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+e sulfur dioxide blower is a centrifugal blower that transports various gases in the process of acid production with flue gas.
Accurate prediction of the outlet pressure of the sulfur dioxide blower is quite significant for the process of acid production with
flue gas. Due to the internal structure of the sulfur dioxide blower being complex, its mechanism model is difficult to establish. A
novel method combining one-dimensional convolution (Conv1D) and bidirectional gated recurrent unit (BiGRU) is proposed for
short-term prediction of the outlet pressure of sulfur dioxide blower. Considering the external factors such as inlet pressure and
inlet flow rate of the blower, the proposed method first uses Conv1D to extract periodic and local correlation features of these
external factors and the blower’s outlet pressure data. +en, BiGRU is used to overcome the complexity and nonlinearity in
prediction. More importantly, genetic algorithm (GA) is used to optimize the important hyperparameters of the model. Ex-
perimental results show that the combined model of Conv1D and BiGRU optimized by GA can predict the outlet pressure of
sulfur dioxide blower accurately in the short term, in which the root mean square error (RMSE) is 0.504, the mean absolute error
(MAE) is 0.406, and R-square (R2) is 0.993. Also, the proposedmethod is superior to LSTM, GRU, BiLSTM, BiGRU, and Conv1D-
BiLSTM.

1. Introduction

With the rapid development of the industrial process, the
demand for energy and materials has been increasing, es-
pecially for nonferrous metals. +erefore, the smelting of
nonferrous metals is also gradually increasing. However,
nonferrous metals often exist in nature in the form of sulfide.
As a result, a large amount of flue gas containing sulfur
dioxide is produced in the smelting process. If the flue gas is
directly discharged into the environment, there will be se-
rious problems such as air pollution and soil acidification. To
protect the environment, it is necessary to recover sulfur
dioxide from flue gas in metal smelters. Acid production
with flue gas is the most widely used and technically most
mature desulfurization process at present.+e system of acid

production with flue gas is inseparable from the blower that
transports the flue gas. +e outlet pressure of the blower
affects the flue gas desulfurization process and, more im-
portantly, the conversion rate of sulfur dioxide into sulfuric
acid [1]. How to predict the outlet pressure of the blower in
the process of acid production with flue gas and improve its
prediction accuracy is the main research work.

For the problem of pressure prediction of time series
data, many scholars in the world have proposed a lot of
methods. +e analytical methods at the present of pressure
prediction are divided into two main categories: classical
time series models based on mathematics and statistical
theory and prediction models based on machine learning
[2]. +e traditional time series models are AR, ARMA,
ARIMA, etc. However, the traditional time series models
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have many limitations on the data. Most of them are only
applicable to the smooth time series, and a series of oper-
ations such as normalization and differencing are needed for
the nonsmooth data. Meanwhile, it is difficult to predict the
sudden changes in the time series [3]. Machine learning and
deep learning forecasting algorithms are widely used in time
series forecasting problems in recent years due to easier data
processing and good nonlinear and multivariate forecasting
capabilities [3, 4]. Yu et al. [5] proposed four machine
learning algorithms to predict void pressure using a mul-
tilayer perceptron neural network, support vector machine,
random forest, and gradient augmentation machine. Ran-
dom forest outperformed other machine learning algorithms
in terms of goodness of fit, generalization, and prediction
accuracy, but the random forest was prone to overfitting
problems. Liu et al. [6] used a multilayer feedforward ar-
tificial neural network (ANN) for failure pressure prediction.
By comparing the experimental blast test results and the
results of previous failure pressure estimation models, the
ANNmodel results were demonstrated to be highly accurate
and efficient. Zhao et al. [7] proposed a blood pressure
prediction model based on a long short-term memory
(LSTM) network. Also, the model made full use of the ef-
ficient processing properties of the LSTM for time series
information to accurately predict systolic and diastolic blood
pressure. Song et al. [8] used an LSTM model instead of a
conventional pressure sensor to sense the differential
pressure in the gas turbine intake filter and verified its high
virtual sensing accuracy and model portability. Gao et al. [9]
combined a new cost function (relative mean square error)
with a gated recurrent unit (GRU) to propose an earth
pressure prediction model and obtained better prediction
results. Wang et al. [10] used the CNN-GRU model for
multivariate prediction of water pipe network pressure and
achieved better performance but did not consider the
contextual relationship of data.

