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Genetic robustness refers to a compensatory mechanism for buffering deleterious mutations or environmental variations. Gene
duplication has been shown to provide such functional backups. However, the overall contribution of duplication-based buffering
for genetic robustness is rather small. In this study, we investigated whether transcriptional compensation also exists among genes
that share similar functions without sequence homology. A set of nonhomologous synthetic-lethal gene pairs was assessed by
using a coexpression network, protein-protein interactions, and other types of genetic interactions in yeast. Our results are notably
different from those of previous studies on buffering paralogs. The low expression similarity and the conditional coexpression alone
do not play roles in identifying the functionally compensatory genes. Additional properties such as synthetic-lethal interaction, the
ratio of shared common interacting partners, and the degree of coregulation were, at least in part, necessary to extract functional
compensatory genes. Our network-based approach is applicable to select several well-documented cases of compensatory gene
pairs and a set of new pairs. The results suggest that transcriptional reprogramming plays a limited role in functional compensation
among nonhomologous genes. Our study aids in understanding the mechanism and features of functional compensation more in
detail.

1. Introduction

Genetic robustness is critical for enhancing organism’s capa-
bility to tolerate random mutations [1]. One of the features
for biological robustness is functional redundancy, in which
two or more components can perform similar functions
[2]. From a theoretical perspective, two main mechanisms
have been proposed for explaining biological robustness
due to functional redundancy [3]. The first mechanism is
duplicate buffering [4, 5], which is a backup compensation
for the loss or mutation of a duplicate (paralog), to overcome

stochastic fluctuations in gene and protein expression [3–
6]. This has been considered as an obvious source of genetic
redundancy that can compensate for a gene loss [4, 5, 7, 8].
More specifically, if gene A and gene B are functionally
redundant duplicates, the expression of gene B will be
upregulated to rescue the organism upon the mutation of
gene A [6]. However, functionally redundant duplicates are
evolutionarily unfavorable [9]. The capability to compensate
for gene mutations may be lost over long periods because of
divergence [9–14].
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The second mechanism stems from the viewpoint of
distributed robustness, usually achieved through degeneracy.
Degeneracy refers to a circumstance where structurally
distinct components bear out similar or partially overlapping
functions [2, 3, 8, 15]. Especially, alternative pathways are
found to provide the robustness of the metabolic network
[16], regulatory network [17, 18], and signal transduction
network [19]. Such systems-level redundancy is not medi-
ated by duplicates but by evolutionarily distant proteins.
Degeneracy may contribute more to the overall robustness
than duplicate buffering [20].

In prokaryotes and eukaryotes, a high proportion of gene
mutations do not affect phenotypically [4, 8, 21–25]. Double
knockout of both duplicate genes shows a significantly larger
defect on phenotypes than expected from the effects of
single knockouts [4, 26], but previous analyses found the
contribution of duplicates to genetic buffering is only around
23% or even less [4, 27, 28]. As Ihmels et al. suggested,
homologous duplication may not be a prerequisite for gene
backup capability [27]. On the other hand, Kafri et al. pro-
posed that transcriptional reprogramming is the major factor
of functional compensation: when one gene is mutated, the
expression of another is reprogrammed to recover the origi-
nal function [6].

The transcriptional reprogramming model suggested by
Kafri et al. can be extended to explain the compensatory
phenomenon caused by distributed robustness. In this
study, we focused on nonhomologous genes and identified
potential gene pairs compensated by distributed robustness.
One conceivable indicator for functional compensation is the
synthetic- or sick-lethal (SSL) relationship. SSL interactions
occur between two genes whose disruptions in combination
yield a stronger growth defect than that generated by
either single disruption. SSL pair is likely to be functionally
equivalent or share partially overlapping functions. Although
transcriptional compensation between SSL gene pairs seems
to be rare and play a limited role in maintaining robust-
ness [29, 30], the large-scale techniques provide abundant
experimental data for the study of genetic compensation on
a genome-wide level.

