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Abstract

The amplitude and latency of single-trial EEG/MEG signals may provide valuable information concerning human brain
functioning. In this article we propose a new method to reliably estimate single-trial amplitude and latency of EEG/MEG
signals. The advantages of the method are fourfold. First, no a-priori specified template function is required. Second, the
method allows for multiple signals that may vary independently in amplitude and/or latency. Third, the method is less
sensitive to noise as it models data with a parsimonious set of basis functions. Finally, the method is very fast since it is
based on an iterative linear least squares algorithm. A simulation study shows that the method yields reliable estimates
under different levels of latency variation and signal-to-noise ratioÕs. Furthermore, it shows that the existence of multiple
signals can be correctly determined. An application to empirical data from a choice reaction time study indicates that the
method describes these data accurately.
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Introduction

Single-trial amplitude and latency of EEG/MEG signals may

contain valuable information concerning human brain function-

ing. Amplitude and latency of signals may change during the

course of an experiment, for example due to learning or

habituation. In addition, particular groups of subjects may be

characterized by increased amplitude or latency variation. For

example, increased latency variation may be associated with

ADHD [1], ageing [2,3], and low intelligence scores [4].

Studying inter-trial differences requires that estimates of single-

trial amplitude and latency are accurate and reliable. This may be

a daunting task given the complexity of EEG/MEG data: single-

trial EEG/MEG data have a low signal-to-noise ratio (SNR, [2]),

and are usually composed of signals from multiple brain processes

[5].

Several methods have been proposed to derive single-trial

amplitudes and latencies. These methods differ in several ways.

First, some methods require an a-priori template function, whereas

other methods do not. That is, some methods require that the

shape of the signal of interest is defined before analysis (for

example, [6,7]). Second, some methods only allow for either

amplitude or latency variation (for example, [8]), whereas other

incorporate both types of variation (for example, [9]). Third, some

methods assume that the data consist of one underlying signal (for

example, [8,9]) whereas others allow multiple signals each with

their own amplitude and latency variation (for example, [7]). The

latter is certainly an advantage since it might very well be the case

that some early signals do not show marked inter-trial variability

whereas some later signals do show variability. Fourth, some

methods are susceptible to noise (cf. [10]), whereas in others this

susceptibility is reduced by incorporating basis functions. The

purpose of the present paper is to combine the strengths of all

these methods into one framework, Single-trial Waveform,

Amplitude and Latency Estimation (SWALE). First however, we

review existing methods in more detail.

A common, and simple, approach to obtain single-trial

estimates is peak-picking. Peak-picking entails smoothing of

single-trial data with a low-pass filter and searching for the signal

maximum within a specified time window to determine amplitude

and latency in each trial [11]. Advantages are that no template has

to be defined, and that both amplitude and latency can be

estimated. However, it is not possible to test whether multiple

signals are present. Furthermore the method is very susceptible to

noise [10].

A different approach is to explicitly model the signal in each

single-trial. Pham et al. [8] assume that an EEG/MEG trial can be

modeled by a waveform with trial specific latency. Parameters of

the waveform and trial specific latencies are estimated in the

frequency domain. This method was extended by Jaskowski et al.

[9] to also allow estimation of trial specific amplitudes. Major

advantages are that no template is required, since the waveform is

estimated, and that the method incorporates both trial varying

amplitudes and latencies. Disadvantages are that the method does

not allow for multiple signals and that the method does not

perform optimally in low SNR conditions [10].
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A different modeling approach is based on a technique that is

also used in the analysis of fMRI data. In fMRI analysis the

haemodynamic response (i.e. the response of the brain to

a stimulus) is often modeled by a waveform plus its first order

derivative (see Figure 1) to allow for differences in latency [12].

Mayhew et al. [7] used this method to estimate single-trial EEG

amplitude and latency in a multiple linear regression framework.

By regressing the data to a-priori specified template functions and

their derivatives, estimates of single-trial amplitude and latency are

obtained. The method has the advantage that it can be used to

estimate single-trial amplitude and latency of multiple signals.

However, it requires that a template is specified for each signal.

