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Abstract

Background: The microbiome alterations are associated with cancer growth and may influence the immune system
and response to therapy. Particularly, the gut microbiome has been recently shown to modulate response to mela-
noma immunotherapy. However, the role of the skin microbiome has not been well explored in the skin tumour
microenvironment and the link between the gut microbiome and skin microbiome has not been investigated in
melanoma progression. Therefore, the aim of the present study was to examine associations between dysbiosis in
the skin and gut microbiome and the melanoma growth using MeLiM porcine model of melanoma progression and
spontaneous regression.

Results: Parallel analysis of cutaneous microbiota and faecal microbiota of the same individuals was performed in

8 to 12 weeks old MeLiM piglets. The bacterial composition of samples was analysed by high throughput sequenc-
ing of the V4-V5 region of the 165 rRNA gene. A significant difference in microbiome diversity and richness between
melanoma tissue and healthy skin and between the faecal microbiome of MeliM piglets and control piglets were
observed. Both Principal Coordinate Analysis and Non-metric multidimensional scaling revealed dissimilarities
between different bacterial communities. Linear discriminant analysis effect size at the genus level determined differ-
ent potential biomarkers in multiple bacterial communities. Lactobacillus, Clostridium sensu stricto 1 and Corynebac-
terium 1 were the most discriminately higher genera in the healthy skin microbiome, while Fusobacterium, Trueperella,
Staphylococcus, Streptococcus and Bacteroides were discriminately abundant in melanoma tissue microbiome. Bacte-
roides, Fusobacterium and Escherichia-Shigella were associated with the faecal microbiota of MelLiM piglets. Potential
functional pathways analysis based on the KEGG database indicated significant differences in the predicted profile
metabolisms between the healthy skin microbiome and melanoma tissue microbiome. The faecal microbiome of
MeLiM piglets was enriched by genes related to membrane transports pathways allowing for the increase of intestinal
permeability and alteration of the intestinal mucosal barrier.

Conclusion: The associations between melanoma progression and dysbiosis in the skin microbiome as well as
dysbiosis in the gut microbiome were identified. Results provide promising information for further studies on the local
skin and gut microbiome involvement in melanoma progression and may support the development of new thera-
peutic approaches.
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Background

Cutaneous Melanoma (CM) is a malignant skin can-
cer originating from epidermal melanocytes [1, 2].
Even though it is less common than other skin cancers,
CM is more lethal due to its high metastatic potential
[2—4]. Considering the aggressiveness of this disease, it
is important to identify the risk factors associated with
melanoma development to improve diagnosis and treat-
ment methods of this serious skin cancer. Different risk
factors are associated with melanoma development:
besides the genetic predisposition, such as the familial
history of melanoma or other skin cancers and type of
melanocytic nevi, other environmental factors, particu-
larly the sun and UV radiation exposure, increase the risk
of melanoma development [4-6].

Recently, the host microbiome is considered as a new
component of the tumour microenvironment that influ-
ences tumour cell metabolism and plays a role in the
cancer pathogenesis and treatment response [7, 8]. The
commensal microbes interact directly with the cancer-
ous cells of the tumour tissue, in which they are residing.
Indirect effects could occur when the tumour develop-
ment is affected by the metabolites of the microbiome
from another location or by the administration of probi-
otics in the host diet [9].

Many observations suggested that the skin commensal
microbiome may promote skin immunity and confer the
host defence including the protection against skin inflam-
matory disorders, infections, wounds and skin cancer
[10-19]. Several studies have suggested a potential role
of the microbiota in skin carcinogenesis [20]. A reduced
rate of skin cancer was observed in germ-free rats [21].
Similarly, different microorganism-associated molecu-
lar patterns (MAMPs) were identified as the trigger of
receptors responsible for the inflammatory response that
leads to tumour development, while skin inflammation in
response to tumour promoters was reduced in mice lack-
ing receptors [22-24].