In order to determine whether transcriptional compen-
sation occurs among nonhomologous genes, we extracted
6186 nonhomologous SSL interactions from BioGRID Inter-
action Database [31]. Of these SSL gene pairs, only 171 pairs
were found to have the potential compensatory capability.
We provide evidences that the degree of sharing regulatory
elements between the SSL gene pairs and the ratio of
common neighbors in the biological network are related to
compensation capability. Moreover, most of the nonhomol-
ogous compensatory genes are multifunctional interaction
hubs. The overall effect of robustness contributed from func-
tional redundancy is still an issue of debate. Transcriptional
reprogramming is not the only mechanism to achieve the
functional compensation among nonhomologous genes, but
our analysis would provide a unique viewpoint of genetic
robustness beyond duplication-based compensation.

2. Materials and Methods

2.1. Dataset of Synthetic Lethal Genes and mRNA Expres-
sion Data. With systematic generation of double mutant
strains of Saccharomyces cerevisiae [32–34], two approaches,
synthetic genetic arrays (SGA) and diploid-based synthetic
lethality analysis on microarrays (dSLAM), have been devel-
oped to identify genome-wide synthetic lethal interactions.
We collected all experimentally verified SSL interactions
from BioGrid database (http://www.thebiogrid.org/). Recent
data sets of high-density epistatic miniarray profiles (E-
MAPs) were also included [35, 36]. Temporal mRNA
expression data for 6359 S. cerevisiae genes in 40 natural and
perturbed conditions were obtained from ExpressDB [37].
Genome-wide responses to 259 single-gene mutants were
also collected [38]. All expression profiles of the genes in each
condition were standardized with respect to the mean and
variance.

2.2. Calculation of Sequence Similarity and Assignment of
Functional Module. For each pair of synthetic lethal genes,
the corresponding protein sequences were downloaded from
NCBI RefSeq (release 24). We defined nonhomologous pro-
tein pairs as two sequences that, by BLASTP with standard
parameters, share less than 30% identity. Of 9237 SSL pairs,
6186 were nonhomologous. Tong et al. reported that 98% of
SSL gene pairs were nonhomologous [34], but our criterion
was stricter: only 67% of SSL pairs were retained for further
functional analyses.

Functional modules applied on our dataset were col-
lected from the work by Petti and Church [39]. They defined
72 functional modules from the S. cerevisiae genome data-
base at MIPS (Munich Information Center for Protein Se-
quences) [40].

2.3. Biological Network Construction. We constructed two
types of biological networks, the molecular functional net-
work and the gene coexpression network, to estimate the
functional similarity between two genes.

The 40 expression profiles under natural and perturbed
conditions were used to construct the coexpression network.
To evaluate the degree of coexpression between each pair
of genes, Pearson correlation coefficients (PCCs) under
different conditions were calculated and genes with PCC >
0.7 (upper 5th percentiles) were connected.

As for the functional network, we collected protein-
protein and genetic interaction data from the Bio-
GRID (http://www.thebiogrid.org/) and BOND (http://bond
.unleashedinformatics.com/) databases.

2.4. Promoter Regulatory Elements Analyses. Promoter se-
quences of all nonhomologous SSL genes with functional
similarity were retrieved from NCBI RefSeq (release 24)
(http://www.ncbi.nlm.nih.gov/RefSeq/). A set of 103 yeast
regulatory elements (motifs) and their gene assignments
were collected from the TRANSFAC database (version
11.3)(http://www.gene-regulation.com/pub/databases.html),
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which records all experimentally verified transcription
factors of S. cerevisiae and their target genes.

For each pair of nonhomologous SSL genes with func-
tional similarity, a pattern search program in TRANSFAC
(pMatch) was applied to match both promoter sequences
individually with all experimentally determined regulatory
motifs. Then, the motif-content overlap (MCO) score [6]
was calculated as follows:

MCO = |r1 ∩ r2|
max(|r1|, |r2|) , (1)

where r1 and r2 are sets of matched regulatory elements in
promoter one and promoter two, respectively. |rx| denotes
the number of regulatory elements in gene x.

2.5. MES and PCoR Analyses. MES and PCoR defined by
Kafri et al. stand for “mean expression similarity” and
“partial coregulation”, respectively [6]. For each pair of the
nonhomologous SSL pairs with high functional similarity,
Pearson correlation coefficients of mRNA expression profiles
under 40 different conditions were calculated to compute
these scores.