Although domestic and foreign researchers have pro-
posed many worthwhile methods for the pressure prediction
problem, some aspects have not been taken into consider-
ation. First, most pressure prediction methods use only
historical data of pressure without considering the influence
of external factors and do not explore the correlation
characteristics and period characteristics among them.
Second, some methods ignore the contextual relationship of
these data, and the prediction accuracy is reduced [11].
+ird, many prediction models have complex parameter
settings and in many cases are not set to the optimal pa-
rameter combination. Fourth, the convergence of the model
is slow, resulting in a slow experimental process. Consid-
ering the above discussion, a novel model combining
Conv1D-BiGRU and GA for sulfur dioxide blower’s outlet
pressure prediction is proposed. Conv1D is used to extract
the horizontal relationship features of multidimensional
variables before BiGRU [12]. BiGRU is used to learn the
temporal relationship of the features extracted by Conv1D
[13]. GA is used to find the optimal parameters of the
Conv1D-BiGRU model [14]. +e multivariable spatial fea-
tures are convolved in the model and then added to the GRU
network for bidirectional extraction of temporal features.

Multivariable time series data can be handled well by it.
Meanwhile, GA is used to optimize the parameters of
Conv1D-BiGRU to further improve the prediction perfor-
mance. It is verified that the proposed method can be used
well for outlet pressure prediction of sulfur dioxide blower.
+e system architecture of this study is shown in Figure 1.

+e whole research process combines artificial neural
network and optimization algorithm. It involves neural
network modeling, neural calculation, and neural network
optimization. +e artificial neural network uses the Conv1D
network and BiGRU network, which involves the long short-
termmemory of time series. +en, GA is used to optimize the
hyperparameters of artificial neural network. +e optimized
artificial neural network is used to predict the time series.+is
research belongs to the field of neural network modeling,
neural computation, and network optimization. +e rest of
the arrangement is as follows. Section 2 presents related work,
including an introduction to the process of acid production
with flue gas and the principles of the relevantmodels. Section
3 presents model construction and hyperparameter optimi-
zation based on GA. Section 4 presents experiments and
analysis, including a comparison of the proposed model with
other models. Section 5 presents conclusions and an outlook.

2. Related Work

+is section introduces the process flow of the system of acid
production with flue gas and clarifies the significance of the
sulfur dioxide blower. +e principles of Conv1D, LSTM,
GRU, and BiGRU are introduced. In addition, the current
research status of the Conv1D-BiGRU model and optimi-
zation algorithm is also introduced.

2.1. Analysis of Acid Production Process with Flue Gas.
+e acid production system with flue gas is studied based on a
smelter in Jiangxi Province. +e process of acid production
with flue gas at the smelter is currently using a single-stage
centrifugal blower with an adjustable guide vane, as shown in
Figure 2.+eflue gas from copper smelting is sent to the blower
after the purification section and the dry suction section, so the
blower is also known as a sulfur dioxide blower. +e flue gas
after treatment is fed into the conversion section through the
sulfur dioxide blower. Sulfur dioxide goes through the con-
version process and reacts to produce sulfuric acid in different
concentrations.+e whole process of acid production with flue
gas is shown in Figure 3. +e prediction and control of the
outlet pressure of the sulfur dioxide blower are crucial to the
acid production process. Too heavy outlet pressure will lead to
flue gas leakage; however, too less outlet pressure will form
negative pressure and damage the equipment. +e outlet
pressure also affects the conversion rate of SO2 to SO3.
However, owing to the complex internal structure of the blower
and the uncertainty of the external disturbance, it is difficult to
predict the outlet pressure of the blower.