Mayhew et al. [7] use the averaged data as a template, however

this template might be biased in the presence of large latency

variation [6,13]. Another disadvantage is that the template

requires as many parameters as there are timepoints, and therefore

is very susceptible to noise.

In order to arrive at reliable estimates of single-trial amplitudes

and latencies, we combine the aforementioned methods into the

SWALE framework. More specifically, we extend the approach of

Mayhew et al. [7] such that no a-priori template is required and

such that noise sensitivity is diminished. Instead of a template we

estimate waveforms from the data (cf. [9]) and model these

waveforms with a parsimonious set of basis functions that reduces

noise sensitivity. The framework can be extended to model data

with multiple waveforms and it can explicitly test for the necessary

number of waveforms. Furthermore, estimation of parameters is

embedded in an iteratively least squares framework [14] and is

therefore very fast. The SWALE framework is available as open

source software and can be downloaded from the corresponding

author’s website http://home.medewerker.uva.nl/w.d.weeda1/.

In the following we first explain the method in more detail: we

formulate the model, outline parameter estimation, and indicate

how the optimal number of basis functions and the optimal

number of waveforms can be obtained by means of statistical

model selection. Second, we report a simulation study on the

characteristics of the method. Third, we illustrate the method with

an analysis of empirical data obtained in a choice reaction time

(CRT) experiment. Finally, we discuss advantages and limitations

and provide some extensions.

Methods

The rationale of the SWALE framework is to model single

EEG/MEG trials by the sum of (i) an overall waveform plus (ii) its

respective derivative scaled by a parameter that depends on trial

specific latency. Both parameters are scaled by a trial specific

amplitude parameter (Figure 2). This model is easily extended to

allow each trial to be described by multiple waveforms (each

representing an underlying signal). We will first treat the single

waveform case and then extend it to multiple waveforms.

Model
The EEG/MEG data are in the (M|T) matrix Y consisting of

m~1,:::,M trials of length T . Each single-trial ym can now be

modeled as a waveform plus its derivative:

ym~am½(Qf)zlm(Df)�z�em ð1Þ

In Eq. 1 Q is a (T|P) matrix containing the P basis functions,

D is a (T|P) matrix containing the first-order derivatives of the

basis functions, and f is a (P|1) vector containing the P
coefficients of the waveform. am is the trial specific amplitude

parameter and lm is the trial specific latency parameter. em is the

noise term distributed as N(0,se):
In order to model all trials at once we rewrite Eq. 1. We first

move f outside the brackets and replace amlm with bm. The model

then becomes:

ym~½amQzamlmD�fzem u ym~½amQzbmD�fzem ð2Þ

Then, by using the vec operator (stacking the columns of

a matrix), the model for all M trials can be rewritten as:

vec(Y)~½Q6azD6b�fze ð3Þ

vec(Y) contains the stacked data Y. a is an (M|1) vector

containing the single-trial amplitude parameters, b is an (M|1)
vector containing the single-trial latency parameters. 6 denotes

the Kronecker Product.

In this model the type and number of (orthogonal) basis

functions must be set a priori (matrix Q). Note that a sufficient

number of basis functions can be determined via model selection

(see Model selection). In general any set of flexible basis functions

can be used to model the waveform. In the current implementa-

tion we use a set of orthogonal polynomial basis functions since

they are flexible enough to describe the waveforms. Also,

polynomial basis functions are easy to compute and their

derivatives can be obtained analytically. By default the number

of basis functions is set to 20.

Parameter Estimation
The SWALE model thus estimates both the waveform and trial

specific amplitude and latency parameters from the data.

Parameter estimation is split in two parts that are applied

iteratively until convergence: estimation of the waveform (f) and
estimation of single-trial amplitude (a) and latency (b) parameters.

Figure 1. Modeling latency using waveform and its first-order
derivative.
doi:10.1371/journal.pone.0038292.g001

SWALE: Waveform, Amplitude and Latency Estimation
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Each part has a linear solution and thus can be solved easily. For

the estimation of the waveform the least squares estimator is:

f̂f~( Q6azD6bð Þ Q6azD6bð Þ){1

: Q6azD6bð Þ:vec(Y)
ð4Þ

For estimation of single-trial amplitude and latency the least

squares estimator is given by:

vec(âa b̂b)~(½I6(Qf̂f) I6(Df̂f)�’½I6(Qf̂f) I6(Df̂f)�){1

:½I6(Qf̂f) I6(Df̂f)�’:vec(Y)
ð5Þ

where I is the (M|M) identity matrix.