2.6. Functional Relatedness Analyses. For all gene pairs, we
defined the CN (common neighbor) score as a measure for
the fraction of shared partners. The score was defined as

CN = n12

(n1 + n2 − n12)
, (2)

where n1 and n2 denote the number of neighbors for one and
the other synthetic lethal counterpart, respectively, and n12

denotes the number of common neighbors shared between
the two SSL genes. If the two SSL genes are connected
directly, the value of n12 is two. The significance of the CN
score was estimated by a P value, (Pr(CNrandom � CN)),
computed by randomly sampling sets of 105 pairs of genes.

3. Results

3.1. Sequence Similarity and Functional Module Analysis. The
central issue is whether transcriptional compensation plays
a significant role for nonhomologous genes with similar
functions. To exclude all homologous SSL gene pairs, we first
evaluated a set of SSL pairs of S. cerevisiae through sequence
similarity. Of 9237 SSL pairs, 6186 were nonhomologous
and retained for further analyses. Next, we identified 1771
nonhomologous SSL pairs that are categorized into either
one of 72 functional modules [39], which are defined as a
group of genes or proteins involved in a common cellular
process in the gene ontology.

3.2. Gene Expression Analyses. Kafri et al. showed that the
compensatory capability of a gene pair is optimal when
its mean expression similarity (MES) falls from 0 to ∼0.2
and the standard deviation of gene expression correlations
(PCoR) higher than 0.4 [6]. To examine whether this feature
also exists in the selected 1771 gene pairs, we plotted their
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Figure 1: The distribution of MES and PCoR for synthetic
sick/lethal (SSL) genes in the same and different functional
modules. SSL genes in the same functional modules (blue) and
different functional modules (red) are plotted as functions of the
mean expression similarity (MES) and partial coregulation values
(PCoR). The trends of both dataset are very similar. A two-sample
t-test reveals that the differences between them are statistically
nonsignificant as LOWESS (locally weighted scatterplot smoothing)
curves show. Both P values for MES and PCoR are around 0.19.

scores on a plane spanned by MES and PCoR (blue circles
in Figure 1) against the remaining nonhomologous SSL pairs
that were not mapped into the same functional modules
(red circles in Figure 1). The two-sample t-test revealed that
the difference between the two sets was not statistically
significant (P values are 0.59 and 0.91 for MES and PCoR,
resp.). We also analyzed the distribution of both PCoR and
MES for homologous SSL genes. In this case, the P values of
the two-sample t-test for MES and PCoR were 0.000038304
and 0.000176, respectively. Our results demonstrated that
the measurements of PCoR and MES did not fully delineate
compensatory capability in nonhomologous genes.

3.3. Network-Based Modeling. Paralogs with backup capacity
have high propensity to be coclustered in the same protein
complexes and share common interacting partners [41]. To
further filter nonhomologous pairs with high functional
similarity, we defined the CN (common neighbor) score (see
Section 2).

We used two complementary biological networks: the
molecular functional network and the gene coexpression net-
work. Both types of networks were constructed to estimate
the functional similarity between two genes (see Section 2).

Of the 1771 nonhomologous SSL pairs in the same
functional module, 171 pairs had significant CN scores
(P � 0.01) in both the molecular functional network and
the coexpression network. Figure 2 shows the distribution
of these 171 SSL pairs on the MES-PCoR plane. About
70% of these functionally overlapping nonhomologous SSL
pairs had MES values between 0 and 0.5 as well as PCoR
values from 0.4 to 0.6. The above MES and PCoR values
suggest that expression patterns of nonhomologous SSL pairs
are conditionally coexpressed. The distribution of MES and
PCoR values for the 171 nonhomologous pairs showed a
trend similar to that observed for paralogous backup genes
[6]. Based on the gene expression profiles corresponding to
diverse mutations [38], we selected a set of genes as poten-
tial compensatory genes, which show expression alteration
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Figure 2: The distribution and characterization of the PCoR and
MES for the 171 nonhomologous genes with a significant CN
score and the genes with potential compensatory capability. 171
nonhomologous SSL genes with a significant CN score are plotted
in blue color. The selected genes with potential compensatory
capability from the gene expression profiles are plotted in red.
Seventy percent of the 171 genes (in a green rectangle) have
the values of MES and PCoR concentrated in [0, 0.5] and [0.4,
0.6], respectively. The selected genes are also concentrated in the
aforementioned range (in a green rectangle).