2.2. One-Dimensional Convolution (Conv1D).
Convolutional neural networks (CNNs) have achieved a
series of breakthrough research results in the fields of image
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Figure 1: System architecture.

Figure 2: Sulfur dioxide blower (from Guixi Smelter, Jiangxi Province, China).
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Figure 3: +e process of acid production with flue gas.
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classification, target detection, and semantic segmentation of
images [15]. +e powerful feature learning and classification
capabilities have attracted widespread attention. CNN is a
typical feedforward neural network, which essentially ex-
tracts the features of the input data by building multiple
filters. +ese filters convolve and pool the input data layer by
layer to extract the topological features embedded in the
input data. A typical CNN usually consists of an input layer,
a convolutional layer, a pooling layer, a fully connected layer,
and an output layer, as shown in Figure 4. In the con-
volutional layer, the convolutional kernel convolves the
feature vector of the previous layer, and the output feature
vector is constructed by using a nonlinear activation
function. +e input of a 1D CNN is 1D data, so its con-
volution kernel is also 1D structured accordingly. Also, the
output of each convolutional and pooling layer is a 1D
feature vector accordingly. +e low-dimensional informa-
tion of time series can be well extracted by using Conv1D,
whose mathematical model can be described as follows:

y(k) � h(k)∗ u(k) � 􏽘
N

i�0
h(k − i)u(i), (1)

where y(k) denotes the function used for the convolution
calculation, h(k) and u(k) denote the input and convolution
kernel, respectively, k is the kernel size, and i denotes the
index of the data in the sequence.

2.3. Long Short-Term Memory (LSTM). Among many deep
learning models, recurrent neural network (RNN) intro-
duces the concept of temporal order into the network
structure design, which makes it more adaptable in temporal
data analysis. +e basic idea of RNN is gradient back-
propagation over time. However, in the process of back-
propagation over time, the gradient of subsequent nodes will
deviate from the initial value due to the too deep network or
inappropriate activation function. Hence, it is prone to
gradient disappearance and gradient explosion problems
[16]. To solve this problem, LSTM was born as a classical
variant of RNN, and the structure of a single neuron of
LSTM is shown in Figure 5.

+e computational principle of LSTM can be explained
by the following equations.

ft � σ wfxt + ufht−1 + bf􏼐 􏼑, (2)

it � σ wixt + uiht−1 + bi( 􏼁, (3)

ot � σ woxt + uoht−1 + bo( 􏼁, (4)

􏽥ct � tanh wcxt + ucht−1 + bc( 􏼁, (5)

ct � ft · ct−1 + it · 􏽥ct, (6)

ht � ot · tanh ct( 􏼁. (7)

Figure 5 and equations (2)–(7) show that the LSTM
consists of four parts: input gate, memory unit, output
gate, and forgetting gate. xt denotes the input vector at
time t, ht − 1 denotes the output vector at the previous
time, wi, wo, wc denote the weight coefficient matrix of
each corresponding part, bf, bi, bo, bo denote the offset
vector of each corresponding part, σ denotes the acti-
vation function sigmoid, ft is the value of the forgetting
gate, which indicates how much information needs to be
forgotten, it is the value of the input gate, which indicates
how much candidate memory information needs to be
saved, 􏽥ct denotes the value of the candidate memory cell,
ct denotes the value of the memory cell jointly determined
by it and 􏽥ct, and ot is the value of the output gate, which
controls how much information ct outputs to the output
vector ht.

2.4. Gated Recurrent Unit (GRU). With the widespread use
of LSTM in natural language processing and temporal se-
quences, the shortcomings of LSTM networks with long
training times and numerous internal parameters need to be
addressed urgently. A variant of LSTM, GRU, was subse-
quently proposed. +e GRU consists of only update gates
and reset gates. Meanwhile, the GRU model not only
maintains the advantages of LSTM but also features a
simpler structure, fewer parameters, and better convergence
[17]. +e specific structure of a single neuron is shown in
Figure 6.

