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ABSTRACT

The prevalence of both cancer and end-stage renal disease is increasing. In addition, medical advances have meant
increased survival rates for both diseases. Many chemotherapeutics are renally excreted, and conversely, renal
insufficiency promotes a pro-neoplastic state, including genitourinary and other cancers. Dialysis prolongs life while
increasing cancer risk. Proposed oncogenic mechanisms include immune dysfunction, chronic inflammation, changes in
gut microbiota and stimulation of the renin–angiotensin system. This review summarizes current concepts in the
relationship between cancer and renal insufficiency.
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INTRODUCTION

Both cancer and end-stage renal disease (ESRD) are highly prev-
alent in the general population. The International Agency for
Research on Cancer reported a global incidence for all cancers
of 18 million and a 5-year prevalence of >43 million in 2018.
Diagnostic and therapeutic advancements in recent decades in
the management of cancer patients have led to improved sur-
vival, with 26% reduced mortality from cancer in the USA
according to the Surveillance, Epidemiology, and End Results
(SEER) Cancer Database.

ESRD increases mortality and morbidity through an increased
risk of associated cardiovascular disease, diabetes and hyperten-
sion. Cancer incidence is reported to be higher in patients with
ESRD compared with the general population [1–3], although the
mechanisms involved are still not completely understood.

Both cancer and ESRD are more commonly diagnosed in older
patients, such that there is overlapping of the two conditions in
ageing individuals. Several cancer registry studies have reported
[2, 3] a higher incidence of bladder [standardized incidence ratio
(SIR) 1.5], kidney (SIR 3.6–4.03), liver, thyroid, head and neck and
cervical cancer, as well as a higher incidence of multiple myeloma
and non-Hodgkin’s lymphoma. This review summarizes current
concepts in the relationship between cancer and kidney disease.

RISK FACTORS

Although the mechanisms are still unknown, specific condi-
tions that have linked ESRD and cancer include the following
(Figures 1 and 2):
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i. Acquired cystic disease of the kidney has been linked to a
higher incidence of both clear cell and papillary renal cell
carcinoma (RCC) in chronic kidney disease (CKD) patients
[4]. Oya et al. [5] suggested possible activation of the proto-
oncogene c-Jun in patients with ESRD, secondary to a
chronic cytokine environment. ESRD patients have in-
creased levels of inflammatory cytokines such as interleu-
kin (IL)-1b, IL-6 and tumour necrosis factor (TNF)-a [6] due
to oxidative stress in uraemia, leading to c-Jun activation
and a higher risk of developing RCC. However, there seems
to be a correlation with only low-stage and low-grade RCC.
Another possible mechanism involves activation of the
hepatocyte growth factor–c-Met pathway, leading to cyst
formation and progression towards RCC [7]. Other anti-
apoptotic molecules seem to be overexpressed, such as
Bcl-2, leading to higher proliferative activity of the cystic
epithelium.

ii. Cyclophosphamide (CYC) use in patients with systemic
autoimmune diseases can increase the risk of both solid
tumours and myeloproliferative disorders [8, 9] due to di-
rect chromosomal damage induced by cytotoxic and in-
duced immunosuppression. Bladder and skin cancers
were found to be more prevalent in patients previously
treated with CYC compared with controls (P< 0.024). The
risk increased at 6 years post-treatment and continued to
increase at 20 years [8], suggesting a need for prolonged
surveillance in these patients. Moreover, there is a higher
risk in male patients and those receiving a higher cumula-
tive dose of CYC.

iii. Viral infections [human papillomavirus (HPV), hepatitis B
or C virus (HBV/HCV), Epstein–Barr virus (EBV)] in ESRD
patients can increase the risk of cancer. Both haemodialysis
(HD) and changes in innate and adaptive immunity [10, 11]
are already known to increase the risk of infection in ESRD
patients, increasing morbidity and mortality. It has been
suggested that �20% of HD patients become HBV carriers,
whereas the prevalence in the general population is �5%
[12]. However, only 5% of these patients die from liver dis-
ease [13] such as cirrhosis or hepatocellular carcinoma, and
other coexisting factors such as co-infection with HCV/hu-
man immunodeficiency virus, alcohol abuse and impaired

