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Computational geometry analysis of dendritic
spines by structured illumination microscopy
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Dendritic spines are the postsynaptic sites that receive most of the excitatory synaptic inputs,

and thus provide the structural basis for synaptic function. Here, we describe an accurate

method for measurement and analysis of spine morphology based on structured illumination

microscopy (SIM) and computational geometry in cultured neurons. Surface mesh data

converted from SIM images were comparable to data reconstructed from electron micro-

scopic images. Dimensional reduction and machine learning applied to large data sets

enabled identification of spine phenotypes caused by genetic mutations in key signal

transduction molecules. This method, combined with time-lapse live imaging and glutamate

uncaging, could detect plasticity-related changes in spine head curvature. The results sug-

gested that the concave surfaces of spines are important for the long-term structural sta-

bilization of spines by synaptic adhesion molecules.
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Dendritic spines are submicron-scale structures protruding
from neuronal dendrites that receive excitatory synaptic
inputs from afferent axons1,2. Precise measurement of

spine morphology and objective analysis of large numbers of
spines are required to understand both the physiological regulation
of synaptic transmission and pathological changes in this process3.
Dendritic spines exhibit a high degree of structural variability: their
sizes vary over more than one order of magnitude4, and their
shapes range from thin elongated filopodia-like protrusions to
round mushroom-like structures5. Recent analyses of spine images
obtained by quantitative and super-resolution optical imaging
argued against the conventional categories of thin, mushroom, or
stubby spines, and suggested that continuous morphological vari-
ables should be used instead6,7. Structural studies of spines by
electron microscopic (EM) reconstruction also opposed the idea of
well-defined categories of dendritic spines3. In light of these
developments, it is necessary to develop new strategies that allow
comprehensive analysis of highly variable spine structures.

Traditionally, structural analysis of dendritic spines has relied
on reconstruction of EM images3. Although new technologies for
automated acquisition of serial EM images greatly accelerated
quantitative analysis of spine morphological features8,9, the lack
of information about the dynamic properties of spines limits the
application of these methods to functional studies. Recent pro-
gress in multiple technologies related to super-resolution imaging
has raised the possibility of accurate and high-throughput ima-
ging of submicron spine structures7,10,11. Several recent studies
proposed computational methods for objective shape classifica-
tion and modeling of dynamic spine behavior. First, spine shape
analysis based on a commercially available software package, such
as Imaris software, was proposed12. This study utilized three
structural parameters and simple formulas for spine classification.
Second, Rodriguez et al.13 proposed a spine analysis algorithm in
the platform of a feely distributed software NeuronStudio. With
this tool, spine classification is performed by a decision tree with
three key parameters, aspect ratio (the extent of shape elonga-
tion), head-to-neck ratio (ratio of their diameters), and spine
head diameter. Small numbers of parameters for spine shape in
these studies may not be adequate for complex three-dimensional
(3D) spine images obtained by super-resolution microscopy.
Third, spine classification by semi-supervised learning in com-
bination with multiple spine structural parameters was repor-
ted14. This method has an advantage of requiring a relatively
small number of a training dataset, and seven features were
reported to be effective for spine classification. Because the details
of the datasets and the selection of effective features were not
provided, general applicability of this method to other image
samples should be judged by further trials. In summary, these
efforts have not yet fully utilized the high 3D resolution of new
imaging modalities capable of overcoming the diffraction barrier.

Here, we describe an accurate method for spine morphological
measurement based on structured illumination microscopy (SIM)
and subsequent data conversion to the surface mesh data.
Dimensional reduction and supervised machine learning enabled us
to perform objective spine classification and identify morphological
impairments caused by genetic mutations in key signal transduction
molecules. Time-lapse SIM imaging could be combined with this
analytical method to generate shape transition diagrams. Further-
more, analysis of spines exposed to locally uncaged glutamate
revealed stable concave surfaces on activated spine heads, which
may serve as core structural elements of synaptic plasticity.

Results and Discussion
A method for measuring nanoscale surface geometry of spines.
Our analytical pipeline for spine computational geometry consists

of three steps (Fig. 1a, b). First, three-dimensional SIM (3D-SIM)
images of dendritic segments in dissociated hippocampal neurons
labeled with either fluorescent proteins or the lipophilic dye DiI
were obtained, and voxel data of fluorescent spines were con-
verted to the surface mesh data using automated algorithms.
Second, the numerical features of 3D spine morphology were
calculated by computational geometry from a dataset for a large
population of spines. Finally, the high-dimensional data of
recorded numerical features (descriptors) were transformed to a
space with fewer dimensions by principal component analysis
(PCA), followed by support vector machine (SVM)-based shape
classification. To validate this method, we analyzed neurons
derived from heterozygous synGAP mutant mice (synGAP+/−)15

or mice harboring a knock-in of a kinase-dead allele of Ca2+/
calmodulin-dependent protein kinase IIα (CaMKIIαK42R/K42R)16

and confirmed that this method can detect mutated gene-specific
spine structural changes.

We obtained 3D-SIM images of cultured hippocampal neurons
expressing GFP (Fig. 1a). 3D-SIM microscopy theoretically offers
a twofold resolution gain in both the lateral and axial directions in
comparison with conventional wide-field microscopy17. This
property was confirmed by measuring intensity profiles of
diffraction-limited images and SIM images of fluorescent beads
(Supplementary Fig. 1). We found that correction of spherical
aberration by precise matching of refractive index and stabiliza-
tion of sample temperature improved the resolution close to the
theoretical limit and enabled reliable detection of dendritic spines
protruding vertically in the axial direction (Supplementary Fig. 1).
We next tested multiple image segmentation algorithms and
found that Otsu’s method, modified for multi-level thresholding,
combined with the technique of geodesic active contours18, was
resistant to variations in dendritic morphology and image
intensity (Supplementary Fig. 2). Individual spines were detected
and isolated automatically using a custom software (Fig. 1a,
Supplementary Fig. 3). The method is based on fitting of dendritic
shafts with elliptic cylinders followed by detection of structures
outside of the cylinder as spine candidates (Supplementary Fig. 4).
These spine candidates were further sorted automatically by
criteria based on their volumes and shapes (see the Methods
section for the details). This method is based on the morpho-
logical criteria and cannot distinguish very short spines from
small raised structures on dendritic shafts. Nevertheless, the
detection criteria of spines are objective and the results are
reproducible. After spine isolation, polygonal meshes of iso-
surfaces were extracted from the spine voxel data using the
marching cube algorithm19 (Fig. 1b, Supplementary Fig. 3). These
spine mesh objects were automatically analyzed by techniques for
feature extraction from 3D mesh models20 or by discrete
differential-geometry operators21 (Supplementary Fig. 5). Ulti-
mately, we obtained 10 descriptors of spine shape from
experimental datasets of more than a 1000 spines. These
descriptors include both basic shape features (e.g., length, surface
area, and volume) and more complex shape and surface features
(e.g., convex hull, mean curvature, and Gaussian curvature).

Surface geometry of spines and quantitative analysis. To con-
firm the accuracy of multiple shape descriptors extracted from
SIM imaging, we performed quantitative comparison of SIM-
based data from fixed samples with surface mesh data generated
by EM reconstruction of identical dendritic segments (Fig. 1c).
All spines detected in EM images were also recovered in SIM-
based surface mesh data irrespective of the protrusion direction.
A minor fraction of spines (<15%) overlapped with adjacent
spines and were excluded from the analysis. Mean curvature plots
revealed that negative and positive curvatures of spine surfaces
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were preserved between the SIM-based and EM-based 3D data
(Fig. 1d). The concave surface was present in 61% of spines of
which volumes were more than 0.18 μm3 (this spine population
corresponds to 25% of the total spines and 84% of them are
classified as mushroom spines using our machine-learning
method. See the next section for the detection of mushroom
spines.) and matched the position of the synaptic junction and
postsynaptic density (PSD) (Fig. 1c, d, Supplementary Figs. 6 and
7). Thus, the spine concave surface may be a biologically

important feature that reflects the presence of junctional complex
between pre- and postsynaptic membranes. The values of
descriptors for basic shape features (length, surface area, and
volume) were highly correlated between surface mesh data
extracted from 3D-SIM and EM images (Fig. 1e), indicating the
precision of SIM-based spine analysis.