The estimation procedure thus consists of two parts that can be

solved linearly. Applying these two parts iteratively leads to

convergence of the overall solution (cf. [14]). The detailed

procedure is as follows (see Figure 3): First, the grand average of

the data is used as starting waveform for the iteration procedure.

For this waveform the amplitude and latency parameters are

estimated using Eq. 5. This set of amplitude and latency

parameters is thereafter used to re-estimate the waveform using

Eq. 4. This waveform will be slightly different from the starting

waveform (but closer to the actual waveform). Subsequently, the

amplitude and latency parameters for this updated waveform are

estimated using Eq. 5. These steps (calculating amplitude/latency

parameters and the waveform) are repeated until the decrease in

Residual Sums-of-Squares (RSS) is negligible. Note that the

starting waveform does not need to have any relation with the

estimated waveform.

Estimating Single-trial Amplitude and Latency
After convergence of the estimation procedure single-trial

estimates for a specific peak of interest can be obtained. In order

to do so one must first identify the peak of interest in the average

model (by specifying a range). For example, in Figure 4 (left panel)

the positive deflection at 300 ms is selected as the peak of interest.

To obtain amplitude and latency estimates for this peak, at each

modeled single-trial (Eq. 3) the maximum/minimum deflection

within the range is identified (Figure 4, right panel, red point). The

time-point of this maximum/minimum is the latency of the single-

trial, the value at this latency is taken as the amplitude of the

single-trial. This procedure can also be followed for models with

multiple waveforms (see Multiple signals). The estimation is then

performed for each waveform separately.

Multiple Signals
In the method explained above, it is assumed that each EEG/

MEG trial can be modeled by one waveform. This implies that, at

each trial, the entire waveform is affected by one latency and

amplitude parameter. This may not be a plausible model from

a physiological point of view, since each signal may be

characterized by signal specific amplitude and latency parameters.

Therefore, the method should be extended to model multiple

underlying signals, each with a separate waveform. SWALE uses

a model selection approach to determine whether the signal can

best be modeled by one or multiple waveforms.

Selecting multiple waveforms. For the selection of multiple

waveforms a time-range of interest must be specified. This may be

data-driven of theory-driven. Once peaks within this range are

specified, we proceed in the following manner. First, a model with

one waveform is fitted (see Parameter estimation). The estimated

waveform from this analysis is then split into two waveforms

(Figure 5, left panel, red points). The waveform is split at each time-

point between two peaks within the range of interest. For each split

the amplitude and latency parameters are estimated using Eq. 5 and

themodel fit is calculated. Figure 5 (right panel) shows an example of

a waveform split. In this example thewaveform is split into two parts,

rendering twowaveforms for which amplitude and latency estimates

Figure 2. Effect of amplitude and latency parameters on the
single-trial model. Solid black lines indicate the single-trial model.
Dashed lines indicate the average model. Light grey lines indicate the
data.
doi:10.1371/journal.pone.0038292.g002

SWALE: Waveform, Amplitude and Latency Estimation

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e38292



are calculated. From all the calculated splits between two peaks we

choose the split that has the best fit.

Model Selection
It is necessary to decide howmanybasis functions best describe the

waveform and to decide if multiple waveforms are required to

describe the data. Increasing the number of basis functions, or

increasing thenumberofwaveforms, leads to increasedmodel fit, but

also to increased model complexity. A sparse model with good fit is

preferred. When comparing models it is therefore necessary to take

into account bothmodel fit andmodel complexity (i.e. the number of

parameters in the model). A good method to accomplish this is by

using the AIC [15]. The AIC is calculated as follows:

AIC~2kzn½ln (2pRSS=n)z1� ð6Þ

In Eq. 6, k denotes the number of parameters (in this case

k~2MzP) and n denotes the number of data points (in this case

n~MT ). The model with the smallest AIC value is taken as the

best model.

