeed, in
this study, increased IS element frequency was observed in certain
chromosomal regions related to chromosomal rearrangements
(Figure 5B). It is not known whether this increased frequency
in certain regions is because of (unknown) factors directing IS
element insertion or actually occurs accidentally. Nevertheless,
we argue that the physical vicinity of IS elements to SM synthesis
gene clusters is not of decisive importance for modification,
rather it is the activity of certain IS elements (ISPlr1 and ISPlag1).
For example, IS element group 1 is found closely located to
the mcy gene cluster (except No758), but it shows no influence.
Therefore, the (active) IS elements affect certain SM synthesis
genes (mcy) from the distance, for example, directed by the
presence of short repetitive (RR 1–7, 41–46 bp) sequences
(Chen et al., 2016). Such RR sequences resemble the repetitive
extragenic palindromic DNA sequences (REPs) described from
many bacteria (Tobes and Ramos, 2005). REP sequences can
form stem–loop hybridization during DNA replication, and they
might direct transposases such as ISPlr1 (Tobes and Pareja,
2006). Notably, in contrast to mcy genes containing REPs
(RR2,3,5,6,7, 43–46 bp), other SM synthesis gene clusters located
in the chromosome of Planktothrix did not contain these re-
occurring sequence motifs, indicating a potential protection from
ISPlr1 disruption (Rainer Kurmayer, unpublished data). For the
majority of ISPlr1 copies, a REP sequence is found in the flanking
region of the IS element (< 10 kbp distance, i.e. for 35 copies of
the 40 copies in strains PCC7821, No82, No108, and No758).

Evolution of Secondary Metabolites
Synthesis Gene Cluster Localization in
Chromosome
The colocalization of SM synthesis gene clusters (mvd–apn–
oci) resulting in the meta peptide synthesis gene cluster has

Frontiers in Microbiology | www.frontiersin.org 16 July 2022 | Volume 13 | Article 901762

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-901762 July 23, 2022 Time: 15:59 # 17

Entfellner et al. Peptide Synthesis and IS Elements

been reported from Planktothrix and has been considered as
a genomic island (Rounge et al., 2009; Pancrace et al., 2017).
Genomic islands, including several SM synthesis gene clusters,
have been described from other bacteria, that is actinobacteria
of the genus Salinispora (Penn et al., 2009; Ziemert et al., 2014).
In general, such genomic islands have been considered as a
result of transmittance, that is pathogenicity islands containing
biosynthesis gene clusters for yersiniabactin (Fischbach et al.,
2008), and a high frequency of mobile (IS) elements has
been reported (Penn et al., 2009). In this study, the usual
criteria for the differentiation of genomic islands were not
met, that is neither a high share of mobile elements, nor GC
percentage deviation, or codon usage bias could be found (data
not shown). However, based on this criteria, all of the six
chromosomally encoded SM synthesis gene clusters occurred
already in the ancestor of P. agardhii/P. rubescens, and they
were partly lost during the evolution of Lineage 1 (e.g., MC
or anabaenopeptin). Recently, Pancrace et al. (2017) described
the draft genome of a benthic Planktothrix strain PCC11201,
which contained SM synthesis gene clusters for MC, aeruginosin,
cyanopeptolin, microviridin, and prenylagaramide. In this study,
P. agardhii strains, namely, PCC7805 and No976, represented
genotypes that lost the apn gene cluster previously but kept
apnE as a remnant in the flanking region of the mvd gene
cluster (Entfellner et al., 2017). Similarly, strains such as No2A,
No66, No976, No365, PCC7805, and PCC7811 still contained
remnants of mcyT indicative of the former mcy gene cluster
(Kurmayer et al., 2016). Notably, other genotypes such as NIVA-
CYA126/8 maintained the six SM biosynthesis gene clusters,
which can be considered representative of the ancestor of
Lineages 1 and 2.

Aside from SM synthesis gene clusters, the presence or absence
of chromosomal rearrangement processes led to a localization in
the chromosome that was congruent with phylogeny (Figure 4),
that is three strains of Lineage 2 showed a colocalization of six
SM synthesis gene clusters within 1 Mbp. By contrast, strain
NIVA-CYA126/8 and strain No758 still carried the pag gene
cluster more distant from other SM synthesis gene clusters. At
present, we can only speculate, but in general, the clustering
of genes has been related to coordinate regulation, that is to
activate a specific pathway on demand (Fischbach and Walsh,
2006). In addition, the colocalization of several SM synthesis
pathways might aid in regulation, for example, in P. agardhii,
NRPS and RiPP peptides are coproduced (Welker et al., 2004).
Rohrlack and Utkilen (2007) reported that anabaenopeptin
versus microviridin are produced constitutively despite marked
changes in culture conditions. In general, those peptides are
produced in high intracellular amounts approaching 1% of
dry weight (Jüttner and Lüthi, 2008; Kosol et al., 2009).
Such high concentrations may have intracellular effects, such
as the covalent binding of MC variants to the free cysteine
groups of abundant proteins (phycobilins) through the methyl-
dehydroalanine group in pos. 7 of the MC molecule (Zilliges
et al., 2011). Thus, the colocalization of NRPS and RiPP gene
clusters might facilitate the regulation of individual peptide
synthesis pathways, resulting in a more balanced intracellular
peptide concentration.

CONCLUSION

The microevolution of the bloom-forming cyanobacteria
Planktothrix spp. is related to a considerable variation in
chromosome size. This variation in chromosome size, spanning
almost 2,000 kbp, has been caused by gene duplication of IS
elements or other genes to a minor extent only, while gene
deletion and HGT events contributed more than eighty percent.
A few functional adaptations and poorly characterized proteins
including transposases were acquired by HGT. Six of seven
peptide synthesis gene clusters occurred already in the ancestor
of P. agardhii/P. rubescens, and became partly lost during the
evolution of Lineage 1. Overall, IS elements have been involved
in SM gene cluster loss processes, however, did not occur more
frequently in the vicinity of SM synthesis gene clusters. By
contrast, IS elements have been observed more frequent within
breaking regions causing chromosomal rearrangements, thereby
influencing the colocalization of SM synthesis gene clusters
on the chromosome.
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