+e principle of GRU can be explained by the following
equations.

rt � σ wrxt + urht−1 + br( 􏼁, (8)

zt � σ wzxt + uzht−1 + bz( 􏼁, (9)

􏽥ht � tanh whxt + uh r · ht−1( 􏼁 + bh( 􏼁, (10)

ht � zt · ht−1 + 1 − zt( 􏼁 · 􏽥ht, (11)

Input Convolution Pooling 
Full 

connection Output 

Figure 4: CNN structure.
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where σ denotes the activation function sigmoid, rt denotes
the reset gate at time t, zt denotes the update gate at time t, 􏽥ht

denotes the candidate activation state at time t, ht denotes
the activation state at time t, and ht− 1 denotes the hidden
state at time t− 1. +e GRU has a more streamlined
structure, which improves training efficiency to a large
extent.

2.5. Bidirectional Gated Recurrent Unit (BiGRU). Both the
traditional LSTM and GRU pass information from forward
to backward, which has limitations in many tasks and does
not fully exploit the data information. To solve this problem,
two forward and backward GRU networks, called BiGRU,
are designed.+e idea of BiGRU is to connect the same input
sequence into two GRUs, forward and backward, respec-
tively. +en, the implicit layers of the two networks are
connected to the output layer for prediction [18]. Its
structure is shown in Figure 7.

+e BiGRU model is a neural network consisting of two
GRU hidden layers together, which receive the same input at
each moment. But the two hidden layers are in opposite
directions, which can improve the accuracy and depth of
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Figure 5: LSTM cell structure.
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feature vector extraction. +e principle of the BiGRU model
can be explained by the following equations.

ht

→
� GRU xt, h

→
t−1􏼒 􏼓, (12)

h
←

t � GRU xt, h
←

t−1􏼒 􏼓, (13)

ht � wt ht

→
+ vt h
←

t + bt,
(14)

where the GRU(.) function represents a nonlinear
transformation of the input time data, xt is the input, ht

→
is

the forward hidden state output, h
←

t is the reverse hidden
state output,wt denotes the weight corresponding to the
forward hidden state at time t, vt denotes the weight
corresponding to the reverse hidden state, and bt denotes
the bias corresponding to the BiGRU double hidden state
at time t.

In this study, the Conv-BiGRU model and an opti-
mization algorithm are combined. +e recent related
studies were analyzed. Wang et al. [19] proposed a mul-
titask learning (MTL) classification method based on the
CNN-BiGRU model for improving the accuracy and effi-
ciency of legal decision prediction. However, the model is
mainly used for text classification and our task is time series
prediction. Arshad et al. [20] proposed the CNN-BiGRU
model to improve the accuracy of gait event detection in the
elderly. However, this model uses data from a single sensor
and this paper’s target data are from multiple sensors.
Joolee et al. [21] used the Conv1D-BiGRU model to un-
derstand the tactile sensation of real objects from haptic
data, but the model is useful for classification and not for
regression analysis. Lakshmanna et al. [22, 23] used fre-
quent DNA sequence mining using optimization (FDSMO)
which combines frequent biological sequence based on
bitmap (FBSB) and hybrid of firefly and group search
optimization (HFGSO) for DNA sequence mining. Sub-
sequently, a novel DNA sequence mining method based on
multiple constraints with HFGSO is proposed. Higher
quality results were obtained. But these methods are more
applicable to DNA sequences than to time series. Kara [24]
used a hybrid method that combines LSTM neural network
and GA for multistep influenza outbreak forecasting
problems. Although a good prediction effect was achieved,
the spatial characteristics among the multivariable were not
considered. +e combination of Conv1D-BiGRU model
and GA proposed in this paper can be well applied to the
prediction of multivariate time series.