Figure 3. Parameter estimation procedure.
doi:10.1371/journal.pone.0038292.g003

Figure 4. Single-trial detection. First a peak of interest must be identified in the averaged model by specifying a range (left panel, red line).
Second, this range is used to estimate maxima/minima at each single-trial (right panel, red point).
doi:10.1371/journal.pone.0038292.g004

SWALE: Waveform, Amplitude and Latency Estimation
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We can now determine the optimal number of basis functions

and the optimal number of waveforms to describe the data. The

optimal number of basis functions can be determined by analyzing

the data using different numbers of basis functions at each run. To

decide how many waveforms best describe the data, models with

splits at different points, and differing numbers of splits can be

compared with the AIC, using the procedure explained in the

previous section.

Simulations
To assess bias in parameter estimates and the model selection

procedure we performed simulations using synthetic data. We

Figure 5. Procedure for splitting the waveform in multiple parts. Left panel shows the average model for one waveform. This average
waveform is split into two parts using all time-points (left panel, red points) between consecutive peaks. The split that leads to the best fitting model
is taken as the optimal model (right panel).
doi:10.1371/journal.pone.0038292.g005

Figure 6. Rasterplots of actual signal using different amounts of latency variation of the signal. X-axis indicates time, y-axis indicates trial
number, colors indicate signal amplitude.
doi:10.1371/journal.pone.0038292.g006

SWALE: Waveform, Amplitude and Latency Estimation
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Figure 7. Rasterplots of actual signal, noisy signals and estimated models under different levels of SNR. X-axis indicates time, y-axis
indicates trial number, colors indicate signal amplitude.
doi:10.1371/journal.pone.0038292.g007

SWALE: Waveform, Amplitude and Latency Estimation
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simulated 100 datasets each consisting of 40 trials with 350
samples (684ms). At each trial we simulated two signals, one with

a peak at 293 ms and one with a peak at 391 ms. Each peak varied

over trials in amplitude (lognormal distributed with mean 1 and sd

1:2, restricted between :5 and 2), and latency (normally distributed

with mean 0 and sd 7, 20, 45, or 72 ms). Values of the distribution

of amplitude and latency parameters were derived from [9,10].

Figure 6 shows the signal using different amounts of latency

variation. We simulated two conditions. In the ‘fixed’ condition

the amplitude and latency parameters were the same for both

peaks, that is, within a trial the peaks were shifted and scaled by

the same amount. In the ‘free’ condition both amplitude and

latency parameters varied independently between peaks, that is,

within a trial each peak was shifted and scaled by different values,

thus simulating two separate signals. Assuming total independence

between amplitudes and latencies of different signals is physiolog-

ically not very plausible. For simulation purposes however it

reflects a ‘worst case scenario’ as peaks might cancel each other

out or have reversed polarity. All simulations were performed

using 20 basis functions for the estimated waveform under three

signal-to-noise (SNR) conditions (SNR = :5, 1, and 2), using

correlated noise. Noise was simulated using an AR(5) process with

coefficients estimated from baseline trials of the empirical data (see

Empirical application). The SNR values are commonly found in

EEG/MEG studies [2,16]. Figure 7 shows an example of the

signal, noisy data and estimated model under different SNR

values. For the simulations assessing bias, the peak of interest was

selected to be the positive peak at 293ms in the ‘fixed’ condition

(range 273 to 312ms).

Empirical Application
To illustrate performance we applied the SWALE method to

single-trial EEG data from a choice reaction time (CRT) study.

We analyzed the (pre-processed, artifact removed, detrended)

stimulus-locked correct trials at the Pz electrode from a single

subject. The dataset consisted of 165 trials of 684ms (350 samples

at 512Hz). Performance was assessed in three ways. First, the

solution of the SWALE method was checked to see if it correctly

modeled the data. Second, the method was compared to standard

peak-picking. Third, a functional test of the method was

performed to see whether the SWALE method was able to

delineate different processes assumed to underlie performance in

CRT studies.