immune response contribute to a more rapid progression of
HBV-related disease. According to the Dialysis Outcomes
and Practice Patterns Study, the prevalence of HCV is nearly
10% [14], being lower in Western European countries and
higher in Middle Eastern countries. Antiviral agents have
been successfully used to improve outcomes in HCV
patients with CKD, being associated with a significant sur-
vival benefit [15]. Both HBV and HCV infections lead to an
increased risk of HCC, although the risk is higher with HBV
[relative risk (RR) 2.49 versus 1.5] [16, 17]. As ESRD patients
are generally immunocompromised due to immunosup-
pressive therapy used in the prevention of transplant rejec-
tion, an increased risk (RR 1.53) [18] of other viral infections
such as HPV has been observed. Several studies have
reported an increased risk of HPV-related cancers of be-
tween 1.8-fold and 8.6-fold [3, 18, 19], suggesting a possible
theoretical benefit from HPV vaccination in this population.
The prevalence of EBV infections in patients undergoing or-
gan transplantation varies between 16% and 50% [20].
Persistent EBV infection may contribute to Hodgkin’s lym-
phoma, Burkitt’s lymphoma, nasopharyngeal carcinoma
and gastric cancer [21]. Alterations in the nuclear factor-jB
(NF-jB) pathway, PI3K (phosphatidylinositol 3-kinase)
mutations and CpG methylation of the cell genome have
been described in these patients. Moreover, EBV avoids im-
mune surveillance through downregulation of the major
histocompatibility complex (MHC) or programmed death-
ligand 1 (PD-L1) expression, leading to inactivation of T
cells.

iv. Prolonged analgesic use has been linked to a 1.25–1.28
increased risk of kidney cancer in a large meta-analysis
that included >8000 RCC patients [22]. One suggested
mechanism is the alkylating effect of the accumulation of
N-hydroxylated phenacetin metabolites in the kidney [23].
This also leads to stimulation of carcinogenesis in the kid-
ney, ureters and bladder due to prolonged exposure and
increased concentration of these substances.

v. Balkan endemic nephropathy accompanied by urothelial
carcinoma after exposure to aristolochic acid (AA) has
been described in southeastern European populations
[24, 25]. The prevalence of the disease varies between 0.5
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FIGURE 1: Mechanisms of renal cell carcinoma; ESRD- end stage renal disease; IL-1b - interleukin 1 beta; IL-6- interleukin 6; TNF-a - tumor necrosis factor alpha; Bcl-2 -

B-cell lymphoma 2.
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and 4.4 in those with a genetic predisposition after expo-
sure to plants of the genera Aristolochia and Asarum.
Besides nephrotoxicity, AA has been linked to upper uri-
nary tract cancer. Its carcinogenic potential has been indi-
cated by the overexpression of p53 in these patients,
suggesting a role for p53 gene mutations and the presence
of AA DNA adducts in the kidney [26, 27].

vi. Genetic factors. Inherited genetic mutations lead to 10% of
all cancers, thus a detailed assessment of the family can-
cer history may indicate a hereditary cancer syndrome.
RCC can be linked to a VHL gene abnormality in 1 of 36 000
individuals [28] who are at risk of developing multiple re-
nal cysts and multicentric and bilateral clear cell carci-
noma of the kidney. Other genetic alterations, such as the
BRCA1-associated protein-1 mutation responsible for
encoding a nuclear deubiquitinase, polybromo-1 (PBRM1)
gene mutation, inactivation of histone-modifying genes or
alterations of the ubiquitin-mediated proteolysis pathway
have been described in RCC [29–32]. The Cancer Genome
Atlas Research Network documented MET germline muta-
tions in patients with type 1 papillary RCC [33] and fuma-
rate hydratase germline mutations in type 2 papillary RCC.

vii. Ultraviolet light exposure has been linked to a 7.43% cu-
mulative incidence of non-melanoma skin cancer [squa-
mous cell carcinoma (SCC)] in organ transplant recipients
[34] under immunosuppressive treatment. Induction of
oxidative stress and DNA damage has been documented
in patients on azathioprine, and a lower incidence of SCC
has been observed with mammalian target of rapamycin–
based immunosuppressants.

viii. Glomerulonephritis (GN) in a study by Ryu et al. [35] has
been associated with an increased risk of malignancy (co-
lon cancer, lung cancer, multiple myeloma and Kaposi’s
sarcoma) via mechanisms that are not fully understood.
The observed:expected cancer ratio varied between 0.8
and 28.57, being highest with amyloidosis. Traditionally
GN has been considered as a paraneoplastic syndrome as-
sociated with cancer diagnosis, however, the use of immu-
nosuppressive drugs interfering with the immune system
may explain the higher observed cancer risk [36].