3. Methodology

To improve the prediction accuracy of sulfur dioxide blower
outlet pressure, Conv1D and BiGRU are combined to obtain a
more in-depth and excellent model. +e proposed model can
accurately predict the future information of the outlet pres-
sure of the sulfur dioxide blower based on various historical
data. In Section 3.1, the model structure of Conv1D-BiGRU is

introduced and the design principles of the model are
elaborated. In Section 3.2, the process of setting the hyper-
parameters of the model using GA is described.

3.1. 8e Model Based on Conv1D and BiGRU. +e proposed
model is a combination of Conv1D and BiGRU. +e model
consists of an input layer, a convolutional layer, a BiGRU
layer, a dropout layer, a fully connected layer, and an output
layer.+e input layer can receive multivariate sequence data.
+e Conv1D layer can obtain the features of the sequence by
convolutional computation of the sequence data and con-
volutional kernel. It can also shorten the length of the se-
quence and enhance the dependency between the data. +e
BiGRU layer can effectively capture the information asso-
ciation between long sequence contexts by two one-way
GRUs with the same input and the opposite direction of
information transfer and mitigate the gradient disappear-
ance or explosion.+e dropout layer can remove the units of
the BiGRU layer from the network with a certain probability
to reduce overfitting.+e fully connected layer is the sensing
layer, which is responsible for mapping the features to the
sample space. +e output layer is responsible for outputting
the sequence data at the same latitude as the sample space.
+e specific structure is shown in Figure 8.

Next, the computational logic and construction principle
of the model are elaborated. Imagine a set of time series data
with time step n and feature number f, as shown in the
following equation.

Xinput �

x
1
1 · · · x

f
1

⋮⋱⋮

x
1
n · · · x

f
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

+e input data first enter the Conv1D layer. A convo-
lution kernel with a convolution window of length k is
defined as shown in the following equation.

Input layer

Conv1D

Bi-GRU

Dropout

Dense

Output 
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filters, kernel_size,activation,...

units, ,activation,...

rate, noise_shape,...
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input_shape
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Figure 8: Model structure.
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fk �

w
1
1 · · · w

f

k

⋮⋱⋮

w
1
k · · · w

f

k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k≤ n − 1. (16)

In the TensorFlow framework, Conv1D convolutes from
top to down. When performing the convolution calculation,
a matrix of data fragments of length k and width f, defined as
Xc (17), is first intercepted in the data.

Xc �

x
1
c · · · x

f
c

⋮ ⋱ ⋮

x
1
c+k−1 · · · x

f

c+k−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c + k − 1≤ n. (17)

+en, the computational procedure for convolution to
generate an output Xf is shown in the following equation.

Xf � w
1
1 ∗x

1
c + w

2
1 ∗x

2
c + · · · + w

f

k ∗x
f

c+k−1, (18)

where l denotes the convolution kernel size, p denotes the
use of boundary padding, and s denotes the convolution step
size. +en, the dimension of the time step after convolution
is calculated as shown in the following equation.

n1 �
n − l + 2p

s
+ 1. (19)

+e equation given shows the process of computing the
1D convolution. +e above operation is performed on the
input matrix using different filters to obtain the output
matrix of the convolution layer, where the number of rows of
the matrix is n1 and the number of columns is filers. Next,

the operation is continued on the output of the Conv1D
layer, which is used as the input of the BiGRU layer. +e
specific calculation procedure of the BiGRU layer is shown
in Sections 2.4 and 2.5 Define FConv1D as the Conv1D layer
function, FBiGRU as the BiGRU layer function, Ffc as the fully
connected layer function, and Ypre as the model output. +e
Ypre calculation equation is shown in the following equation.