Lengths of spines protruding from dendritic shafts at different
angles were measured in both 3D-SIM and EM images
(Supplementary Fig. 8). Both horizontally and vertically
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protruding spines could be measured with similar accuracy in
their lengths. Although spine neck width is an important
parameter related to spine functions, we did not include spine
neck width as a spine shape descriptor from the following
reasons. First, PCA and SVM-based classification requires
parameters that can be measured in all spines, but spine necks
do not exist or difficult to define in thin or stubby spines. Second,
spine neck widths in the axial direction were overestimated due to
lower axial resolution of SIM (Supplementary Fig. 8d). This
resolution asymmetry complicates interpretation of the data from
spines protruding in different directions.

We next investigated whether the multiple descriptors of spine
shape features would be useful for representing a dataset for a
large spine population with continuous morphological variables.
From our initial analysis of independence among descriptors in a
dataset of 1335 spines, we selected five descriptors based on two
criteria. First, we selected two descriptors that reflect principal
structural features (length and volume). Second, three other
descriptors that showed high independence (the averages of
pairwise correlation coefficients were <0.3) were selected. PCA
was performed with these five descriptors to obtain spine
distribution in the new feature space (Fig. 2a). The first three
features (principal components 1–3, PC1–3) covered about 93%
of the variance in the data. Principal components are normalized
linear combinations of the original descriptors and reflect specific
morphological properties of spines. Spine distribution in Fig. 2a, b
indicates that spines with different sizes are aligned along the axis
of PC1 [No. 1 (large) and No. 10 (small)] and spines with
different length–width ratio are distributed along the axis of PC2
[No.6 (thin) and No. 8 (thick)]. Along the axis of PC3, spines
with different head sizes relative to total spine volumes are
aligned [No. 3 (prominent spine head) and No. 7 (without spine
head)]. In summary, PCA was effective in extracting three
independent structural features of dendritic spines.

Spine structural features with impaired synaptic plasticity.
Spine distribution in the feature space exhibited a continuum of
morphologies, supporting the idea that the conventional cate-
gorization into thin, mushroom, or stubby spines does not reflect
the presence of discrete subclasses. On the other hand, we noticed
that prototypical examples of mushroom spines (spines nos. 1–4
in Fig. 2b) were located closely to each other in the feature space,
raising the possibility of automatically identifying mushroom
spines by supervised machine learning. Using the manually clas-
sified dataset, we trained a SVM classifier with a nonlinear kernel.
After hyperparameter tuning, the accuracy of the classifier was
88.4%, which is comparable with or better than that of other spine
classification methods13,22 or manual classification by multiple
operators (Fig. 2c and Supplementary Table 1). This method of

spine morphological analysis could be applied to neurons stained
with the lipophilic dye DiI after fixation (Supplementary Figs. 9
and 10). Feature selection and dimensional reduction by PCA can
improve the performance of classifiers by removing redundant or
irrelevant features. To test the contribution of preprocessing the
data by PCA, we compared the performance of SVM classifiers
with or without PCA. When GFP-labeled spine images were used
for both training and test, the two methods showed similar per-
formance (accuracy= 90.3% without PCA, accuracy= 89.3% with
PCA), but the method without PCA showed slight decline in
performance with the test data from DiI-labeled spines after
training with the data from GFP-positive spines (accuracy=
83.0% without PCA, accuracy= 86.4% with PCA), suggesting that
PCA may be effective in eliminating parameters irrelevant to
structural characteristics of dendritic spines.

We next applied this automated classification method to the
detection of spine structural changes associated with mutations in
genes encoding plasticity-related signaling molecules. To this end,
we obtained 3D-SIM images of neurons derived from hetero-
zygous synGAP mutant mice (synGAP+/−)15 or mice harboring a
knock-in of a kinase-dead allele of Ca2+/calmodulin-dependent
protein kinase IIα (CaMKIIαK42R/K42R)16 (Fig. 2d). Both muta-
tions result in severe impairment of long-term potentiation in the
hippocampus15,16. To avoid possible bias of GFP transfection into
specific types of neurons, we stained randomly selected neurons
by applying DiI (Supplementary Figs. 9 and 10). SIM-based
quantitative analysis revealed changes in spine morphology
specific for each mutation (Fig. 2e). Neurons from either
synGAP+/− mice or CaMKIIαK42R/K42R mice formed mushroom
spines with reduced volume, with no change in the volume of
non-mushroom spines (Fig. 2f). The two mutants exhibited
distinct spine length phenotypes, with shorter mushroom spines
in synGAP+/− neurons and longer non-mushroom spines in
CaMKIIαK42R/K42R neurons. The results suggest a more specific
impairment in mushroom spines with the synGAP mutation, and
a specific role of CaMKIIα in suppression of long non-mushroom
spines. These results demonstrate the potential of this analytical
system to detect spine morphological changes associated with
dysfunction of specific signaling pathways.

Computational geometry of spines in vivo. Spine geometrical
analysis requires high-resolution imaging of dendritic spines. SIM
imaging of dissociated neurons in culture has sufficient resolu-
tion, but alternative approaches are required for the analysis in
intact brain tissue. To test if confocal laser scanning microscopy is
suitable for spine geometrical analysis, we performed in silico
analysis of spine shape degradation by optical blur (Supplemen-
tary Fig. 11a–c). By narrowing confocal aperture [0.5 airy unit
(AU)], the resolution was sufficient to detect spine head curvature

Fig. 1 A method for measuring the surface geometry of dendritic spines. a Acquisition of 3D-SIM image of dendrites and automatic detection of dendritic
spines. Arrows indicate the same dendritic spine shown in panel (b). Bar: 2 μm. b Process of spine geometry analysis. Individual spine mesh objects can be
visualized as pseudocolor or shaded surface images (mesh feature extraction). Differential geometry can be calculated, and the parameters can be mapped
onto the surface (differential-geometry operation). Bar: 500 nm. After calculation of multiple shape descriptors, the datasets are further analyzed by the
techniques of dimensionality reduction and automatic classification using machine learning. c Comparison of 3D-SIM images and reconstruction of EM
images from the identical dendritic segment. Left side column shows a lower-magnification view of a dendritic segment in a SIM projection image [SIM
(proj)], a reconstructed surface view of SIM and EM data [SIM (mesh) and EM], and a reconstructed view of the dendrite with presynaptic components
[EM (with axon)]. Numbers (1–20) indicate the corresponding spines. Right column shows a higher-magnification view of spine 13, with raw single plane
EM (upper), reconstructed EM data with axon (middle), and reconstructed EM data with PSD (lower). Bars: 5 μm for left column, 500 nm for right column.
d Comparison of spine no. 13 in panel (c), reconstructed from EM and SIM data. Surface mean curvature is shown by pseudocolor mapping. The lower
image pair shows the areas with the smallest negative value of mean curvature in yellow. Bar: 500 nm. e Relationship of basic shape parameters (length,
surface area, and volume) calculated from EM and SIM data. High values of coefficient of determination indicate the possibility of estimating the absolute
shape parameters from SIM images after appropriate conversion (n= 20 spines in a single reconstructed volume)
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for large spines (>0.18 μm3). Because SIM analysis of cultured
neurons showed that only 13% of middle-to-small-sized spines
(<0.18 μm3) had concave surfaces, the confocal scanning micro-
scopy may still be useful in feature extraction of large spines in
intact tissue. We also confirmed that spine size distribution was
similar between hippocampal neurons in culture and in the intact
hippocampal tissue23 (Supplementary Fig. 12). Therefore, we

expected that geometrical features of large spines could be
detected by high-resolution confocal microscopy applied to intact
brain tissue.