Retrospective studies [2, 3] suggest a higher risk of cancer of
the bladder (SIR 1.5) and kidney or renal pelvis (SIR 3.6–4.3)
among ESRD patients. In a retrospective cohort study of
Taiwanese dialysis patients [37], the highest cancer risk was in
the younger population, unlike in the previously mentioned
studies. A meta-analysis of prospective studies [38] suggests a
correlation between renal function decline and a trend towards
an increased risk of urinary tract cancers fhazard ratio [HR] 2.34
[95% confidence interval (CI) 1.31–4.18]; P¼ 0.06g.

MECHANISMS INVOLVED IN CARCINOGENESIS

The management of cancer is often complicated by coexisting
ESRD, and there is interest in early detection of this overlap
population whose survival is doubly negatively impacted
(Figures 2 and 3).

Studies reporting an increased cancer incidence in ESRD
patients [39–41] offer valuable epidemiologic information re-
garding cancer risk in this specific population. These observa-
tional studies show an increased incidence of colon and lung
cancers after transplantation, as well as virus-associated can-
cers, possibly as a result of immunosuppressive drugs;
endocrine-related cancers such as breast, prostate and ovarian
cancers have a similar rate; several cancers related to kidney
dysfunction are more frequently diagnosed, such as kidney and
urinary tract cancers, myeloma and lymphoma; geographic dif-
ferences in viral patterns may influence cancer risk in some
areas; and differences in cancer screening strategies may also
impact cancer diagnosis and influence reported outcomes in
these studies.

Immune dysfunction in ESRD

Both innate and adaptive immunity play a major role in im-
mune surveillance, with different specificity of recognition and
speed of response. The innate immune response is less specific
in target recognition but compensates in the speed of the re-
sponse. On the other side, the adaptive immune response has a
higher target specificity but offers a more delayed, but durable,
response. Cancer cells can elude the immune system by
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blocking the ‘immune checkpoint molecules’, such as cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), programme cell
death protein 1 (PD-1) and PD-L1 expression by tumour cells,
which represents an important mechanism of tumour immune
evasion. Modulating the immune response with checkpoint
inhibitors has been recognized as a standard of care for many
types of cancers in the last decade.

In ESRD patients, changes in the immune system have been
observed in the context of both the condition itself and the im-
munosuppressive treatment. In the context of decreased renal
clearance, increased oxidative stress and volume overload, hyper-
cytokinaemia has been observed [42, 43]. Moreover, uraemia has
also been associated with immunosuppression, as demonstrated
by changes in immunocompetent cells. In terms of innate immu-
nity changes, an increased production of pro-inflammatory cyto-
kines has been described, such as IL-1b, IL-6 and TNF-a, as a
consequence of decreased renal function [43]. Chronic inflamma-
tion has also been observed, as neutrophils are more prone to ap-
optosis, as a direct effect of the uraemic milieu [44].

A reduced immunogenic response has been observed in
ESRD patients undergoing vaccination [45], as a consequence of
the uraemic milieu [46]. Only 50–75% of HD patients who receive
the usual HBV vaccine develop protective antibody levels, com-
pared with 90% in the general population. This has also been
observed when HD patients were vaccinated against influenza
virus, Clostridium tetani and Corynebacterium diphtheriae [45]. The
most important adaptive immune system representatives are B
cells and T helper (Th) lymphocytes. Th lymphocytes activate
macrophages and neutrophils and also play a role in promoting
humoral immunity. In HD patients, there is an altered Th1:Th2
ratio in favour of Th1 due to increased Th1 differentiation in-
duced by the production of IL-2 [47, 48]. Another change in the
immune system in HD patients is B cell lymphopenia due to in-
creased apoptosis [49].