after mutation or deletion of their SSL partner. Figure 2
illustrates the distribution of PCoR and MES for the 171
nonhomologous genes (in blue color) and selected potential
compensatory genes from (in red color). The values of the
PCoR and MES are more clustered in the intervals [0.4,
0.6] and [0, 0.5], respectively. To further investigate the
distribution of PCoR and MES, both measurements were
also estimated on CN-significant and non-CN-significant
nonhomologous genes in the same functional module. In
this case, PCoR and MES were not associated with the CN
score (P values of 2-sample t-test are 0.07 and 0.97 for MES
and PCoR, resp.). On the other hand, for homologous SSL
pairs in the same functional module, MES and PCoR are
statistically significant between CN-significant and non-CN-
significant pairs (P values of 2-sample t-test are 0.002279
and 0.0197 for MES and PCoR, resp.). Again, these two
measurements failed to find cofunctional compensatory
pairs when they are not homologous.

3.4. Motif-Sharing Analysis of Nonhomologous SSL Pairs.
Because the maximal duplicate-associated compensatory
capability might coincide with intermediate levels of motif
sharing in the promoter regions of the backup gene pair,
partial similarity of regulatory controls may form the basis
of transcriptional reprogramming in response to the loss of
one paralogous partner [6]. Hence, we next also investigated
the regulatory elements in the promoter sequences of the
functionally overlapping nonhomologous SSL pairs and
calculated the MCO score for each pair.

We used the aforementioned mRNA expression profiles
of single-gene mutants to study the relationship between
sharing regulatory elements and the compensation capability
of nonhomologous SSL pairs. Of the 259 knockouts in this
expression dataset, 66 nonhomologous genes with functional
similarity had synthetic lethal interactions. Figure 3 presents
the relationship between MCO scores and the corresponding
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Figure 3: The probability of transcriptional compensation and
the score of the motif-content overlap. In this analysis, SSL pairs
were considered to have functional compensation potential only
if they were in the same functional module and had significant
ratios of common neighbors. Furthermore, the logarithm of the
transcriptional response to deletion of the counterpart member was
at least 1.5 (P ≤ 0.01). The number of qualified compensation—
providing candidate pairs (log ratio ≥1.5) was divided by the total
number of functionally characterized pairs (regardless of the log
ratio) for each of the ranges of motif-overlapped ratios.

probabilities of functional compensation. The greatest pro-
portion of compensatory genes was observed to have MCO
scores between 30% and 40%. Similar to compensation by
duplicate genes, backup capability was obtained when two
genes share only part of their regulatory elements. It should
be noted that highly similar regulatory controls in a gene
pair result in strongly correlated expression profiles. In this
scenario, both genes might be expressed at similar levels
and might be expected to be required simultaneously. This
may be why nonhomologous SSL pairs with overlapping
functions lack the potential for compensation capability
when their MCO score is higher than 0.5. Although the
analysis of the mRNA expression data is not comprehensive,
this analysis provides an evidence to show that partial overlap
of the sharing regulatory element is one of the features of
compensatory genes.

Taken together, we proposed that the aforementioned
ratio of common neighbors in the biological network and the
score of the motif-content overlap are critical determinants
of the compensatory capability for nonhomologous genes.

3.5. Identification of Functionally Compensatory Genes. As
described above, three features were investigated for nonho-
mologous compensatory genes: (i) synthetic lethality; (ii) the
ratio of common neighbors in the biological network; (iii)
partial overlap of the regulatory elements of two genes. With
these parameters, we selected nonhomologous functionally
compensatory genes (see the supplementary table). 89.3% of
the selected compensation pairs were over-expressed (log2