We applied confocal microscopy with confocal aperture of 0.5
AU to CA1 pyramidal neurons expressing YFP in fixed brain
sections (Supplementary Fig. 11d, f). Horizontally and vertically
protruding spines could be detected and converted to the surface
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mesh data. Consistent with the prediction of in silico analysis,
concave surfaces were detected in large spines (~20% of the total
spine population). We conclude that this application in intact
tissue is useful in geometrical analysis of spine head surface,
which reflect the presence of the junctional complex between pre-
and postsynaptic membranes (Supplementary Figs. 6 and 7)

Spine population data obtained by confocal microscopy of
intact tissue may be useful in analysis of spine phenotypes based
on dimensional reduction and machine learning. To test this
possibility, we collected the data of spine surface geometry in
tissue sections (n= 165) and compared the distribution in the
feature space with the data from cultured neurons (Supplemen-
tary Fig. 13a). Distributions of spine geometrical features from
samples in culture and in vivo show high similarity, and the
positions of typical mushroom, thin, and small spines are
preserved. Spine size distribution measured from the confocal
imaging of intact tissue [0.081 ± 0.091 μm3 (mean ± SD, n= 165)]
was comparable with that from both cultured hippocampal
neurons [0.079 ± 0.078 μm3 (mean ± SD, n= 1335)] and EM
reconstruction of in vivo spines [0.076 ± 0.082 μm3 (mean ± SD,
n= 938)]23. SVM-based classifier trained with the dataset
obtained from GFP-expressing neurons in culture was applied
to the in vivo dataset to identify mushroom spines (Supplemen-
tary Fig. 13b). The accuracy of the classifier was 88.0%, indicating
slight decline in performance in comparison with the data
obtained from cultured neurons by SIM (89.3% accuracy). In
summary, the methods of computational geometry, dimensional
reduction, and SVM-based shape classification are useful for
analyzing high-resolution confocal images of dendritic spines in
intact tissue.

Shape transition of spines studied by time-lapse 3D-SIM. An
advantage of SIM-based geometrical analysis is its potential use in
the studies of spine dynamics and activity-dependent regulation.
To follow temporal changes in spine shape, we performed time-
lapse 3D-SIM imaging of living hippocampal neurons expressing
GFP (Supplementary Fig. 14a, b). Comparison of live and fixed
spines confirmed that the reconstructed mesh structures from live
and fixed cells were of comparable quality, and the concave
surface in the spine head was preserved (Supplementary Fig. 14c).
Using PCA, we mapped the trajectories of shape transitions of
individual spines in the feature space (Fig. 3a) and generated a 3D
map depicting the behavior of the spine population (Fig. 3b). We
found that spines in different domains of the feature space
behaved differently. For example, the large mushroom-shaped
spine in Fig. 3a (magenta arrows) moved bidirectionally in the
upper right and lower left directions. The medium-sized spine
(orange arrows) exhibited short trajectories, resembling a random
walk process, whereas the trajectory of the small spine (green
arrows) was in the upper left direction. To further clarify the
overall tendency of the shape transition, we generated a diagram

in the feature space that shows the direction and length of tra-
jectories partitioned into voxels with edge length of 1 × standard
deviation (SD) (Fig. 3c). This diagram further confirmed the
relationship between spine shape transition and spine shape
features. Using the SVM classifier combined with trajectory
analysis, it was possible to label spines with groups 1–3 (Sup-
plementary Fig. 15). Spines of group 1 (small mushroom spines
without an orientation preference in their trajectories), group 2
(large mushroom spines with preferred trajectories along the axis
of medium/thin and large/round shape features), and group 3
(non-mushroom spines) had different shape characteristics and
dynamics (Fig. 3d).

The three groups of spines overlapped in the feature space, and
their distribution did not reflect the existence of distinct shape
classes. However, spines may have additional geometric features
that would aid in understanding the mechanisms underlying the
maintenance of their shapes and behaviors. Correlative analysis of
3D-SIM and EM images indicated that the concave surfaces of
spine heads tended to be associated with the presynaptic
component and formed synaptic junctions (Fig. 1c, d). When
the concave surfaces of spine heads were mapped at multiple time
points, their stability differed markedly among groups (Fig. 3e).
Most group 2 spines maintained the concave surface during
imaging sessions of 60 min (10 out of 11 spine time-lapse
images), whereas group 1 spines changed their shape and either
lost the concave surface or changed its position (5 out of 7 time
frames, 3 spines, Fig. 3f). Group 3 spines formed the concave
surface less frequently than those of the other two groups, and
exhibited a strong tendency to progressively decrease their size,
suggesting that this spine population was undergoing the process
of retraction. This result indicates that formation of stable
junctions between presynaptic and postsynaptic compartments is
associated with maintenance of spine shape and dynamics.

Changes in spine geometry by synaptic plasticity. In the feature
space, group 2 spines exhibited the longest trajectories along the
axis of PC1, indicating that this group undergoes larger changes
in size, despite the stability of their synaptic junctional mem-
branes. This observation is consistent with multiplicative
dynamics, a model based on in vivo two-photon imaging, in
which the magnitude of changes in spine size is proportional to
the size of the spine4. In the feature space, group 2 spines also
overlapped with spines classified as mushroom spines by the
SVM classifier, which were decreased in size by mutations in
genes related to synaptic plasticity (Fig. 2e, f). We therefore
investigated whether induction of structural plasticity regulates
the surface geometry of spines, especially concave surfaces of
synaptic junctions, and contributes to subsequent maintenance of
the enlarged spine structure. Local uncaging of glutamate in Mg2
+-free solution induced a large transient increase in spine volume,
followed by a stable plateau lasting more than 60 min (Fig. 4a).

Fig. 2 Spine shape analysis based on dimensionality reduction and SVM-based labeling of large spine datasets. a Distribution of spines in the feature space
with axes corresponding to PC1, PC2, and PC3. The right two graphs show the positions of spine examples in panel (b) (n= 1335 spines from 86 cells in
four independent culture preparations). b Examples of spines in the feature space shown in panel (a). Bar: 500 nm. c Hyperparameter tuning for the SVM
classifier. Accuracy was highest (88.4%) with values of C= 1 and γ= 0.1. d SIM projection images of wild-type, synGAP+/−, and CaMKIIαK42R/K42R

neurons. Bar: 2 μm. e Distribution of spines with different genotypes mapped into the feature space and classified as mushroom (magenta dots) or non-
mushroom (green dots) spines by SVM (n= 1095 spines from 43 neurons in three independent culture preparations for the wild-type, 1015 spines from 44
neurons in three independent culture preparations for synGAP+/−, and 1392 spines from 48 neurons in three independent culture preparations for
CaMKIIαK42R/K42R). f Cumulative distribution curves of spine volume and length with different genotypes after classification into mushroom and non-
mushroom spines (Kolmogorov–Smirnov test; synGAP experiments: n= 487 for wild-type mushroom spines, n= 608 for wild-type non-mushroom spines,
n= 466 for synGAP+/− mushroom spines, n= 549 for synGAP+/− non-mushroom spines; CaMKII experiments: n= 549 for wild-type mushroom spines,
n= 698 for wild-type non-mushroom spines, n= 424 for CaMKIIαK42R/K42R mushroom spines, n= 968 for CaMKIIαK42R/K42R non-mushroom spines)
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Time-lapse 3D-SIM images before and after uncaging revealed
stabilization of the concave surface on the spine head (Fig. 4b). To
evaluate the size of the concave surface, we calculated the volume
difference between the convex hull and the spine head, normal-
ized by the spine head volume (Fig. 4c). This index (concave
volume ratio) reflects the relative size of the concave surface on

the spine head, and its increase lasted more than an hour after the
induction of synaptic plasticity (Fig. 4d).