Such an imbalance has been correlated with the develop-
ment of SCC in post-transplant patients [50, 51]. Due to impair-
ment of dendritic cells, natural killer cells and effector T cells,
combined with an increased expression of CD57hi immunose-
nescent CD8þ T cells (cells with impaired cytotoxic activity), the
immune surveillance in HD patients is altered. A possible role of

cr T cells in SCC carcinogenesis has been suggested by Rei et al.
[52], who observed a direct association between cancer inci-
dence and the number of cr T cells. The authors suggested pa-
tient stratification according to the CD8þCD57hi phenotype
when assessing cancer risk in post-transplant patients.

Chronic inflammation in ESRD/inflammation and
oxidative stress

Various transcriptional and epigenetic changes can contribute
to the progression of renal damage through oxidative stress, in-
flammation and uraemic toxins, as identified in genome-wide
association studies.

HD may cause acquired immunodeficiency over time [53].
The dialysis membrane used for the procedure and the bacterial
products present in the dialysis water may abnormally activate
a series of immune cells, such as monocytes. This phenomenon
has been mostly observed with cellulose membranes, compared
with non-cellulose membranes, and was dependent on interac-
tion with the dialysis membrane. The authors also observed an
increased expression of adhesion molecules such as CD18,
CD49, CD54 and the lipopolysaccharide ligand CD14. Moreover,
HD induces the expression of complement factors and endotox-
ins, further contributing to cellular activation, with several con-
sequences such as cytokine secretion and induced apoptosis of
cells coming into contact with the membrane. As back-filtration
and back-diffusion of contaminated dialysate have been linked
to cytokine production during the process, the use of ultrapure
dialysis fluid may decrease IL-6 and C-reactive protein (CRP) lev-
els, thus reducing the inflammatory process [54, 55]. Compared
with HD, peritoneal dialysis (PD) seems to induce a modest in-
flammatory response [56], although the prevalence of chronic
inflammation is similar in both [57]. This is probably due to the
fact that PD relies on the use of a physiological membrane, not
an artificial one.

Genetic factors are involved in the development of chronic
inflammation, which explains variations in the prevalence and
consequences of inflammation in various patient groups.
Studies of patients of Asian descent showed a lower predisposi-
tion towards chronic inflammation, along with better survival
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outcome [58, 59]. Szalai et al. [60] identified a single-nucleotide
polymorphism (SNP) in the CRP gene that caused increased CRP
levels in Caucasians compared with Asian populations.
Decreased IL-10 production associated with a SNP can also lead
to a more active inflammatory response [61], while a SNP in the
LGALS2 gene that encodes galectin-2 was found to have a
regulatory role in inflammation [62]. Although genetic polymor-
phism suggests differences in inflammatory response, it
has not been established yet if this translates into differences
in inflammatory response during dialysis treatment in both HD
and PD.

There is growing evidence that suggests increased levels of
oxidative stress in CKD patients, especially in later stages,
where there seems to be an inverse correlation between the two
[63], promoting inflammation. Moreover, HD can decrease anti-
oxidant levels during the procedure, favouring the accumula-
tion of various oxidative products [64]. Therefore it has been
speculated that supplementation of various antioxidants (vita-
mins E and C) may reduce oxidative stress in these patients, al-
though interventional studies have been inconclusive [65].
Increased oxidative damage to DNA, such as single- or double-
strand breakage, base modifications or DNA cross-linking, may
increase the mutational load and play an important role in car-
cinogenesis [66, 67]. Activation of the Ras signalling pathway, as
well as c-Myc overexpression, can increase genomic instability
and promote DNA damage [68, 69].

During carcinogenesis, the chronic inflammatory milieu
can influence the immune response and induce angiogenesis,
tumour growth and metastasis [70]. Further genomic instability
and accumulation of mutations lead to cancer due to
oncogene activation and tumour suppressor gene inactivation.
Several pathways are altered in most solid tumours, some
being driven by inflammatory conditions, leading to a malig-
nant phenotype [71].