Ypre � Ffc ReLU FBiGRU ReLU FConv1D( 􏼁( 􏼁( 􏼁( 􏼁, (20)

where ReLU (rectified linear unit) is the activation function,
which can suppress gradient disappearance and speed up the
training speed. In the model training process, the minimum
loss function is set as the optimization objective, and then
the filter value of the Conv1D layer and the unit value of the
BiGRU layer are determined. After that, the number of
random seeds, learning rate, and batch size are given for the
initialization of the network. Finally, the Adam (adaptive
moment estimation) optimization algorithm is applied to
continuously update the network weights, and then the final
hidden layer network is obtained. To summarize, the above
is the formula and principle of the model combining
Conv1D and BiGRU. Next, the setting of hyperparameters of
the model and the process of using this model for prediction
will be introduced in more detail.

3.2. GA for Hyperparameter Optimization. Genetic algo-
rithm (GA) is an artificial intelligence-seeking optimization
method simulating natural evolution. Furthermore, it is
ideal for real-time processing and easy to implement with
strong robustness. At present, GA has been successfully

Inputs:
Pc: Probability of crossover occurrence
Pm: Probability of mutation occurrence
M: Population size
Pop: Initial population
G: Total number of generations of evolution
Tf: Adaptation function threshold
F(i): Fitness calculation function
Output: Cbest: Best Chromosome

(1) do
(2) for i in Pop:
(3) f� F(i)
(4) print Cbest and f
(5) Initial empty population: NPop
(6) do
(7) Select two chromosomes from Pop according to f
(8) Genetic code
(9) if random (0, 1)<Pc
(10) Perform crossover operations according to Pc
(11) if random (0, 1)<Pm
(12) Perform mutation operations according to Pm
(13) New chromosomes are added to NPop
(14) Until NPop scale reaches M
(15) NPop instead of Pop
(16) Until f reached Tf or the number of evolutions reached G

ALGORITHM 1: GA.

Computational Intelligence and Neuroscience 7



applied to various optimization problems [25]. Drawing on
the theory of biological evolution, GAmodels the problem as
a biological evolutionary process. It generates the next
generation of solutions through operations such as genetics,
crossover, mutation, and natural selection. +en, the solu-
tions with low fitness function values are eliminated grad-
ually and those with high fitness functions are increased. In
this way, individuals with high fitness will likely be evolved
after N generations of evolution. +e application of GA in
neural networks is reflected in three main aspects: learning
of networks, structural design of networks, and analysis of
networks [26]. In terms of network learning, GA can be used
to optimize the learning rules and network weight coeffi-
cients. In the structural design of the network, GA can
optimize the number of layers, the number of neurons per
layer, and the interconnection method of each layer. In
terms of network analysis, GA can perform functional
analysis, property analysis, and state analysis of neural
networks [27]. Here GA is used to perform hyperparameter
tuning for the model proposed in the previous section. +e
common process of GA is shown in Algorithm 1.

+emethods of chromosome selectionmainly include the
roulette selection method, random competitive selection,
uniform sorting, and so on. +e most used roulette selection
method is used here. +e methods of gene encoding mainly
include binary encoding method, floating-point encoding
method, symbolic encoding method, and so on. +e binary
encoding method is chosen which is easier to decode and
encode. In GA, the problem to be solved is mapped into a
mathematical problem at first.+en, a feasible solution to this
problem is called a chromosome. A feasible solution generally
consists of multiple elements, each of which is called a gene on
the chromosome.+e ultimate goal is to find the chromosome
with the best fitness [28]. +e process of combining the GA
and Conv1D-BiGRU model is shown in Figure 9.

4. Experiments

+is section describes the dataset and evaluation perfor-
mance metrics for conducting experiments. +en, the
process of hyperparameter search for the proposed model
using GA is introduced. Finally, the prediction performance
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Figure 9: GA-Conv1D-BiGRU structure.
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Figure 11: Population evolution.

Table 2: Parameter setting.

Filters of Conv1D 64
Units of BiGRU 128
Learning rate 0.001
Batch size 64
Dropout rate 0.2
Epochs 100

Table 3: Comparison of prediction accuracy of different models.