The increase in the size of a spine’s concave surface may
indicate an increase in the junctional area between the
presynaptic and postsynaptic components. Synaptic cell adhesion
molecules are involved in the formation of synaptic junctional
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structures. Trans-synaptic interaction between the neurexin and
neuroligin is important for formation of excitatory synapses24,25

and is essential for synaptic plasticity26. Moreover, the extra-
cellular domains of these proteins can form a superstructure
resembling the extracellular structure of the synaptic cleft27.
Among the four neuroligin isoforms in rodents, neuroligin 1
localizes at excitatory postsynaptic sites28 and plays a dominant
role in hippocampal long-term potentiation26. Because the
affinity of neurexin 1β for neuroligin 1 is significantly higher

than that of other neuroligin isoforms29, we expected that
exogenous application of neurexin 1β-IgG fusion protein
(neurexin 1β-Fc) would effectively and transiently block neuro-
ligin 1 function (Fig. 4e). This manipulation inhibited enlarge-
ment and stabilization of the concave surface, supporting the idea
that membrane adhesion mediated by neuroligin 1 is involved in
increasing the junctional surface of spines (Fig. 4f). This
neuroligin-dependent mechanism of stabilization of the post-
synaptic concave surface may be independent from the activity-
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dependent neuroligin cleavage, which rapidly regulates presy-
naptic function via the neurexin30.

The time course of spine structural plasticity has been
proposed to consist of three phases31. After the initial phase of
rapid actin reorganization, on the order of several minutes, the
actin cytoskeleton is stabilized for about an hour, followed by
slow accumulation of PSD proteins. Because the postsynaptic
concave surface is maintained for more than an hour after
uncaging, and neuroligin 1 directly binds the prominent PSD
scaffolding protein PSD-9525, we next investigated whether
blockade of neuroligin 1 function also affects the delayed
accumulation of PSD-95. Consistent with previous reports31,
the amount of PSD-95 in spines was unaltered within the initial
60 min, but began to increase ~80 min after uncaging (Fig. 4g, h).
We found that application of neurexin 1β-Fc effectively blocked
the delayed increase of PSD-95 (Fig. 4g, h). Together, these results
suggest that the postsynaptic concave surface stabilized by
neuroligin 1 is an important structural element for the
consolidation of synaptic plasticity.

In summary, we developed a method of reliably reconstructing
and measuring the surface geometry of dendritic spines from 3D-
SIM images. The data regarding spine volume, area, and length
can be converted to absolute values after calibration with mesh
data obtained from EM images. The method is efficient enough to
perform data acquisition and quantitation of more than a
1000 spines within several days, which cannot be achieved by
reconstruction of EM data. The method could be modified for the
analysis of images obtained by other super-resolution techniques,
such as stimulated emission depletion (STED) microscopy, which
is suitable for the analysis of dendritic spines in the tissue
environment7,32,33. Although the lateral resolution of 3D-SIM is
lower than that of STED microscopy, the superior axial resolution
of 3D-SIM is advantageous for reconstruction of spine geometry.
Ideally, isotropic 3D-STED imaging combined with the technique
of the surface mesh reconstruction should be applied to achieve
higher-resolution measurement of spines11.

We identified the concave surface of spine heads, which
interact with the presynaptic terminal, as a unique structure that
is expanded and stabilized by plasticity-inducing signals. We
propose that this surface structure plays important roles in actin-
dependent shape changes by recruiting regulatory molecules of
actin filament nucleation and branching34. A recently identified
interaction between neuroligin and the WAVE complex may play
a role in increased actin-dependent shape changes after expansion
of the concave spine surface35. This model suggests that concave
spine surface that persists after glutamate uncaging serves as a
core structural element of synaptic plasticity.

Methods
Neuronal culture from genetically modified mice. ICR mice (Japan SLC), het-
erozygous synGAP mutant mice (synGAP+/−)15, homozygous knock-in mice
harboring a knock-in of a kinase-dead K42R mutation in Ca2+/calmodulin-
dependent protein kinase IIα (CaMKIIαK42R/K42R)16, and Thy1-HYFP/+ mice were
used in this study. All animal experiments were approved by the animal welfare
ethics committee of the University of Tokyo.

Dissociated hippocampal cultures were prepared from E16.5 ICR mouse
embryos36. Briefly, hippocampi were treated with trypsin (Gibco) and DNase
(SIGMA), and then mechanically dissociated. Cell suspension in the MEM
containing B18 supplement, L-glutamine (Gibco), and 5% FCS (Equitech-Bio) was
plated onto a glass-bottom dish (MatTek, #1.5) coated with poly-L-lysine
(SIGMA). Two days after plating, 5 μM ara-C (SIGMA) was added to prevent glial
cell proliferation.

Hippocampal dissociated cultures from synGAP+/− mice or CaMKIIαK42R/K42R

mice were prepared using the same basic culture protocol as in the experiments
using wild-type ICR mice, except that hippocampi from each embryo were
dissociated separately. For genotyping of dissociated cultures, a piece of tissue from
each embryo was saved prior to dissection of hippocampi. Genomic DNA
purification was performed with the QuickGene DNA tissue kit (WAKO), and
genotypes were determined by PCR using either High-Speed DNA polymerase
(Kaneka) or ExTaq (TAKARA) following standard protocols provided by the
manufacturers. Primer sequences for genotyping were as follows:

For synGAP genotyping PCR:
Sense primer for WT: 5′-GTCAGTGGGACATGGAAGTAG-3′
Sense primer for mutant: 5′-CTTCCTCGTGCTTTACGGTATC-3′
Antisense primer (common): 5′-CTGATCAGCCTGTCAGCAATG-3′
For CaMKIIα K42R genotyping PCR:
Sense primer: 5′-GGTCTTGAAGACTGTCTGGTGTGAGA-3′
Antisense primer: 5′-CACAGGCCAGTTTAGGTCTTGCTAGG-3′
Cell suspensions were prepared separately from each embryo after genotyping

and plated at densities between 1.2 and 1.8 × 105 cells per dish. The whole
procedure for dissociated cell culture was completed within 2.5 h.

Fluorescent protein expression and DiI labeling of neurons. Ca2+-phosphate
transfection was performed after 8–9 days in vitro according to a standard pro-
cedure37. All fluorescent proteins were expressed under the control of β-actin
promoter. Either a GFP expression vector, a mixture of GFP and PSD-95-TagRFP
expression vectors, or a mixture of dsRed2 and PSD-95-GFP expression vectors in
calcium chloride solution was combined with the same volume of 2 × phosphate
buffer and incubated at 25 °C for 15 min to generate a calcium phosphate–DNA
co-precipitate. Culture medium was replaced with transfection medium containing
the precipitate, and cells were incubated for 50 min in a 5% CO2 incubator at 37 °C.
The composition of transfection medium was identical to that of the culture
medium, except that L-glutamine and FCS were omitted. Cells were returned to the
original culture medium and incubated until the imaging experiments.

Differentiated single neurons in culture were labeled with 1,1′-dioctadecyl-
3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI; Molecular Probes)38. Fixed
neurons in a culture dish were placed on the stage of an inverted microscope (IX71,
OLYMPUS). DiI was dissolved in fish liver oil at saturating concentration and
applied to individual cell bodies by pressure ejection with a FemtoJet (Eppendorf).
The cells were left to stand for 30 min at 25 °C to allow the dye to spread, and then
washed three times with PBS.