Accumulation of genetic and epigenetic alterations induced
by either environmental factors or chronic inflammation causes
aberrant DNA methylation [72], and oncogenesis can be further
stimulated by various carcinogenic exposures [73]. An
epigenome-wide association study associated DNA methylation
level in specific cytosine–phosphate–guanine sites with a reduc-
tion in estimated glomerular filtration rate, incidence of CKD
and renal fibrosis in patients from the Atherosclerosis Risk in
Communities and Framingham Heart Studies [74]. Moreover, in-
creased levels of DNA methylation in certain genes, such as
connective tissue growth factor, methylenetetrahydrofolate re-
ductase (MTHFR) and insulin like growth factor binding protein
1 (IGFBP1), have been observed in ESRD patients [75–77]. Other
mechanisms involved in the development of CKD include his-
tone crotonylation and acetylation that can contribute to the in-
flammatory process [78] or higher levels of pro-inflammatory
microRNA (miRNA) such as miR-34 [79]. Of note, miRNA and
DNA methylation have been studied as biomarkers of CKD pro-
gression and these may become treatment targets in the future.

Gut microbiota and inflammation

Gut microbiota are influenced by and maintain equilibrium via
nutrition, metabolism and the immune system [80, 81].
Microbiota evolve with the host over time, with variations in ge-
nome, diet and lifestyle factors [82]. The Human Microbiome
Project Consortium used next-generation sequencing and meta-
genomics in order to characterize the diversity of the human
microbiome, mapping the microbial signature of normal indi-
viduals and highlighting the important role in various

physiological functions and its implications in various diseases
[83, 84]. As gut microbiota represent a dynamic system, it has
been suggested that alterations in commensal flora can contrib-
ute to the pathogenesis of various conditions, including CKD
and cancer. Although several studies have focused on describ-
ing the microbiome composition and its impact on human
health, there is a need for further research corroborated by
results from larger clinical trials [85].

In CKD patients, the uraemic milieu influences the intestinal
barrier, promoting chronic inflammation and translocation of
bacteria and endotoxins across the intestinal wall. In turn, there
is a decreased population of beneficial bacteria that produce
short-chain fatty acids and an increase in uraemic toxin–
producing bacteria [86], generating bound uraemic solutes pro-
duced by fermentation in the large intestine [87]. The continu-
ous gut production of endotoxin (constituents of the outer
membrane of Gram-negative bacteria) triggers an immune re-
sponse through the activation of macrophages and endothelial
cells, contributing to chronic inflammation in CKD patients [88,
89].

In ESRD patients, there is a bidirectional relationship be-
tween the microbiota and the uraemic milieu, as the uraemic
milieu has a negative impact on the microbiota on the one hand
and, on the other hand, alterations in the microbiota lead to
uraemic toxin production [90]. As a consequence, dietary inter-
ventions in CKD patients seem to provide benefits in reducing
uraemic toxin generation by both the microbiota and the dis-
ease itself.

The relationship between gut microbiota and cancer has
been intensely studied and a link has been described with gas-
trointestinal tumours through either oncogene activation or tu-
mour suppressor gene inactivation. A ‘gut–brain axis’ has been
described, suggesting a crosstalk between the enteroendocrine
system and the central nervous system, the hypothalamic–pitu-
itary–adrenal axis, the autonomic nervous system and the en-
teric system [91]. The microbiome can modulate host
metabolism, the immune system, xenobiotics and drug metabo-
lism [92–94], being involved in both carcinogenesis through dys-
biosis and inflammation and the modulation of treatment
response in cancer patients treated with immunotherapy.
Treating dysbiosis with probiotics or faecal microbiota trans-
plantation has proven beneficial in preclinical studies, with
some authors recommending integrating probiotics alongside
anticancer therapy in order to modulate treatment response
[95, 96].

Given the increased risk of gastrointestinal tumours in ESRD
patients, one possible mechanism could be long-term altera-
tions in gut microbiota, promoting carcinogenesis in this popu-
lation. However, this association has not been confirmed yet in
preclinical or clinical studies and further research is needed, es-
pecially in the context of possible modulation of dysbiosis with
dietary interventions.

Intrarenal renin–angiotensin system (RAS) activation as
a hallmark of cancer

The RAS regulates haemodynamics [97] via renal sodium trans-
port under both physiological and pathological conditions.
However, preclinical studies have suggested that RAS is also in-
volved in various other functions such as cell cycle regulation
and angiogenesis inhibition [98]. In ESRD patients, higher intra-
renal angiotensin II levels and angiotensin II receptor type 1
(AT1R) expression have been observed, secondary to RAS
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activation, contributing to renal damage such as tubulointersti-
tial fibrosis [99].