fold change > 3) when its partner was mutated [38] (see
the supplementary table in Supplementary Material available
online at doi:10.1155/2012/653174). Consistent with the
previous study [30], transcriptional compensation between
SSL gene pairs may only appear in a small portion. Many
of them were associated with signal transduction, metabolic
processes, ribosomal proteins, and posttranslational protein
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modification (see the supplementary table for the detail
function of each gene). The compensation mechanisms
between genes seemed to be highly divergent [42]. We took
two candidate pairs, kar2/sil1 and kar2/lhs1, as examples. The
former, kar2 and sil1, shares common regulatory elements in
their promoters [43] and exhibits synthetic lethal phenotype
[44]. Similarly, lhs1 and sil1 also exhibit SSL interaction
[45]. Both SIL1 and LHS1 are nucleotide exchange factors
of KAR2 and were proposed to bind KAR2 in a mutually
exclusive manner [46]. The promoter of lhs1 was observed
to be transcriptionally induced when the mutation occurs
in kar2 [47, 48]. On the other hand, at least in the func-
tion for the protein translocation, overexpressed SIL1 can
partially compensate for LHS1 during loss of lhs1. However,
this compensation seems not originating from modulation
through kar2 [45]. The mechanism of robustness among
these three genes therefore cannot be simply explained
by transcriptional reprogramming. Another example of a
nonhomologous compensatory gene pair is provided by two
members of the RAD2 nuclease family, rad27 and exo1.
Functional overlap of RAD27 and EXO1 was observed from
identical structure-specific endonuclease and 5′ exonuclease
activities. The overexpression of EXO1 results in the suppres-
sion of multiple rad27 null mutation-associated phenotypes.
Interestingly, similar compensatory behaviors were found in
RAD2, but in complementing a different type of mutation,
that is, base excision repair. EXO1 and RAD2 complement
the defects of the rad27 mutant to different extents. These
results suggest that compensation of RAD27 can be achieved
in an alternative way [49]. Other examples, such as the
chitin synthase gene chs3 and the β-1, 3-glucan synthase
gene fks1: mutations in fks1 results in upregulation of CHS3
[29, 50]. As the above examples suggest, the compensation
mechanism of nonhomologous genes might occur beyond
the level of transcriptional reprogramming.

4. Discussion

Kafri et al. defined MES and PCoR measurements to estimate
mRNA expression patterns across different conditions for
each pair of paralogs [6]. Backup behaviors were rarely
found in similarly expressed paralogs [3, 27]. However, some
gene pairs with differentially regulated profiles compensated
for each other’s loss. This compensation was proposed to
be involved with responsive backup circuits rather than
through direct functional compensation [51]. It was also
found that PCoR, which represents the switching capability
between similar and dissimilar expression profiles, was a
strong predictor of paralogous backup gene pairs [6].

However, in the complete set of 10,819 SSLs, Stein and
Aloy found that only 2.5% are gene duplicates, whereas
35.7% are pathway redundancy genes [52]. Analyses of
compensatory pairs revealed that roughly 20–35% of the
compensations were due to paralogous genes, and a similar
result was also observed in the previous report [27]. The
overall contribution of paralogous genes to genetic robust-
ness was found to be overestimated [28]. Therefore, we
focused on nonhomologous genes and used a network-based
approach to identify putative nonhomologous functionally

compensatory gene pairs. We first assessed the sequence sim-
ilarity of SSL pairs and identified nonhomologous genes with
partially overlapping function as potential compensatory
genes. Unlike the prediction for paralogous compensatory
genes, our results showed that the MES and PCoR alone are
insufficient to identify nonhomologous compensatory genes.
The mechanism of functional compensation of nonhomol-
ogous genes may be more complicated and different from
duplication-based compensation.

The degree of functional relatedness seems to be an
important feature of compensatory genes. For each pair of
genes, the ratio of common neighbors in the molecular
functional and coexpression networks appears to be a reliable
measurement for functional relatedness. Furthermore, as
duplicate-associated backup genes, most of the multifunc-
tional backup genes only compensate one of their partner’s
functions [27]. This suggests that compensatory interactions
are intricate and context-sensitive. A recent study has showed
that paralog responsiveness for deletion of their duplicate
genes is environmental requirement [53]. Consistent with
previous reports, our results also showed that most com-
pensatory pairs do not share promoter motifs (see Figure 3).
Therefore, it is reasonable to suppose that partially sharing
motifs might allow organisms to adapt for upregulation by
common regulatory factors and also to provide compensa-
tion under certain conditions. However, this transcriptional
backup is only one of possible mechanisms for genetic
functional compensation.

