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Abstract: Projector-camera systems are currently used in a wide field of applications,
such as 3D reconstruction and augmented reality, and can provide accurate measurements,
depending on the configuration and calibration. Frequently, the calibration task is divided
into two steps: camera calibration followed by projector calibration. The latter still poses
certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D
points to compute the projection matrix between the projector and the world. Existing
methods are either not sufficiently accurate or not flexible. We propose an easy and
automatic method to calibrate such systems that consists in projecting a calibration pattern
and superimposing it automatically on a known printed pattern. The projected pattern is
provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector
displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and
superimposed on the printed one with the aid of visual servoing. Our experimental results
compare favorably with those of other methods considering both usability and accuracy.

Keywords: projector calibration; structured light system; OpenGL modeling;
visual servoing

1. Introduction

3D reconstruction has been in use for more than 30 years and is still an active research topic in
the computer vision community. One of the reasons for the popularity of such systems is the large
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application field they cover, such as manufacturing, security systems, medical systems and games.
Surface reconstruction can be divided into two different categories. The best known example of the
first class, in which we find passive scanners, is stereovision, which consists of two or more cameras
viewing a scene from different angles. A set of frames is acquired, and 3D information can be extracted
by triangulation after resolution of the 2D–3D correspondence problem. The major drawback of this
technique lies in establishing correspondences, in particular, with textureless scenes.

To overcome such difficulties, new techniques called active scanners were developed 20 years ago.
In these techniques, an emitter source is used, such as light, X-ray or ultra-sound. One of the methods
of this class is called time-of-flight (TOF). It uses a laser to emit a pulse of light, and the amount of time
before the reflected light is seen by a detector is timed. The biggest drawback is the time processing.
Another method for active scanners uses structured light. This technique consists in augmenting the
3D scene by the projection of a coded pattern. The pattern is detected in the images, and the 3D
reconstruction can be achieved by triangulation. The coding of the pattern is crucial in retrieving 3D
information with robustness. Salvi et al. [1] classified these coding strategies into three groups of
patterns: time-multiplexing, spatial neighborhood and direct coding. Time-multiplexing and direct
codification are preferentially limited to static scenes, while the spatial neighborhood is focused on
moving scenes. Readers could also refer to Zhang and Li [2], who give an up-to-date review of structured
light techniques.

As reported in many articles, the accuracy of such systems greatly depends on the calibration task.
Calibration consists in computing intrinsic parameters of both the camera and the projector and the 3D
transformation between them. The biggest challenge in camera–projector calibration is the expression
of 2D–3D correspondences for the projector. At present, several different methods exist to accomplish
this task, and they can be separated into two groups. There are methods that first calibrate the camera,
then the projector and deduce the rigid motion matrix between the two devices. One classical method
is to use a printed checkerboard pattern as a projection plane [3–6]. The attached checkerboard is used
to compute the orientation and the position of the plane in the camera frame, after which the ray–plane
intersection is computed to recover the 3D position of each projected corner. With these points, the
intrinsic parameters of the projector and the extrinsic parameters of the system can be deduced using
classical monocular pose computation methods, such as in [7]. The main drawback of this method is
that the error of the projector calibration depends directly on the accuracy of the camera calibration.
Interested readers can also find a calibration toolbox of this method [5,8]. Another possibility, proposed
by Shen and Menq [9], is to mechanically control the projection plane (no attached checkerboard is
needed) to simplify the computation of 3D projected points.

There are other methods that integrate both intrinsic and extrinsic calibrations. Zhang and
Huang [10] proposed a new approach for structured light system calibration by allowing the projector
to acquire images as a camera would do and, thus, calibrate the projector independently of the camera.
The key idea is to rely on a camera especially dedicated to acquiring “projector images”. By establishing
correspondences between the camera and projector pixel (by a phase-shifting method), they transform
the camera frame into a projector frame. Chen et al. [11] used a translating artifact of calibration to
limit the number of views needed and a gray-coded and phase shifting pattern to solve the matching
problem. Drouin et al. [12] proposed a large calibration pattern to take only one view using four
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cameras. They also devised an energy formulation to simplify the process of finding correspondences.
Gao et al. [13] used a calibration board—a paper sheet (attached to a surface plane) with circular
control points. A reference pattern with horizontal red stripes and one green stripe is projected onto
the surface plane by a liquid crystal display (LCD) projector. 2D–3D point pairs for the projector and
camera are obtained from epipolar geometry and the cross product. For most of the above methods,
there are numerous constraints in processing calibration. For instance, with techniques that use a coded
pattern or attached checkerboard, the calibration plane (i.e., the surface of projection) must be physically
unchanged: the authors assume that the scene is completely static during acquisition. Other methods use
special calibration devices, such as a mechanically controlled plane or 3D artifacts.