Uncaging of caged glutamate. Single-photon laser photolysis of 4-methoxy-7-
nitroindolinyl-caged glutamate (MNI-Glu) was performed using a 405 -nm
continuous-wave (CW) laser39. An uncaging laser (OBIS 405LX-100, Coherent)

Fig. 4 Plasticity-related changes in spine head geometry. a Time course of changes in spine head volume after glutamate uncaging [one-way ANOVA;
stimulated: n= 14 spines; neighbor: n= 14 spines; *p < 0.05, **p < 0.01, ***p < 0.001]. b Structural changes in spine head before and after glutamate
uncaging. SIM projection images of spines are shown in the upper row. Surface mapping of mean curvature and detected concave surfaces are shown in
the middle and lower rows. Bar: 500 nm. c Images of reconstructed spine surface polygon with or without spine neck, convex hull mesh, and their overlay.
Volume difference between the spine head and the convex hull was divided by the spine head volume, and this value is presented as the concave volume
ratio for the graphs in panels (d) and (f). Bar: 500 nm. dMeasurement of the volume difference between entire spine heads and the convex hull before and
after glutamate uncaging. The graph shows the prolonged increase in this value after glutamate uncaging. [One-way ANOVA; stimulated: n= 6 spines;
neighbor: n= 10 spines; *p < 0.05, ***p < 0.001]. e Inhibition of plasticity-associated changes in spine head geometry by neurexin 1β-Fc. SIM projection
images of spines are shown in the upper row for both control-Fc and neurexin 1β-Fc conditions. The images in the lower rows show surface mapping of
mean curvature. Bar: 500 nm. f Measurement of the volume difference between entire spine heads and the convex hull before and after glutamate
uncaging in the presence of neurexin 1β-Fc. [One-way ANOVA; control-Fc: n= 6 spines; Nrx1β-Fc: n= 6 spines; *p < 0.05, **p < 0.01, ***p < 0.001].
g Inhibition of PSD-95 accumulation in the late phase of spine structural plasticity by neurexin 1β-Fc. Images of PSD-95-GFP are shown in the upper rows,
and images of PSD-95-GFP merged with dsRed2 are shown in the lower rows. Bar: 500 nm. h Inhibition of PSD-95-GFP fluorescence increase after
glutamate uncaging by neurexin 1β-Fc. [One-way ANOVA; control-Fc: n= 4 spines; Nrx1β-Fc: n= 5 spines; *p < 0.05, **p < 0.01]. Details of statistics in this
figure is provided in Supplementary Table 2
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was combined with an imaging line of a Nikon Structured Illumination Microscope
system (N-SIM) using a dichroic mirror. The uncaging laser was controlled
separately using the Coherent Connection software (Coherent) via
transistor–transistor logic (TTL) generated by an Arduino UNO microcontroller.
The uncaging laser was aligned to the center of the imaging field before each
experiment.

For glutamate uncaging, hippocampal neurons were maintained at 37 °C in
Mg2+-free Tyrode’s solution (119 mM NaCl, 2.5 mM KCl, 4 mM CaCl2, 0 mM
MgCl2, 25 mM HEPES, and 30 mM glucose; pH 7.4) with 1 μM tetrodotoxin (TTX;
WAKO) and 500 μM MNI-Glu (Tocris). Medium-size spines with clear heads and
necks were selected for induction of structural change. Single-photon glutamate
uncaging was performed by 2 msec pulses repeated at 1 Hz for 1 min with the
center of the focused laser beam 1–2 μm away from the tip of the spine39. Precise
control of the sample position was achieved by operating a motorized XY stage
with N-SIM encoders. Laser intensity was set to 0.05–0.15 mW at the back aperture
of the objective lens.

Sample preparation for SIM imaging. After 18–22 days in vitro, hippocampal
neurons were washed with PBS and fixed with 4% paraformaldehyde and 0.5%
glutaraldehyde in PBS for 30 min at 25 °C. Samples after transfection of GFP
expression plasmids were mounted in Prolong® Diamond (Molecular Probes). DiI-
labeled neurons were imaged in PBS. For correlative light microscopic and EM
observation, cells were washed with PBS and fixed with 2% paraformaldehyde and
2% glutaraldehyde in PBS for 30 min at 25 °C.

Apparatus for SIM imaging. SIM imaging was performed with a N-SIM based on
an inverted microscope (ECLIPSE Ti-E, NIKON), equipped with an oil immersion
TIRF objective lens (SR Apo TIRF 100 × , N.A. 1.49, NIKON), a laser system
consisting of 405, 488, 561, and 640 -nm diode lasers (LU-NV, NIKON), and an
EMCCD camera (iXon3 DU-897E, Andor Technology). SIM imaging with this
system is based on a previous report17. Briefly, excitation lasers were coupled to a
multimode optical fiber, collimated, and directed to a fused silica linear
transmission-phase grating. A shutter in an intermediate pupil plane discarded all
diffraction orders except for 0 and ± 1. The three beams were refocused in the back
focal plane of the objective lens. The beams produced as diffraction orders+ 1 and
−1 were focused near the opposing edges of the back focal plane aperture, and the
beam produced as order 0 was focused at its center. Three-dimensional data were
acquired with five-pattern phases spaced by 2π/5 and three-pattern orientations
spaced 60° apart. The acquired images were computationally reconstructed to
obtain a high-resolution image with resolutions of ~115 nm in the x- and y-
dimensions and ~270 nm in the z-dimension.

SIM image acquisition. Prior to SIM imaging, the temperature of the microscope
system and specimens was stabilized at 28–29 °C to minimize position and aber-
ration fluctuation. Spherical aberration induced by refractive index mismatch was
corrected for each sample by adjustment of an objective correction collar. The
EMCCD camera, which has a 512 × 512 pixel array consisting of 16 -μm square
pixels, was operated in read-out mode at 1 MHz with 16 bit analog-to-digital
conversion with EM gain. An image stack with its size of 7.56 μm in the z
dimension was acquired at 63 axial planes with 120 nm z-steps that satisfied the
Nyquist criterion requirements. Dendritic segments that were isolated from
unintended signals, such as axons or dendrites from other neurons, were carefully
selected, because objects brighter than targeted dendritic segments were proble-
matic in threshold setting for SIM image reconstruction.

SIM image reconstruction. All image processing steps were performed in three
dimensions. The acquired datasets, comprising 63 axial sections of 512 × 512 pixels,
were computationally reconstructed using reconstruction stack algorithm V2.10 of
NIS-Elements AR (NIKON). The voxel size of the reconstructed images was 32 nm
in the x- and y-dimensions and 120 nm in the z-dimension, with 16 bit depth. 3D-
SIM data were validated using the SIMcheck plugin for ImageJ40,41 (Supplementary
Fig. 1). First, the standard SIMcheck procedure was performed using raw SIM data
and the reconstructed image. Second, using a standalone Fourier transform plugin
of SIMcheck, 2D fast Fourier transform (FFT) was applied to each slice of the
reconstructed SIM image. The plugin, which was set to operate without a cutoff
function and with a window function (6% width), generated an 8 bit log-scaled
(amplitude2) Fourier power spectrum that was the same as the default FFT func-
tion of ImageJ for the 32 bit reconstructed data.

Dual-color SIM imaging. Hippocampal neurons expressing GFP were fixed with
4% paraformaldehyde and 0.5% glutaraldehyde in PBS for 30 min at 25 °C, and
non-transfected neurons were stained with DiI. Contact sites between GFP-
expressing axons and DiI-labeled dendrites were identified, and large mushroom
spines with putative contact sites with axons were imaged. Neurons expressing GFP
and PSD-95-TagRFP were fixed with 4% paraformaldehyde and 0.5% glutar-
aldehyde in PBS for 30 min at 25 °C and imaged in PBS.

Prior to dual-color 3D-SIM imaging, image registration between channels was
performed according to the standard protocol of NIS-Elements AR. The two

channels of the 3D-SIM images were sequentially acquired at the same z-position,
and this step was repeated with multiple z-positions. The final imaging volume
spanned a thickness of 5.4 μm, comprising 45 axial planes separated by 120 -nm z-
steps. The two channels of the image stacks were reconstructed in parallel using
reconstruction stack algorithm V2.10 of NIS-Elements AR.

Live SIM imaging. Live cell imaging was performed after 18–22 days in vitro. Cells
in the culture medium were placed in a heater stage system (INUG2H-TIZSH,
Tokai Hit) at 37 °C with a continuous flow of 5% CO2 to maintain the pH of the
medium. A custom-made lid for the glass-bottom dish was utilized to minimize
evaporation of the culture medium. During live imaging, the z-position was
maintained by a perfect focus system (NIKON).