Model
Criteria

RMSE MAE R 2

LSTM 0.610 0.507 0.990
GRU 0.626 0.495 0.990
BiLSTM 0.618 0.487 0.991
BiGRU 0.621 0.484 0.988
Conv1D-BiLSTM 0.575 0.457 0.992
Conv1D-BiGRU 0.504 0.406 0.993

Table 1: Partial data display.

Sets . . . 100 101 . . . 10000 10001 . . .

Inlet guide vane position (%) . . . 12.54108429 12.53520871 . . . 23.13002205 23.12452698 . . .

Inlet pressure (kPa) . . . −6.05723142 −6.03437233 . . . −6.37186288 −6.37623786 . . .

Inlet flow rate (Nms/h) . . . 127830.9141 128445.0625 . . . 163426.7813 161879.8125 . . .

Outlet pressure (kPa) . . . 25.43690491 25.53358841 . . . 35.24561691 35.10400773 . . .
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is compared with several models such as LSTM, GRU,
BiGRU, and Conv1D-BiLSTM.

4.1. Datasets and Performance Metrics. +e dataset used in
the experiment is from a smelter in Jiangxi Province, China.
+e dataset consists of 11520 sets of the inlet guide vane
position feedback, inlet flow rate, inlet pressure, and outlet
pressure data of sulfur dioxide blowers collected every minute
from May 1 to May 8 in 2021, as shown in Figure 10. Some
data are shown in Table 1. 10,080 sets are used as training sets
and valid sets, and 1440 sets are used as test sets. Before the
experiment, the datasets need to be split and normalized.

In this experiment, RMSE (root mean square error),MAE
(mean absolute error), and R2 (R2 score) are used as indicators
of predictive performance with the following equations.

RMSE �

�������������

1
m

􏽘

m

i�1
􏽢yi − yi( 􏼁

2

􏽶
􏽴

, (21)

MAE �
1
m

􏽘

m

i�1
􏽢yi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (22)

R
2

� 1 −
􏽐

m
i�1 􏽢yi − yi( 􏼁

2

􏽐
m
i�1 􏽢yi − yi( 􏼁

2 , (23)

ei � yi − 􏽢yi, (24)

where m is the number of test samples, yi and 􏽢yi denote the
predicted value and true value, respectively, y denotes the
mean of the true data, and ei is the residual of the prediction.

4.2. Hyperparameter Optimization. +e Conv1D-BiGRU
model constructed above involves numerous hyper-
parameters, the most important of which are the values of
filters in the Conv1D layer, the values of units in the BiGRU
layer, the learning rate, and batch size. +ese four hyper-
parameters are treated as four genes of one chromosome in
the genetic algorithm. Among them, the values of filters in
the Conv1D layer values are chosen in [16, 32, 64, 128], and
unit values are chosen in [16, 32, 64, 128] for BiGRU layer.
Learning rate is chosen in [0.1, 0.01, 0.001, 0.0001], and batch
size is chosen in [16, 32, 64, 128]. +e four genes were binary
coded and then randomly combined to generate 20 chro-
mosomes to form the initial population. +e probability of
crossover between genes in the population was set to 0.7.+e
probability of variation was set to 0.01. +e number of
population evolution was set to 20. Tf was set to 0.9.
Meanwhile, the fitness function was set as the sum of RMSE
andMAE. +e smaller the fitness function was, the better the
chromosome was. +e result of the evolution of the pop-
ulation after 20 generations is shown in Figure 11.
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Figure 12: Prediction results.
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Figure 10 shows that the smallest value of the fitness
function is found for a chromosome of [64, 128, 0.001, 64] in
20 generations of population evolution, where the RMSE is
0.504 and the MAE is 0.406. At this time, the four hyper-
parameters and other parameters of the model determined
using this excellent chromosome were set as shown in
Table 2.