In a recent report, a method for inferring genetic net-
works, the stepwise structural equation modeling algorithm
(SSEM), was developed for prediction of transcriptional
compensation interactions [54]. This model incorporated
structural equation modeling and various model selection
criteria to infer compensation interactions for small groups
of genes that are synthetic sick or lethal. SSEM uses time
course expression patterns to predict compensatory gene
pairs. However, SSL gene pairs with similar or compensatory
expression patterns do not always share the same function.
To overcome this problem, our approach incorporated the
functional relatedness of two compensatory gene candidates
using a network-based method and covered SSL interaction
data at the whole-genome scale. In particular, assessment
of physical and genetic interactions for each compen-
satory candidate increased the confidence that the resulting
compensatory pairs are functionally associated. When no
abundant time course data are available, the compensatory
gene pairs can be identified by applying our framework.

5. Conclusions

While there are a number of studies on biological robustness,
the role of redundancy is still a theoretical debate in the phe-
nomenon of biological robustness [55]. Our study provided a
unique viewpoint of genetic robustness beyond duplication-
based compensation and suggested the candidates of nonho-
mologous functional compensatory genes based on three fea-
tures: (1) the existence of synthetic lethal interaction; (2) the
ratio of shared common interacting partners; (3) the degree
of coregulation. A candidate list was suggested for the future
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verification on the mechanisms of gene compensation (see
the supplementary table). Several challenges still remain for
understanding compensation mechanisms under different
environmental and genetic variations. Functional compensa-
tion in SSL pairs might follow the four different mechanisms
proposed by Kaelin: inclusion of direct surrogacy, subunits
of an essential multiprotein complex, an essential linear
pathway, and parallel pathways [56, 57]. Furthermore, the
biological robustness of more organisms can be investigated
through the concept of synthetic lethality, such as Drosophila
melanogaster, Caenorhabditis elegans, and Danio rerio [57].
Future studies could focus on the mechanism for the com-
pensation capabilities beyond the transcriptional level.

References

[1] H. Kitano, “Biological robustness,” Nature Reviews Genetics,
vol. 5, no. 11, pp. 826–837, 2004.

[2] G. M. Edelman and J. A. Gally, “Degeneracy and complexity
in biological systems,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 98, no. 24, pp.
13763–13768, 2001.

[3] A. Wagner, “Distributed robustness versus redundancy as
causes of mutational robustness,” BioEssays, vol. 27, no. 2, pp.
176–188, 2005.

[4] Z. Gu, L. M. Steinmetz, X. Gu, C. Scharfe, R. W. Davis, and W.
H. Li, “Role of duplicate genes in genetic robustness against
null mutations,” Nature, vol. 421, no. 6918, pp. 63–66, 2003.

[5] E. J. Dean, J. C. Davis, R. W. Davis, and D. A. Petrov, “Pervasive
and persistent redundancy among duplicated genes in yeast,”
PLoS Genetics, vol. 4, no. 7, Article ID e1000113, 2008.

[6] R. Kafri, A. Bar-Even, and Y. Pilpel, “Transcription control
reprogramming in genetic backup circuits,” Nature Genetics,
vol. 37, no. 3, pp. 295–299, 2005.

[7] M. Kirschner and J. Gerhart, “Evolvability,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 95, no. 15, pp. 8420–8427, 1998.

[8] A. Wagner, “Robustness against mutations in genetic networks
of yeast,” Nature Genetics, vol. 24, no. 4, pp. 355–361, 2000.

[9] M. A. Nowak, M. C. Boerlijst, J. Cooke, and J. M. Smith,
“Evolution of genetic redundancy,” Nature, vol. 388, no. 6638,
pp. 167–170, 1997.

[10] M. Lynch and J. S. Conery, “The evolutionary fate and
consequences of duplicate genes,” Science, vol. 290, no. 5494,
pp. 1151–1155, 2000.

[11] A. L. Hughes, “The evolution of functionally novel proteins
after gene duplication,” Proceedings of the Royal Society B, vol.
256, no. 1346, pp. 119–124, 1994.

[12] K. Weiss, D. Stock, Z. Zhao, A. Buchanan, F. Ruddle, and
C. Shashikant, “Perspectives on genetic aspects of dental
patterning,” European Journal of Oral Sciences, vol. 106,
supplement 1, pp. 55–63, 1998.

[13] M. Schwarz, G. Alvarez-Bolado, P. Urbánek, M. Busslinger,
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