For live 3D-SIM, an image stack 7.56 -μm thick was acquired, consisting of 63
axial planes separated by 120 -nm z-steps. The series of 3D-SIM images were
acquired every 10 min for a total period of up to 1 h, and the total exposure number
was 6615 (15 patterns × 63 axial planes × 7 time points) at most. Excitation laser
power was set to be minimal but sufficient to reconstruct images with a sufficient
signal-to-noise ratio even at the end of the time-lapse series (Supplementary
Fig. 14). Bleaching of GFP fluorescence may be attenuated by fast diffusion of GFP
within the dendritic cytoplasm. Data quality of 3D-SIM imaging sets was
confirmed using the SIMcheck plugin for ImageJ40. Acquisition of a single SIM
image stack took 490 s (100 ms exposure time × 15 patterns × 63 axial planes+ z-
stage settle time). The acquisition speed of N-SIM was mainly limited by rotating
and laterally translating the grating. The 3D-SIM volume at each time point was
independently reconstructed using reconstruction stack algorithm V2.10 of NIS-
Elements AR. Neurons were confirmed as remaining alive for at least 1 day after
time-lapse imaging.

Prior to glutamate uncaging, live 3D-SIM images were obtained every 10 min in
the culture medium in a volume 3.48 -μm thick (29 axial planes separated by 120 -
nm z-steps). Subsequently, the culture medium was replaced with Mg2+-free
Tyrode’s solution containing 1 μM TTX and 500 μM MNI-Glu, and an uncaging
laser was applied to spines that protruded horizontally from dendritic shafts. After
uncaging, the external solution was replaced with the original culture medium for
subsequent live 3D-SIM imaging. For neuroligin blocking experiments, neurons
were first imaged in the culture medium. Glutamate uncaging was performed in
Mg2+-free Tyrode’s solution containing 1 μM TTX, 500 μM MNI-Glu, and either
50 μg/ml recombinant human neurexin 1β-Fc (without splice insert 4, R&D
Systems) or 50 μg/ml recombinant human Fc (R&D Systems) as a control. After
uncaging, the external solution was replaced with the original culture medium
containing 50 μg/ml recombinant human neurexin 1β-Fc or control-Fc, followed
by time-lapse 3D-SIM imaging.

For imaging of PSD-95-GFP, N-SIM was operated in the wide-field mode.
Hippocampal neurons expressing PSD-95-GFP and dsRed2 were examined after
18–22 days in vitro. Spines that protruded horizontally from dendritic shafts were
imaged, and single-photon glutamate uncaging was performed. To avoid possible
photo-bleaching of PSD-95-GFP, the output power and focus position of the
uncaging laser were carefully adjusted. For neuroligin blocking experiments, the
culture medium was replaced with Mg2+-free Tyrode’s solution containing 1 μM
TTX, 500 μM MNI-Glu, and either 50 μg/ml recombinant human neurexin 1β-Fc
or 50 μg/ml recombinant human Fc as a control. Live imaging was performed
subsequently at multiple time points before and after glutamate uncaging.

Correlative light microscopic and EM observation. Correlative light and electron
microscopy was performed with dissociated neuronal culture42. Following SIM
imaging, phase contrast images of the same neurons were recorded and used as a
reference to obtain EM images of the identical dendritic segments. For transmis-
sion electron microscopy, samples were post-fixed with 1.0% OsO4 and 1.5%
potassium ferrocyanide in 0.1 M cacodylate buffer, and stained with 1.0% tannic
acid in 0.05 M cacodylate buffer. Samples were dehydrated and embedded in epoxy
resin (Poly/Bed®812 Luft Formulations, Polysciences). After 2 days of curing at 60 °
C, the area imaged by SIM was cut out, and the bottom glass was removed by
treating with hydrogen fluoride. After trimming the block, ultra-thin sections of
50–60 nm thickness were prepared in a Reichert ultramicrotome with a diamond
knife and mounted in Formvar-coated copper slot grids. TEM images were
acquired at 80 keV on a transmission electron microscope (JEM-1010, JEOL) with
a CCD camera (TemCam-F216, TVIPS) at ×5000 magnification. Image alignment
and reconstruction were performed using the Reconstruct software package
(SynapseWeb).

Two operators manually identified the area (about 0.25 μm2) with the largest
negative curvature from 3D-SIM data of each spine head. The positions of the
synaptic junctional areas were recorded independently from the 3D-reconstructed
EM images. The positions of the smallest negative curvature and the synaptic
junctional area were compared and judged to determine whether the two areas
overlapped. The positions were matched in 9 mushroom-shaped spines out of 10.

Tissue preparation and laser scanning confocal microscopy. Male transgenic
mice (Thy1-HYFP/+, 3 months old) were deeply anaesthetized and perfused with
4% paraformaldehyde in 0.1 M phosphate buffer. Brains were removed, post-fixed
in 4% paraformaldehyde for 6–8 h, and then sectioned with 40 μm thickness in the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09337-0

10 NATURE COMMUNICATIONS |         (2019) 10:1285 | https://doi.org/10.1038/s41467-019-09337-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


coronal plane on a vibratome (VT-1000S, Leica). The sections were washed with
88% (weight by volume) histodenz (SIGMA) in 0.1 M phosphate buffer and were
mounted directly on coverslips (high-tolerance coverglass D= 0.17 ± 0.005 mm,
Matsunami) in 88% histodenz for imaging.

Confocal microscopy was performed with an A1 confocal laser scanning
microscopy system (NIKON). An oil immersion TIRF objective lens (Apo TIRF
100 × , N.A. 1.49, NIKON) was used, and images were collected with confocal
aperture of 0.5 AU. The image stacks with their size of 30.7 μm in x–y plane and
7.56 μm in the z axis were acquired. The voxel size of the images was 30 nm, 30 nm,
and 120 nm in the x, y, and z directions, respectively. Prior to imaging, the
temperature of the microscope system and specimens was confirmed to be
stabilized, and spherical aberration was corrected for each sample by adjustment of
an objective correction collar.

Automated image thresholding and surface mesh generation. Two indepen-
dent thresholding methods were used to automatically isolate dendrites and spines
from SIM image stacks. The reconstructed SIM image stacks were first processed
by multilevel thresholding based on Otsu’s method, and the resultant binary images
were further processed by geodesic active contours to refine object boundaries.

Otsu’s method automatically searches the threshold that maximizes the
between-class variance of pixel intensity43. Direct application of Otsu’s method for
thresholding SIM images of dendrites was not successful, mainly because the
images contained both large objects with strong fluorescence (dendrites) and small
objects with weak fluorescence (spines). However, Otsu’s method was previously
extended for multilevel thresholding, and we found that the modified method
could reliably detect multiple thresholds for both the strong fluorescence signal of
dendrites and the weak signal of spines (Supplementary Fig. 2). After generation of
binary images by multilevel thresholding, the resultant binary images were further
processed to refine the boundaries of dendrites and spines by geodesic active
contours18. The technique is based on active contours (snakes) evolving in time
and pulled toward object boundaries until the energy function reaches its
minimum. The evolving contours can split and merge in the iterative process, and
this property helps to eliminate and merge isolated image pixels below the
resolution of SIM microscopy (Supplementary Fig. 2). MATLAB has built-in
functions for both multilevel thresholding [multithresh()] and geodesic active
contours [activecontour()]. A custom MATLAB script was developed for
processing SIM image stacks with these two image processing techniques
(Supplementary Software “SIM_activecontour”).

The binary image stack generated by thresholding SIM images was processed
for automated detection of spines (Supplementary Fig. 3). A custom MATLAB
script was developed for spine detection and polygon mesh generation
(Supplementary Software “SIM_spine_detection”). Individual spines were detected
and isolated automatically (Fig. 1a, Supplementary Figs. 3 and 4). Dendritic
shafts were fitted with elliptic cylinders, and voxel clusters outside of the best fit of
elliptic cylinders were identified as spine candidates (Supplementary Fig. 4b). These
spine candidates were further sorted by criteria of their volumes and shape
characteristics. We first rejected spine candidates with their volumes close to the
resolution limit of SIM imaging. For this purpose, objects with their volumes less
than twice the volume of a rectangular cuboid with its edge lengths equal to the
theoretical resolutions of SIM images (< 0.01 μm3) were rejected (Supplementary
Fig. 4b). We next rejected objects that were judged to be too elongated along the
axis of the dendritic shaft. For objects larger than 0.32 μm3, we first calculate the
largest cross-section (OCS) in the plane normal to the longitudinal axis of the
parent dendritic shaft and the length of the object along the longitudinal axis of the
dendritic shaft (OL). If the ratio of OCS to OL was <4, the object was judged to be
too elongated and rejected. For objects smaller than 0.32 μm3, we rejected objects
with their OCS/OL ratio <2. This size-dependent adjustment of the threshold is
based on the fact that small spines tend to have lower OCS/OL ratios (small stubby
spines tend to have larger bases connected to dendritic shafts). The shapes of
virtual objects classified by these criteria are shown in Supplementary Fig. 4c.