Some authors have proposed alternative solutions to overcome these constraints. Recently,
Drareni et al. [14] proposed a new calibration method for projectors with an uncalibrated camera.
They got around the problem of determining the world–camera homography by looking for one that
minimizes the reprojection error. They demonstrate that good accuracy can be achieved with fast time
processing without the need for any additional devices. Audet and Okutomi [15] proposed a user-friendly
application for calibration. Their method does not need a static scene, since the board can be manually
placed in front of the system. They use printed fiducial markers (initially developed for augmented
reality) that are completed by similar projected patterns. To align projected markers with printed ones,
they compute a “prewarp” of the projected pattern consisting of an estimated homography.

In this paper, we describe an automatic calibration technique that is easy to implement and does not
require any additional devices and a static scene. The first study dedicated only to intrinsic parameters
estimation of the projector has been published in [16]. We propose here a full and extended version
of the method, which provides all calibration parameters (intrinsic and extrinsic parameters of the
projector). We show that the calibration of the projector can be simply achieved starting from a calibrated
camera [17] and a known pattern. Our idea is based on the assumption that the projector can be
considered an inverted camera. The major innovation is the use of a visual servoing loop to make an
automatic correspondence 2D/3D in the field of ProCam (Projector-Camera )calibration. This impacts
on the usability of our method. A classical pinhole model can therefore be used, and calibration can
be performed as it would be with a camera. Hence, using OpenGL, we model the projector as a virtual
camera that observes a checkerboard pattern (Figure 1).

Here, the projector is viewing like a moving camera, which allows us to make the pattern of translation
and rotation. The projector displays the same intrinsic parameters what the virtual camera sees. Thus,
our method consists in projecting a calibration pattern and superimposing it on a known printed pattern
with the aid of visual servoing (by moving the virtual camera, Figure 2). The same 3D points (i.e., the
world points of the printed pattern) can be used for the camera and the projector, which considerably
simplifies the process of projector calibration. In addition, the visual servoing task is able to minimize
reprojection error on each point. A literature review showed that the accuracy of our method compares
favorably with that of other techniques.

The paper is structured as follows. Section 2 describes the system model and the calibration method,
Section 3 discusses visual servoing control loop, and in Section 4, we compare our method with
existing techniques.
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Figure 1. Setup of the system.
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Figure 2. Overview of the setup: The virtual camera looks at a virtual printed pattern
displayed by the projector.
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2. Projector and Camera Models

In our calibration method, system calibration is separated into two sequenced procedures: camera
calibration and projector calibration. Camera calibration, using Zhang’s method [10], is based on the
reference data composed of the 3D reference points and their 2D camera correspondences. The same
approach is used for the projector, but the difficulty lies in recovering the 3D reference points and their
2D projector correspondences. This challenge is the central feature of our work.

Calibration of a perspective projection system (such as a camera or projector) consists of estimating
the intrinsic and extrinsic parameters and in defining the rigid motion between the two devices.
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2.1. Perspective Projection Model

Let us consider a point, w, with the coordinates, (xwywzw)T , expressed by w̃ in homogeneous
coordinates (Figure 3). Let m̃ = (xcyc1)T be its projection on the image plane. The relationship between
m and w is given by the projection matrix, Hc:

m̃∼Hcw̃∼ Ac[Rc | Tc]w̃ (1)

where ∼ means equality up to scale, Hc is a 3×4 matrix and Rc and Tc describe, respectively, the 3×3
rotation matrix and the 3× 1 translation vector. The location of Oc in the world coordinate system is
given by translation Tc:

Tc =

 tx
ty
tz

 (2)