The extravascular impact of RAS may be oncogenic. Several
acquired properties of cancer cells, as defined in 2000 by
Hanahan and Weinberg [100], include angiogenesis, cell prolif-
eration, metastasis and alteration of metabolism and the micro-
environment. The effects of the RAS on cancer cells seem to
favour the described hallmarks. However, it is still unclear if
RAS alterations are secondary to cancer development or if they
play a role in carcinogenesis.

RAS signalling induces receptor-mediated cell proliferation
and differentiation in vascular smooth muscle cells and breast,
pituitary, adrenocortical and endometrial cells [101, 102]. One of
the possible mechanisms by which angiotensin peptides are in-
volved in cellular growth is through mitogen-activated protein
kinase kinase (MEK) and PI3K signalling [103], which are impor-
tant signalling pathways overexpressed in various cancers. The
receptor-mediated signalling of the RAS may be dependent on
both the overexpression and the type of receptor, as AT1R is
mainly responsible for cell proliferation and angiogenesis,
whereas angiotensin II receptor type 2 (AT2R) has inhibitory
effects, thus stimulating apoptosis [103].

Arrieta et al. [104] analysed the expression of AT1R and AT2R
in high-grade astrocytoma, correlating receptor expression with
the mitotic index and vascular density, suggesting a co-
dependent relationship between the two receptors. Inhibition of
AT1R may result in AT2R overexpression and activation of cell
death through apoptosis.

RAS activation through AT1R may favour cancer cell survival
through activation of the PI3K–Akt pathway, suppression of the
caspase pathway and production of anti-apoptotic Bcl proteins
[105]. It is involved in reshaping the tumour microenvironment
through pro-inflammatory and pro-angiogenic signalling, along
with generation of reactive oxygen species involved in DNA
damage.

The RAS in tumour invasion and metastasis has been sug-
gested by two trials that included gastric cancer [106] and renal
cell cancer patients [107], where AT1R overexpression could
have an impact on tumour behaviour, suggesting a possible link
between RAS and tumour capacity for metastasis. Keizman et al.
[107] retrospectively analysed the possible effects of adding an
angiotensin-converting enzyme (ACE) inhibitor to sunitinib.
The combination significantly improved patient outcome, with
a 7-month progression-free survival benefit (HR 0.537;
P¼ 0.0055), suggesting that adding an ACE inhibitor may de-
crease the expression of vascular endothelial growth factor and
inhibit the growth factor receptor through a secondary
mechanism.

Genetic determinants have been associated with an in-
creased risk of cancer. In a population-based study, van der
Knaap et al. [108] suggested that carriers of the high-activity DD
genotype have an increased risk of breast cancer compared
with those with the low-activity II/ID genotype [HR 1.47 (95% CI
1.05–2.04)]. Moreover, DD carriers who were exposed to long-
term high-dose medication were at lower risk of cancer [HR 0.28
(95% CI 0.10–0.79)] and short-term high-dose patients had a
higher risk of colorectal cancer progression in the II/ID stratum
[HR 3.83 (95% CI 1.67–8.79)].

CONCLUSIONS

Mechanisms related to immune dysfunction and inflammation
have been suggested to be involved in promoting cancer in
ESRD patients. Current data focus on the role the microbiota

and uraemic milieu play in modulating inflammation in CKD
patients and on understanding their role in cancer initiation. In
the ‘-omics’ era, identification of predictive biomarkers can bet-
ter stratify patients at risk and incorporate better surveillance
or preventive strategies for the CKD patient.

Onconephrology has already been recognized as an emerg-
ing field, due to the importance of a multidisciplinary approach
of ESRD patients with cancer. Complex management strategies
for these patients have influenced research strategies that have
led to a better understanding of the underlying mechanisms of
cancer in these patients. However, there is still an unmet need
in the field, as the mechanisms involved in cancer initiation
and progression in this particular setting are still not fully un-
derstood. The focus of future research will likely include pre-
ventive strategies that can lead to improved cancer screening
and treatment in patients with CKD.
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