Choice reaction time studies usually elicit a late positive

component termed the P300. In choice reaction time studies the

elicited P300 is also known as the P3b. This to make a distinction

with the P3a which is elicited when viewing novel stimuli in, for

example, an oddball paradigm. We will use the term P300 to

Figure 8. Simulated data showing effect of late P-CR latency on P300 latency. Dashed line indicated the early P-SR, dotted line indicated
late P-CR. Solid line indicates the combined waveform of early P-SR plus late P-CR, that is, the P300. Vertical red line and number indicates the latency
of the combined waveform (P300).
doi:10.1371/journal.pone.0038292.g008

SWALE: Waveform, Amplitude and Latency Estimation
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Figure 9. Real versus estimated amplitude estimates for different amounts of SNR and latency variation. X-axis indicates real
amplitude, y-axis indicates estimated amplitude.
doi:10.1371/journal.pone.0038292.g009

SWALE: Waveform, Amplitude and Latency Estimation
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Figure 10. Real versus estimated latency estimates for different amounts of SNR and latency variation. X-axis indicates real latency, y-
axis indicates estimated latency.
doi:10.1371/journal.pone.0038292.g010

SWALE: Waveform, Amplitude and Latency Estimation
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indicate the P3b. The P300 component peaks at around 300ms

after stimulus presentation, is often found to be correlated with

reaction time [17] and is usually linked to stimulus evaluation

processes. There is evidence that the P300 consists of two

components, one reflecting stimulus evaluation (early P-SR) and

one reflecting response selection (late P-CR) [18,19]. The early P-

SR peaks earlier in time than the late P-CR and is unrelated to

choice RT (it peaks at approximately the same time in every trial),

the late P-CR peaks later and its latency is related to choice RT

(that is, RT depends on the latency of this peak). In easy choice

RT tasks the early P-SR and late P-CR overlap in time. With

increasing difficulty the late P-CR will peak later than the early P-

SR, thereby prolonging the latency of the P300 peak. Although

these differences were mainly shown by manipulating task

complexity [18], the effect is also shown within single tasks [17]

by contrasting the waveforms of fast and slow reaction times.

Figure 8 (adapted from [19], Fig. 5, p. 151) shows synthetic data

reflecting these processes.

The upper panels show the effect of increasing delay of the P-

CR on the latency of the P300 when responses within a task are

relatively fast (that is, when the P-CR appears early). In this case

both early P-SR and late P-CR overlap and, as can be seen from

the latency of the P300 (Fig. 8, upper panels, red numbers),

increases in late P-CR latency lead to approximately the same

increase in P300 latency. The bottom panels of Figure 8 show the

effect of increasing latency of the P-CR on P300 when the P-CR is

slow. As can be seen, the resulting P300 is lower in amplitude and

wider, and the latency of the P300 (Fig. 8, lower panels, red

numbers) does not increase constantly with late P-CR latency (it

even decreases when late P-CR latency is very long). The SWALE

model should be able to detect these different processes, and

SWALE derived amplitude and latency estimates of slow and fast

trials should be consistent with this view. In other words (i) model

selection should indicate a model with multiple waveforms, (ii) RT

should correlate with P300 latency in fast trials, but not in slow

trials, and (iii) RT should correlate with P300 amplitude in the

slow trials but not in fast trials.

Methods. The SWALE method was applied using default

settings (20 basis functions). To assess multiple signals, the model

with one waveform was compared to a model consisting of two

waveforms, modeling a positive (P300) peak, and a peak preceding

or following the positive (P300) peak. To further assess the

performance of the SWALE method we compared SWALE with

standard peak-picking. For the peak-picking method we smoothed

the data with a Gaussian smoothing kernel where the width was

varied form 2 to 156ms. We selected, for each trial, the maximum

value within a window (between 312 and 351ms). For the

functional application amplitude and latency estimates of each

waveform were correlated with RT of the fastest responses (RTs

within the first quartile, v25%) and slowest responses (RTs within

the fourth quartile, w75%) separately.