Figure 3. Projector-camera system modeling. A classical pinhole model is used for both
devices. The two systems are related by the rigid motion matrix, [R,T].
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The rotation between the camera and the world frames is defined by matrix Rc

Rc =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

=

 r1

r2

r3

 (3)

Ac represents the intrinsic parameters of the camera, such as:

Ac =

 αuc γc u0c

0 αvc v0c

0 0 1

 (4)
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with αuc = f .ku, αvc = f .kv and γc = f .ku.cosθ .
The intrinsic parameters are:

• Focal lens f , which gives the distance between the image plane and the optical center, Oc.
• ku and kv, giving the number of pixels per mm along u and v directions.
• (u0c ,v0c) principal points in pixels.
• θ , which describes the non-orthogonality of rows and columns on the image sensor. This factor is

usually negligible and set to zero.

The extrinsic parameters are defined by [Rc | Tc].
The projector is modeled like an inverted camera. Thus, its intrinsic and extrinsic parameters are

similar to those of the camera. Consequently, point p̃ = (xpyp1)T (on the image plane of the projector)
is projected onto the scene in w = (xwywzw)T . Thus, the relationship between p and Hp is given by:

p̃∼Hpw̃∼ Ap[Rp | Tp]w̃ (5)

2.2. Rigid Motion between the Projector and Camera

The 3D transformation (expressed in the camera frame) between the two devices is given by:

R = Rp(Rc)
T (6)

T = Tp +RTc (7)

Thus, the estimation of R and T is based on the extrinsic parameters of the projector and camera.
Recovering these parameters consists in calibrating the camera–projector pair, which is similar to a
stereo-rig system. In stereovision systems comprising two cameras, the calibration procedure can be
described as follows:

• Calibrating each camera: Generally, a checkerboard printed pattern is attached to a plane surface,
and a camera acquires images from different orientations. First, the printed pattern is used to
identify 3D points with their projections in the image plane. By means of a set of acquired
images, 2D–3D correspondences are extracted and used to compute the projection matrix Hc using
singular value decomposition (SVD). Second, the intrinsic and extrinsic parameters of the camera
are extracted from Hc [17].
• Establishing 2D–3D correspondences for the two devices: With the two calibrated cameras,

another set of images is acquired with a printed checkerboard pattern attached to a plane. A set
of image pairs are taken from different poses. The images are “corrected” using the distortion
parameters. The 2D–3D correspondences are then extracted.
• Computing the rigid motion: Since the intrinsic and extrinsic parameters of both devices are

known and with a set of 2D-2D correspondences, the rigid motion can be computed using the
previous relationship (Equation (6)).

Of course, estimating 2D–3D correspondences for the projector is not straightforward. Our method
consists in obtaining the 2D–3D correspondences for the projector with a virtual model of the scene
coupled with a visual servoing control loop. A global overview of our method is given in Figure 4.
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Figure 4. Flowchart summarizing the steps of the full procedure.
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2.3. 2D–3D Correspondences for the Projector

To recover the correspondences, we use a virtual model (modeled under OpenGL) of our scene. In
this virtual world, an “OpenGL camera” takes pictures and sends them to the projector. In other words,
the projector shows what the “OpenGL camera” is looking at. If we then use a chessboard pattern,
a virtual chessboard pattern is set and the “OpenGL camera” films it. The key idea of our method is to
control the “OpenGL Camera” pose by visual servoing, so as to achieve the same rigid motion between
projector/real chessboard and OpenGL camera/virtual chessboard. Thus, we have Hv ∼Hp. The whole
system can be modeled by three frames (Figure 5).