The junction between spines and dendritic shafts was identified as follows. First,
we dilated the spine with two voxels (~60 nm) toward the junction and isolated the
overlap between the dendritic shaft and the dilated spine as the shaft-side surface
(blue pixels in the right image of Supplementary Fig. 4b). Next, the spine voxels
within 150 nm from the voxel centroids of the shaft-side surface were identified
(orange pixels in the right image of Supplementary Fig. 4b) as the spine-side
surface. We finally eliminated the voxels of the spine-side surface. This procedure is
effective in removing the voxels that stretch on the shaft surface away from the
spine base. On the other hand, this procedure removes a small number of voxels in
the spine base close to the shaft surface. We confirmed that this voxel elimination
procedure does not largely affect the subsequent spine measurement procedure by
comparing the outputs with the manual measurement (The ranges of errors were <
60 nm for spine length, <0.5 μm2 for spine area, <0.1 μm3 for spine volume. All
errors were <12% of the measured values.).

The isolated spine voxels were further processed by the marching cube
algorithm for isosurface triangulation. In the subsequent analyses, the mesh data
were saved as polygon file format (.ply). Alternatively, the polygon meshes of
dendritic segments were loaded into an open-source 3D computer graphics
software (Blender, the Blender Foundation) for detection and isolation of polygon

meshes for dendritic spines. Filopodia-like protrusions were not excluded from the
analyses. In some cases (< 15% of the total spine population), polygon meshes of a
pair of nearby spines were merged; these were omitted from the analyses.

Spine geometrical analysis. Three-dimensional triangular mesh surfaces of spines
were processed using custom MATLAB scripts (Supplementary Software “Geo-
metric_calculation” and “Geometric_curvature”). First, basic geometrical para-
meters, including spine length, spine surface area, and spine volume, were
calculated using the following equations20. Schematic explanations of the measured
values are provided in Supplementary Fig. 5.

Spine length (L) was calculated using the following equations:

L ¼ 1
n

Xn
i¼1

Aij j�!� �
ð1Þ

Ai
!¼ xi � cx; yi � cy ; zi � cz

� �
ð2Þ

where i stands for the index of all vertices with distances from the centroid of the
spine/shaft junctional plane (cx, cy, cz) larger than the upper 95% of the distances
for all vertices. (xi, yi, zi) are the coordinates of the vertices. (Note that this
parameter is different from the authentic curvilinear length from the base to the tip
of the spine. Our parameter gives more reasonable estimates for spines with
complex morphology, which have multiple protrusions and extending thin edges,
but provides lower estimates for long curved spines.)

Spine surface area (S) was calculated using the following equation:

S ¼
X
i

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi1wi2 � wi1vi2ð Þ2þ wi1ui2 � ui1wi2ð Þ2þ ui1vi2 � vi1ui2ð Þ2

q
ð3Þ

where i stands for the index of all elementary triangles. (ui1, vi1, wi1) and (ui2, vi2,
wi2) are vectors corresponding to two edges of triangle i.

Spine volume (V) was calculated using the following equation:

V ¼
X
i

1
6

�xi3yi2zi1 þ xi2yi3zi1 þ xi3yi1zi2 � xi1yi3zi2 � xi2yi1zi3 þ xi1yi2zi3ð Þ ð4Þ

where i stands for the index of all elementary triangles. (xi1, yi1, zi1), (xi2, yi2, zi2),
and (xi3, yi3, zi3) are the coordinates of the vertices of triangle i.

Additional geometric parameters that reflect more complex morphological
features were also included. Schematic explanations of the measured values are
provided in Supplementary Fig. 5.

Convex hull volume (CHV) is volume of the smallest convex set of vertices that
contains the spine polygon meshes. Vertices and volume of the convex hull for a
given spine mesh can be calculated by the built-in MATLAB function convhulln ().
From CHV, convex hull ratio (CHR) was calculated as follows:

CHR ¼ CHV� Vð Þ=V ð5Þ
Average distance (AD), the average distance between the individual vertices and

the centroid of the spine/shaft junctional plane, was calculated using the following
equation:

AD ¼ 1
N

XN
i¼1

Aij j�!� �
ð6Þ

where i and N stand, respectively, for the index of all vertices and their total
number. Coefficient of variation in distance (CVD) is coefficient of variation of the
calculated distances between the individual vertices and the centroid of the spine/
shaft junctional plane.

Open angle (OA) is the average angle formed by the spine axis and each vertex
vector. (A vertex vector starts from the centroid of the spine/shaft junctional plane
and ends at a vertex. Spine axis is specified by the average of all vertex vectors.)
Mushroom spines with flat spine heads, as well as stubby spines, have larger values
of OA. OA was calculated using the following equations:

OA ¼ 1
N

XN
i¼1

cos�1
~M � Ai

!
~M
�� �� � Ai

!��� ���
0
B@

1
CA

8><
>:

9>=
>; ð7Þ

~M ¼ 1
N

XN
i¼1

Ai
! ð8Þ

where i and N stand, respectively, for the index of all vertices and their total
number.

The third group of parameters associated with spine morphology involves
surface geometry. Curvatures on discrete surfaces made by polygon meshes can be
estimated by the following operators21.
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Mean curvature (MC) at the vertex (xi) specified by the vector ðxi!Þ was
calculated using the discrete approximation of the Laplace-Beltrami operator K:

KðxiÞ ¼
1
2A

X
j2n

cot αij þ cot βij

� �
xi
!� xj

!� �
ð9Þ

MC ¼ 1
2
K xið Þj j ð10Þ

where n is a group of vertices surrounding the central vertex xi, A is the size of
the barycentric region with its center at xi, xj is the jth vertex surrounding the center
vertex xi, and αij and βij are the opposite angles of the two triangles sharing the
edge ij.

Gaussian curvature (GC) at the vertex (xi) was calculated using the following
equation:

GC ¼ 1
A

2π �
X
j2n

θj

 !
ð11Þ

where n is a group of vertices surrounding the central vertex xi, θj is the jth angle of
the incident triangles at the central vertex xi, and A is the size of barycentric region
with its center at xi.

MC and GC were calculated for all vertices belonging to spine surface meshes.
Averages of MC and GC (avMC and avGC) were used as morphological
parameters for individual spines. For the quantitative analysis of local surface
curvature, spine mesh sizes were increased to match the resolution of SIM (the
minimum area of triangle meshes was >0.004 μm2).

In summary, we calculated 10 parameters (L, S, V, CHV, CHR, AD, CVD, OA,
avMC, and avGC) for each spine as descriptors of spine shape features.

PCA and SVM. Geometrical parameters of spines were calculated and analyzed by
the PCA method. From our initial analysis of independence among 10 descriptors
(L, S, V, CHV, CHR, AD, CVD, OA, avMC, and avGC), we selected five descriptors
(L, V, CHR, CVD, and OA) based on two criteria. First, we selected two descriptors
that reflect principal structural features (length and volume). Second, three other
descriptors that were relatively independent with the initial two descriptors and
with each other (the averages of pairwise correlation coefficients were <0.3) were
selected. PCA was applied to two types of image samples, neurons expressing GFP
and neurons labeled by DiI44. In both cases, the first three components in the
reduced representation covered more than 94% of the variance. Comparison of the
weights for GFP and DiI projection matrices indicated that the differences were
small (5.6 ± 4.1%, mean ± SD, for weights >0.4). Based on this observation, whether
the projection matrix generated from the merged data of GFP and DiI could be
used for efficient dimensionality reduction was next investigated. When the two
datasets were merged, the GFP dataset was converted to DiI data using the coef-
ficients determined from the data obtained from neurons imaged by both GFP and
DiI (Supplementary Fig. 9). Again, the first three PCs after PCA covered >90% of
the variance in the data. This projection matrix was used in subsequent spine
analyses for neurons from genetically modified mice and time-lapse 3D-SIM
experiments. For this purpose, the class sklearn.decomposition.PCA in scikit-learn,
a machine-learning library (scikit-learn.org), was used.