Results

Simulations
Figures 9 and 10 show scatterplots of amplitude and latency

estimates versus real amplitude and latency values for four levels of

latency variation and four SNR levels. Amplitude estimates

Figure 11. Relation of estimated waveform with increased latency variation.
doi:10.1371/journal.pone.0038292.g011

SWALE: Waveform, Amplitude and Latency Estimation
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Figure 12. AIC model selection. X-axis indicates amount of latency variation. Y-axis indicates proportion correct model selections (in the ‘fixed’
condition a model with one waveform should be selected, in the ‘free’ condition a model with two waveforms should be selected).
doi:10.1371/journal.pone.0038292.g012

SWALE: Waveform, Amplitude and Latency Estimation
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improve with increasing SNR. Latency variation has a less

pronounced effect on amplitude estimates, except in the lower

SNR condition. In this condition, low latency variation gives rise

to inaccurate amplitude estimates. For the latency parameters the

pattern is qualitatively the same. Overall, the method thus

estimates amplitude and latency parameters accurately. Only if

SNR is low and latency variation is low, estimates are unreliable.

Waveform estimation. The SWALE procedure also esti-

mates the waveform from the data. Note that if the waveform is

estimated from the averaged data, this waveform will be affected

by the amount of latency variation. SWALE however should

produce estimates that are independent of latency variation. To

check this, we compared the true waveform to the waveform

estimated from the averaged data and the waveform estimated by

SWALE, under different levels of latency variation (cf. Figure 11).

As can be seen, the SWALE waveform is closer to the actual (true)

waveform than is the waveform based on the averaged data. With

Figure 13. ERP plots of the single-trial data (left) and model (right). Trials are ordered by estimated latency of the first peak. Bottom panels
show the averaged ERPs. X-axis indicates time, y-axis indicates trial number.
doi:10.1371/journal.pone.0038292.g013

Figure 14. Waveforms for the optimal model (P300-I and P300-
II) with the specified range used to select the peaks.
doi:10.1371/journal.pone.0038292.g014

Figure 15. Correlation of estimated latency and RT for Peak-
picking (black line) using different filter widths (x-axis) versus
SWALE (red line).
doi:10.1371/journal.pone.0038292.g015

SWALE: Waveform, Amplitude and Latency Estimation
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increased latency variation, the averaged waveform is wider in

shape, while the SWALE waveform is relatively unaffected.

Model selection. Figure 12 shows the proportion correct

model selections in the ‘fixed’ and ‘free’ condition for four levels of

latency variation and three SNR levels (top panels). In the ‘free’

condition the correct model (two waveforms) was selected in

almost all of the datasets and performance was relatively

unaffected by SNR. In the ‘fixed’ condition the correct model

was selected much less often, the procedure indicated too often

that two (instead of one) waveforms were required. This pattern of

results can have two underlying causes. First, performance of the

AIC might be degraded due to the incorrect model (i.e. the model

to estimate the waveform is not the model used to simulate the

data). Second, the AIC might be affected by correlated noise. To

test these assumptions we simulated data with the correct model

(i.e. the SWALE model (Eq. 1) was used to simulate the data)

under conditions of uncorrelated (white) and correlated noise.

Figure 12 (middle and lower panels) shows the results from these

simulations. Results from the correct model with white noise

(middle plots) indicate optimal performance. In the ‘fixed’

condition (middle plot, right panel), it can be seen that model

selection is perfect for all levels of latency variation and SNR. For

the ‘free’ condition (middle plot, left panel) model selection is

accurate with higher levels of latency variation and is better under

higher SNRs. This is expected as models with hardly any latency

variation can be modeled accurately with a model with one

waveform. The effect of correlated (AR(5)) noise on the AIC can

be clearly seen when comparing the middle plots with the bottom

plots. Accuracy drops for the fixed condition, and increases for the

free condition, indicating that correlated noise makes the AIC

prefer the more complex model.

Empirical Application
Model fit and model selection. Model selection indicated

that a model with two waveforms (with the peak following the

positive P300 peak) provides the best description of the data.

Figure 13 shows ERP plots of the single-trial data (left) and model

(right). Trials are ordered by estimated latency of the first peak, the

bottom panels show the averaged ERPs. As can be seen in

Figure 13 the model describes the single-trial data very well.