Let us consider a 3D point, u, projected in a virtual work space with the coordinates, (xuyuzu)T ,
expressed by ũ in homogeneous coordinates (Figure 5). Let ṽ = (xvyv1)T be the projected point by the
virtual camera in the virtual world, such as:

ṽ∼Hvũ∼ Av[Rv | Tv]ũ (8)

where Hv is the 3×4 projection matrix of the OpenGL camera. This is the projection transformation to
render the 3D scene (in OpenGL) onto the computer screen as a 2D image. However, the rendering is
directly sent to the projector, and so, we have to take into consideration transformation K between the
image plane of the OpenGL camera and the projector image plane (via the graphic adapter):

p̃ = Kṽ (9)
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Figure 5. System model: The model consists of three frames representing each device. Fc is
the “real” camera frame. This is the camera of the stereo rig-like system. Fp is the projector
frame, and Fv is the “Virtual” camera or OpenGL camera. The sole transformation between
Fp and Fv is their image planes. In other terms, the image plane of Fv is mapped on the
image plane of Fp via the graphic adapter.
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In this equation, K = Ap.Av
−1, where Ap is the projector intrinsic parameter matrix and Av is the

OpenGL camera intrinsic parameter matrix. However, K also represents the transformation between the
two image spaces. In our case, the OpenGL camera resolution is the same as the projector resolution.
Consequently, we can verify that a pixel in the OpenGL camera image plane is the same in the projector
image plane and K = I3. Thus, Equation (9) can be rewritten as:

p̃ = ṽ (10)

and:
Hpw̃∼Hvũ (11)

From this equation, it is clear that if the vectors, ũ and w̃, are equal and known, then Hp can be
deduced from Hv. ũ can easily be extracted from the OpenGL environment, but w̃ is on the projected
pattern. In order to obtain w̃, the idea is to superimpose the projected pattern (in red in Figure 5) on a
known printed pattern (in black in Figure 5). The fitting of the two patterns is performed by moving the
OpenGL camera. The OpenGL is controlled by a visual servoing loop.

The following section describes the fundamentals of visual servoing and breaks down our approach
into different steps.
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3. Visual Servoing Task

3.1. Background

In the classical visual servoing approach [18], a camera is mounted on a robot end effector. A visual
feedback loop is then closed via the image to control the robot’s degree of freedom.

Figure 6. Classical visual servoing scheme.
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The aim of classical visual servoing is essentially to minimize error e(t) between a vector of n image
sensor features s(t) seen at the current state and their desired value s∗ extracted from the current image
(Figure 6). This can be expressed as the regulation of function e(t) called task function and defined as:

e(t) = s(t)− s∗ (12)

A significant difficulty in minimizing the previous equation is to derive the relation ṡ(t) = ds(t)
dt , which

links the movement of features in the image to the velocity twist of the camera ΘΘΘc. This relation is
defined as:

ṡ(t) = LΘΘΘc (13)

where L is called the image Jacobian, which represents the mapping from the variation of the camera
pose to the variation of a feature in the image.

To minimize error e(t), an iterative minimization procedure is used. An exponentially decoupled
decrease in the error is defined, so that:

de(t)
dt

=−λe(t) (14)

where λ is the gain controlling the rate of the decrease of the error. Combining the two previous
equations, the velocity twist ΘΘΘc is obtained, such as:

ΘΘΘc =−λLT+e (15)

The details of this matrix computation are well documented and are given in [18].

3.2. Visual Servoing Applied to Calibration

In our method, the visual servoing task is to fit the printed pattern and the projected pattern.
Consequently, the desired value s∗ is the coordinates of points extracted in the printed pattern and
the current value s(t) is the coordinates of points extracted in the projected pattern. For example, if
a chessboard is used, points correspond to corners extracted on the projected pattern.
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There is no robot end-effector to control only the OpenGL camera. Moreover, and unlike a classical
visual servoing, the OpenGL camera is controlled, but cannot measure the image error e(t). In contrast,
the “real camera” is used to measure e(t), but is not controlled (Figure 7). Hence, we need to consider the
rigid motion between the OpenGL camera (therefore, the projector) and the real camera [R, t] (Figure 5).
Thus, the image Jacobian must take the rigid motion into account with a new image Jacobian Le:

Le = L

[
R [t]×R
03 R

]
(16)

where [t]× is the skew symmetric matrix associated with the translation vector t. The image Jacobian
LeT+ is then used in the control law (Equation (15)).

Figure 7. Calibration based on visual servoing.
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ΘΘΘc =−λLeT+e (17)

It has been shown that if we consider only a translation between the projector and the real camera,
Equation (16) can be rewritten as:

Le = L

[
I [t]

03 I

]
(18)

Consequently, the convergence LL+
e > 0 is immediately verified. Of course, [R, t] is unknown, but we

have only to ensure that there is no rotation between the camera and projector. In practice, the visual
servoing loop is very robust, and it is sufficient to place the camera roughly parallel to the projector.
At each iteration, the displacement is computed until the projected pattern fits the printed one.