For classification of mushroom and non-mushroom spines with SVM45, one
expert manually labeled 1335 and 914 polygon meshes of spines generated from
3D-SIM images of GFP-expressing and DiI-labeled neurons, respectively. Using
these labeled datasets, two hyperparameters, C (penalty parameter) and γ
[coefficient for radial basis function (rbf) kernel], were optimized by grid search,
and the model performance was assessed by k-fold cross-validation (Fig. 2c). The
trained SVM classified mushroom spines of GFP-expressing and DiI-labeled
neurons with identical accuracy (89%). When the trained SVMs for GFP and DiI
were exchanged, the high accuracy was still preserved (85% for classifying GFP data
with a SVM trained with DiI data; 87% for classifying DiI data with a SVM trained
with GFP data). Because the distinction between mushroom and non-mushroom
spines is not always unambiguous, and classification by human operators is prone
to high variability, three additional experts were introduced for manual labeling of
400 polygon meshes of spines from GFP-expressing neurons. Comparison of the
classifications by the three experts and SVM revealed that the percentage match
between human operators and SVM was comparable with that among human
operators, implying that SVM-based classification of spines is advantageous
because it removes human subjectivity (Supplementary Table 1). Hyperparameter
tuning and SVM classification were performed using classes sklearn.
model_selection.GridSearchCV and sklearn.decomposition.SVC in scikit-learn.

Analysis of spine shape transition. Automated image thresholding and surface
mesh generation were applied independently for each time point. After image
processing, the difference in threshold values for Otsu’s method from the average
were confirmed to be within 20%. Corresponding spines at different time points
were further analyzed using the same parameters for spine geometrical analysis.
Trajectories of spine shape transition over time were mapped in the feature space
following PCA (Fig. 3b). Vectors of shape transitions in the feature space were
mapped into grids with edge lengths of 1 × SD, and the total lengths of trajectories

and the vector components projected onto orthogonal directions were calculated
(Fig. 3c). Classification of spines after time-lapse imaging was based on SVM-based
classification into mushroom and non-mushroom spines, followed by 2D mapping
to the plane, with the abscissa representing position in PCA feature space and the
ordinate representing the orientation preference of the trajectories (Supplementary
Fig. 15b). The orientation preference was calculated by the ratio between two
orthogonal components of the shape trajectories in the plane of PC1 and PC2. Two
orthogonal directions were chosen to be either parallel or perpendicular to the line
45° counterclockwise from the PC1 axis. When the orientation preference was >1,
the trajectory was judged to be closer to the direction from small/thin to large/
round spines (Fig. 3c, d).

Mapping of the concave surface of spine heads was based on MCs calculated at
spine vertices. As a first step, up to 10 vertices with the smallest negative MC values
were selected. Next, the average values of MCs were calculated over two-ring
neighborhoods (a given start vertex plus the first and second neighborhood
vertices), the area of which roughly corresponds to the size of the PSD, which has a
diameter of 400 nm. Based on the average MCs for the 10 candidate areas, the area
with the smallest negative average MC was selected and mapped to the spine head.
When the smallest negative MC of a single vertex within the area was greater than
−7 or the number of vertices with negative MC values was less than 4, this surface
was rejected, and the spine was judged to have no clearly identifiable concave
surface. This method reliably predicted the positions of pre- and postsynaptic
interfaces in the correlative SIM and EM analysis when prominent concave surfaces
were detected (Fig. 1c, Supplementary Figs. 6 and 7). Concave surface ratio was
calculated as the number of time points, when the spine was judged to have a clear
concave surface divided by the number of total imaging time points for that spine.
Stability of concave spine surfaces in time-lapse experiments (Fig. 3f) was evaluated
by relative movement of the center vertex (Vc) in the concave surface at two time
points (t1 and t2). The lines that passed the centroid of whole-spine polygon (Cspine)
and the Vc were drawn at t1 and t2, and the angle between these two lines after
alignment of Cspine was calculated [∠Vc(t1)CspineVc(t2)]. If this angle was >60°, the
concave surface was judged to be unstable. Concave surface stability was calculated
as the number of time points, when the spine was judged to maintain a stable
concave surface divided by the number of total imaging time points minus 1.

Structural changes in concave surfaces before and after induction of spine
structural plasticity were evaluated by measuring CHV and V of the spine heads
and calculating CHR. Larger CHR indicates more space between the convex hull
and original spine volume, which mainly reflects the volume made by the concave
surface of the spine.

Model spine generation and simulation. For simulation of spine image degra-
dation by optically induced blur, in silico model spines were generated using a
custom MATLAB script. Initial parameters were set as spine head radius of
500 nm, spine neck radius of 150 nm, and spine neck length of 700 nm. We also
removed a part of spine head volume to mimic concave surface on the spine head.
The volume removed from the spine head was defined by the overlap of two
spheres, one for spine head volume and the other for exclusion volume, with its
radius of 400 nm. The distance between the centers of two spheres was set to
450 nm. Model spines with different sizes were generated by proportionally
transform the original spine shape. The model spine volume was set in a range
of 0.08–0.57 μm3.

The image stacks were convolved with the Gaussian filters corresponding to
SIM resolution (115 nm, 115 nm, and 270 nm in the x, y, and z directions,
respectively) or resolution of confocal microscopy with confocal aperture set to 0.5
AU (190 nm, 190 nm, and 410 nm in the x, y, and z directions, respectively) by the
built-in MATLAB function convn (). The convolved image stacks were first
binarized by multilevel thresholding based on Otsu’s method without geodesic
active contours, followed by conversion to polygon mesh data. MC was calculated
at individual spine vertices. If clustered vertices of negative curvature (<−2.5) were
detected on a spine head, the spine image degraded by the optical system was
judged to still preserve their original concave surface.

Comparison of spine shape in culture and in vivo. We compared our own spine
volume data in cultured neurons expressing GFP (n= 1335) with the data of EM-
reconstructed in vivo spines (n= 938) available in the open data depository linked
to the publication by Bloss et al.23. Both data were generated from hippocampal
pyramidal neurons. The data for spine length in vivo were also taken from a
previous publication (n= 100)46. Previous reports of direct comparison between
chemical fixation and cryofixation reported that tissue shrinkage in the process of
fixation, dehydration, and embedding for EM sample preparation was ~26% in the
neuropil47. We assumed that the shrinkage of spines should be proportional to the
overall shrinkage of the neuropil. Based on this idea, we reduced the measured
spine volumes in cultured neurons by the factor of 0.74 before generating the
histogram shown in Supplementary Fig. 12. It should be noted that in the case of
chemical fixation of cultured neurons, shrinkage of dendrites and spines was
negligible (Supplementary Fig. 14). This difference in the effect of shrinkage may be
derived from the difference in the concentration of fixatives, the speed of chemical
reaction, or the osmolarity of fixative solutions47,48.
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Statistics. Data are expressed as means ± SEM unless otherwise noted. The sta-
tistical tests used for each experiment and the exact value of n (number of spines)
are indicated in the corresponding figure legends. Statistical significance was
determined by one-way ANOVA followed by Tukey–Kramer procedures for
multiple comparison tests, using the Statistics and Machine-Learning Toolbox™ of
MATLAB (MathWorks). The equality of probability distributions was evaluated by
Kolmogorov–Smirnov test. P-values < 0.05 were considered statistically significant
(*p < 0.05, **p < 0.01, ***p < 0.001).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
Custom scripts written in MATLAB R2017b are provided as Supplementary Software,
and custom scripts written in Python are available from the corresponding author upon
request.

Data availability
All data files are available from the corresponding author on reasonable request.
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