Figure 16. Correlations with RT, amplitude and latency for fast and slow trials.
doi:10.1371/journal.pone.0038292.g016

SWALE: Waveform, Amplitude and Latency Estimation
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Figure 14 shows both waveforms for the optimal model. As can be

seen, the first peak corresponds to the P300 complex (containing

both early P-SR and late P-CR), while the second peak

corresponds to the part of the late P-CR not overlapping with

the early P-SR. We will term these waveforms the P300-I and

P300-II respectively.
Comparison with peak-picking. Figure 15 shows the

correlations between P300-I peak latency and RT both for

SWALE and peak-picking. Note that for peak-picking the filter

width was varied and that the SWALE estimate is constant (dashed

red line) as it was only calculated on the unsmoothed data. Results

show that, only given the optimal filter width (black line), peak-

picking and SWALE results are the same.
Functional assessment. Trials were divided into fast trials

(all RTs within the first quartile; RTv396ms) and slow trials (all

RTs within the fourth quartile; RTw412ms), leaving 41 trials in

each condition. Figure 16 shows the correlations of amplitude

and latency of P300-I and P300-II peaks with fast and slow RT.

For fast RTs the amplitude parameters (upper left panel) of

neither peak correlated significantly with RT, although there was

a trend (r~0:26; p~:09) for the amplitude of the P300-I to

correlate positively with RT. Analysis of latency parameters of

fast responses (upper right panel) shows a positive correlation

between latency of the P300-I (r~0:53; pv:01) and RT but no

correlation between latency of the P300-II and RT. This is

consistent with the P-SR and P-CR overlapping for fast RTs,

with P-CR influencing the latency of the entire P300 (modeled

by the P300-I). For slow RTs the amplitude parameters

correlated both significantly with RT. Amplitude of the P300-I

correlated negatively with RT (r~{0:42; p~:01), amplitude of

the P300-II correlated positively with RT (r~0:33; p~:04).
Latency parameters of neither peaks correlated with slow RT,

although there was a trend for the latency of the P300-II to

correlate positively with RT (r~0:27; p~:10). These results are

consistent with the view that for slower RTs P-SR and P-CR

overlap to lesser extent due to the longer latency of the P-CR:

For slower RTs amplitude parameters of the first peak (P300-I

containing P-SR and P-CR) are lower. Furthermore, for longer

RTs the amplitude of the non-overlapping part of the P-CR

(P300-II modeled by the second peak) are higher and there is

a trend that the the latency of this peak is longer.

Discussion

The SWALE framework can reliably estimate single-trial

waveform, amplitude and latency parameters in data containing

multiple signals. Simulations have shown that estimates of

amplitude and latency are within acceptable limits. Only if SNR

is low and latency variation is low, estimates become unreliable. In

testing for the absence/presence of multiple signals the AIC has

a preference for more complex models, mainly due to correlated

noise in the data. An application to a CRT study has shown that

without specifying an a-priori template, the model fits the data well

and that estimates of waveform, amplitude and latency produce

sensible results. Also, the estimated multiple waveforms were

consistent with a P-SR/P-CR model often used in CRT studies.

There are several extensions that can be made to our model.

First, accuracy of model selection will improve, if the data are

prewhitened by including a model for the temporal noise

correlations. For example, de Munck et al. [14] account for

temporal correlations in the data. Including similar methods might

improve performance. Second, we used polynomial basis func-

tions. It may be worthwhile to generalize the method to localized

wavelet functions, to obtain a more compact localized represen-

tation of the waveforms. For example, Quian Quiroga [20] and

Wang et al. [21] have shown considerable advantages with using

wavelets to estimate waveforms of single-trial EEG data. Third,

extensions can be made regarding the determination of multiple

underlying signals. Currently, these waveforms are obtained in

a data-driven way. This even works for signals that are (partially)

overlapping in time, as long as these signals do not overlap in the

same manner in each single-trial (i.e. if signals are perfectly

correlated, in amplitude and latency, they can be modeled with

one waveform). A possible solution to this drawback is to include

information from multiple electrodes, allowing the method to

better distinguish overlapping signals. When prior information on

underlying signals (e.g. from theory) is available, this can easily be

incorporated in the framework. By using a-priori defined wave-

forms directly (i.e. not estimating them), hypotheses regarding

these signals can be tested using model selection. This extends

current applications with the ability to explicitly test whether these

waveforms give a good description of the data. The SWALE

framework therefore provides a flexible framework for the

estimation of single-trial EEG/MEG data.
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