These steps,which consists in changing the position of the checkerboard, must be repeated (at least
10 times) to obtain different point of views. Finally, we obtain a set of 2D–3D points required to perform
the calibration. Matrix Hp is computed by SVD. Equation (5) can also be written as:

xp =
Hp(11)x

w +Hp(12)y
w +Hp(13)z

w +Hp(14)

Hp(31)x
w +Hp(32)y

w +Hp(33)z
w +Hp(34)

(19)

yp =
Hp(21)x

w +Hp(22)y
w +Hp(23)z

w +Hp(24)

Hp(31)x
w +Hp(32)y

w +Hp(33)z
w +Hp(34)

(20)

From Equations (19) and (20), we can write the following linear system (with n image to scene point
correspondences):

FHp = 0 (21)
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with:

F =



xw
1 yw

1 zw
1 1 0 0 0 0 −xv

1xw
1 −xv

1yw
1 −xv

1zw
1 −xv

1
0 0 0 0 xw

1 yw
1 zw

1 1 −yv
1xw

1 −yv
1yw

1 −yv
1zw

1 −yv
1

xw
2 yw

2 zw
2 1 0 0 0 0 −xv

2xw
2 −xv

2yw
2 −xv

2zw
2 −xv

2
0 0 0 0 xw

2 yw
2 zw

2 1 −yv
2xw

2 −yv
2yw

2 −yv
2zw

2 −yv
2

...
...

...
...

...
...

...
...

...
...

...
...

xw
n yw

n zw
n 1 0 0 0 0 −xv

nxw
n −xv

nyw
n −xv

nzw
n −xv

n

0 0 0 0 xw
n yw

n zw
n 1 −yv

nxw
n −yv

nyw
n −yv

nzw
n −yv

n


(22)

and

Hp =

 HT
p1

HT
p2

HT
p3

 (23)

where HT
pi

is the ith row of Hp. Thus, hp can be found by computing the SVD of F. Let F be UDVT .
Hence, the last column of V, which corresponds to the smallest singular value of F, is the solution
of Equation (21). Once Hp is known, matrix Ap is found by QR factorization (decomposition of a
matrix A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R). Indeed,
Hp = Ap[Rp | Tp], where Ap is an upper triangular matrix (3× 3), including the intrinsic parameters,
and [Rp | Tp] are the extrinsic parameters.

If we rewrite Hp as:

Hp =

 HT
p11

HT
p12

HT
p13

HT
p14

HT
p21

HT
p22

HT
p23

HT
p24

HT
p31

HT
p32

HT
p33

HT
p34

= [M | Hp4] (24)

QR factorization applied to M−1 gives M−1 = Q.U; then M = U−1.Q−1. Q is an orthogonal matrix;
then Q−1 can be identified to Rp. In addition, the inverse of an invertible upper triangular matrix is upper
triangular, and so, U−1 can be interpreted as Ap. Indeed, U−1 is written as:

U−1 =

 u11 u12 u13

0 u22 u23

0 0 u33

 (25)

and Ap is like Equation (4). In normalizing by u33, we obtain:

Ap = U−1 =

 u11/u33 u12/u33 u13/u33

0 u22/u33 u23/u33

0 0 1

 (26)

4. Experiments

We assessed our proposed calibration method with a MARLIN F080C camera, which uses the IEEE
1394 protocol (FireWire protocol). Its maximum resolution is 1,024× 768 pixels. The camera is
mounted on a metrology positioning system that allows it to be translated with micrometer accuracy. It
consists of a linear and rotating stage from Newport c©, controlled by a universal motion driver (Figure 8).



Sensors 2013, 13 13329

The projector is an Optoma VPL-CX75. Its maximum resolution is 1,600×1,200 pixels. All software
is written in C++ and developed with OpenCV, which provides dedicated tools. The visual servoing task
and the creation of the projected pattern are developed in C++ with the OpenGL library (Figure 9). The
camera image acquisition is also coded in C++, and the whole system is run on Linux Kubuntu c©.