+e prediction results of Conv1D-BiGRU using the
parameters obtained by GA in Table 3 are shown in
Figure 12.

4.3. Prediction Performance Comparison with Other Models.
To verify the accuracy of the prediction of the proposed
model, it is compared with the LSTM, GRU, BiLSTM,
BiGRU, and Conv1D-BiLSTM models. +e prediction ac-
curacy of these models is evaluated on the test set using the
three metric evaluation criteria presented in the previous
section. +e hyperparameter set is used in Section 4.2, and

the evaluation results of the different models are shown in
Table 3. +e prediction error is shown in Figure 13. Table 3
and Figure 13 show that the model combining Conv1D and
BiGRU outperforms the LSTM, GRU, BiLSTM, BiGRU, and
Conv1D-BiLSTM models for time series data, and the
proposed model in terms of evaluation metrics performs the
best.

After the experimental comparison, the proposed model
has the best effect on the outlet pressure prediction of the
sulfur dioxide blower after the GA optimization. Table 3
shows that the model has the best performance among the
three evaluation indexes, and Figure 13 shows that the
prediction residual curve of the model has a small and flat
fluctuation range.

5. Conclusions

+e monitoring of the outlet pressure of the sulfur dioxide
blower in the process of acid production with flue gas is

LSTM GRU BiLSTM
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Figure 13: Prediction residual of different models.
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crucial. To achieve early warning of the abnormal outlet
pressure of the sulfur dioxide blower, a model combining
Conv1D-BiGRU and GA is proposed. Compared with the
structure of other prediction models, Conv1D can well
integrate the information between different variables and
mine the correlation features and periodic features among
them, while BiGRU can observe the information of blower in
different periods and learn the time series relationship of the
features extracted by Conv1D. As a result, it can well deal
with the complexity and nonlinearity of time series data.+e
combination of the two models can capture not only the
correlation information of the coupling relationship be-
tween variables on the spatial scale but also the development
trend between variables on the temporal scale. Importantly,
GA is used to find the optimization of important hyper-
parameters in the construction and training of the Conv1D-
BiGRU model, which largely improves the performance of
the model.

+e model is validated using real historical data of a
sulfur dioxide blower in a smelter in Jiangxi Province. First,
the data of variables highly correlated with the outlet
pressure are selected for data processing based on the rel-
evance and operation mechanism of the sulfur dioxide
blower. After that, the Conv1D-BiGRU model is used to
capture the variable coupling relationship on the spatial scale
and the development trend on the temporal scale of the
variables. +e value of the outlet pressure is predicted by the
proposed model. Finally, the important parameters of the
Conv1D-BiGRU model are tuned and set using GA to
improve the accuracy of pressure prediction. +e combi-
nation of the Conv1D-BiGRU model and GA can make an
accurate prediction of the outlet pressure of the sulfur di-
oxide blower in the short term and provide early warning of
abnormal working conditions, which can help plants to
make process adjustments and increase production effi-
ciency. In the subsequent research work, an attention
mechanism will be considered to predict exit pressure in
conjunction with the above methods.

Data Availability

+e datasets used and analyzed during the current study are
available from the corresponding author upon reasonable
request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is study was supported by the National Natural Science
Foundation of China (no. 61873006) and the Beijing Natural
Science Foundation (nos. 4212040 and 4204087).

References

[1] Y. N. Dong, W. C. Chen, L. L. Zhang et al., “Green and ef-
ficient sulfur dioxide removal using hydrogen peroxide in
rotating packed bed reactor: modeling and experimental

study,” Chemical Engineering Science, vol. 235, Article ID
116467, 2021.

[2] Z. Han, J. Zhao, H. Leung, K. F. Ma, and W. Wang, “A review
of deep learning models for time series prediction,” IEEE
Sensors Journal, vol. 21, no. 6, pp. 7833–7848, 2021.

[3] P. Lara-Benı́tez, M. Carranza-Garćıa, and J. C. Riquelme, “An
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