Figure 8. System configuration.

Metrology
positioning
system

Figure 9. Fitting process example. Top: projected view by the virtual camera; bottom:
virtual workspace.

4.1. Procedure

We will compare our method with the two other most commonly used techniques, that of Audet and
Okutomi [15], and the plane-based methods [3–6]. The latter also use a checkerboard. Our method is
organized as follows:

1. Set up the position of the projector and camera.
2. Calibrate using the three different methods.
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3. Translate the camera (10 cm) with the calibration bench.
4. Recalibrate the system with each method.
5. Measure the translation error with the rigid motion matrix.

The first step is considered crucial. Many calibration methods for camera–projector systems need a
special set-up. For instance, the camera must be carefully set and placed, since it can acquire frames
containing the projected and printed patterns for the plane-based method. Thus, it must have a large field
of view or be correctly placed to acquire all the frames needed. In another approach [15], the camera
and projector must be properly positioned, otherwise calibration cannot be performed. In methods using
structured light patterns for establishing correspondences, the set-up is less important than with other
methods, but the camera still needs to be focused on the printed pattern for accuracy. In our method,
no special set-up is required; the field of view can be wider than the scene projection without accuracy
being greatly affected. In view of these limitations, it is not possible to have a single location for each
calibration method. With each technique, it takes time to properly set up all the devices so that the
performance of each algorithm is maximized. The translation error is measured along the x-axis, such as:

Error = Tx−Tx+10cm (27)

Four parameters were used to assess each method: intrinsic parameter characterization, translation error,
numbers of frames needed and ease of use.

4.2. Results

A typical example of the visual servoing process implemented in our method is given in Figure 8. We
can observe in this image the starting position of the projected pattern and, then, the result when it is
totally fitted on the printed one. Calibration is performed by repeating this process at least 10 times with
different orientations of the printed pattern. The results of each method assessed are given in Table 1.

Table 1. Calibration results.

Method Tested Audet et al.[15] Plane-Based Our Method

Focal length 1,956 1,984 1,948
Reprojection error (projector) 0.25 1.18 0.38

Translation error 0.25 mm 8.9 mm 0.47 mm
Number of frames 10 20 10

Useability ++ + +++

In terms of accuracy, our method falls in between the two already existing methods. The translation
error was 0.47 mm, which is good when dealing with structured lighting applications, for instance.
We used the same number of images as Audet and Okutomi. Of course, the addition of more images
increases accuracy. The best result we obtained was 0.3 mm with 17 images. Our method was the
easiest to use, since it does not impose any constraints on the position of the devices. In addition,
we used no additional material, and the calibration pattern was a classical checkerboard. The method of
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Audet and Okutomi [15] was the most accurate of the three in calibrating the projector-camera system.
The translation error was very low, as was the reprojection error. However, as indicated by the authors
themselves, their method has one major drawback: the calibration board must be placed at angles of
approximately 45◦ in relation to the image planes of the projector and the camera to maximize accuracy.
Thus, the user must have experience in calibration tasks to perform the method satisfactorily. The
plane-based method was the least accurate of the three tested. It is also the least user-friendly, because it
takes a long time to process all the images. Finally, a quick comparison with the results obtained by the
authors cited in the introduction shows that our method is not badly placed in terms of reprojection error
for the projector (see Table 1). Figure 10 shows the distribution of our reprojection error.

Figure 10. Reprojection error: Difference in pixel coordinates between the position of grid
corners observed in the image and that predicted by the computed calibration parameters.
Each color corresponds with the position of a checkerboard. In this figure, only six positions
have been considered for the purpose of clarity.
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5. Conclusions

We present a new calibration method for projector-camera systems based on visual servoing.
This technique simplifies the process, since the same 3D points are used for both camera and projector
calibration. The method is simple and requires no special hardware or calibration artifacts. The
experimental results show that the accuracy of the method is comparable to that of existing techniques.
In the future, we would like to develop an adaptive gain for the visual servoing task to improve time
processing at the end of the fitting process. Another feature we would like to investigate is the effect
of the initial pose of the projected pattern. At present, this position must be set manually, and so, if the
projected pattern is far from the printed pattern, the process will take longer.
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