Several studies have investigated the gut-skin connec-
tion in various skin diseases including skin cancer [25—
27]. The gut-skin axis indicates that the gut microbiota
and its metabolites can have a critical role in the develop-
ment or prevention of skin cancers, including melanoma.
In human, gut microbiota and its metabolites may have a
mechanistic impact on antitumor immunity and immu-
notherapy in patients with advanced melanoma [28-37].
Also, it has been reported that the administration of
selected strains from commensal intestinal microbiota

may establish anti-tumour immunity and restrict mela-
noma growth in germ-free WT mice [38].

In order to investigate changes in the gut and skin
microbiota composition during melanoma develop-
ment, swine models are highly suitable due to the high
similarities with human in terms of skin and gastroin-
testinal anatomy and physiology, genetics, immunology
and pathophysiology of many human diseases [39-41].
The Melanoma-bearing Libechov Minipig (MeLiM) is a
unique large animal model of hereditary melanoma [42].
In the MeLiM strain, the melanomas occur only in ani-
mals with pigmented skin, as the white pigs lack mel-
anocytes in their skin. The MeLiM piglets are born with
several nodular melanomas or the melanomas develop
postnatally. The melanomas mostly invade into deep der-
mis and subcutaneous fat (corresponding to Clark level
IV to V in human staging). At the age of 8 to 12 weeks,
the spontaneous regression of melanomas starts to occur
in the majority of animals, which is characterized by lym-
phocyte infiltration, and flattering and colour fading of
tumours due to the replacement of the tumour by fibrous
tissue [43—46]. However, in approximately 20% of piglets,
the melanoma progression develops which is character-
ized by tumour growth and spread by metastases [47],
mainly into the lymph nodes and lungs, cachexia and
animal growth retardation. The MeLiM model enables
to study the melanoma spontaneous development with-
out any therapeutic interventions, which is not possible
in human.

The aim of the present study was to assess the associa-
tion between the diversity, composition and function of
the skin and faecal microbiome and melanoma develop-
ment and to compare the bacterial composition in such
entities using high throughput sequencing. The samples
were collected from multiple sites (inner melanoma tis-
sue, melanoma surface, healthy skin and stool) of experi-
mental piglets at different ages throughout melanoma
progression and melanoma spontaneous regression
(experimental scheme is presented in Fig. S1). Findings
could contribute to the characterization of skin and gut
microbiome composition and modification, as well as
functional mechanisms following melanoma progression.

Results

Skin and stool microbiome samples were collected from
MeLiM piglets with melanoma progression (#=10) and
spontaneous regression (n=10), as well as from cross-
breds of MeLiM and white strain with black skin and
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several melanomas with regressive disease course (n=4)
and were compared to control MeLiM x white crossbreds
with melanoma-free white skin (nz=10).

A total of 13,747,282 sequences were obtained from
different samples. The mean sequence length was 275 bp.
The metagenomic analysis of each microbiota (faecal and
cutaneous) was performed separately.

Diversity analysis

Alpha diversity of samples collected from different sites
(melanoma tissue, melanoma surface, healthy skin and
stool) was evaluated to determine the bacterial diversity
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of each animal phenotype (progression, spontane-
ous regression and white control) using Chaol, ACE,
observed species, Fisher, Shannon, Simpson and Inverse
Simpson indexes. The results are represented in the box-
plot graph (Fig. 1, S2, S3). The obtained values after com-
parison between different groups are reported in (Table
S1, S2). A highly significant difference in the skin micro-
biota diversity was markedly noticed between different
sites of sampling (melanoma tissue, melanoma surface
and healthy skin) and between different animal groups
(MeLiM, white control, and black crossbred) (Kruskal-
Wallis test; p<0.05). The highest bacterial diversity was
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Fig. 1 Box-plot of Shannon index of diversity a) in cutaneous microbiome among different cutaneous samples (healthy skin, melanoma surface
and melanoma tissue), b) cutaneous microbiome of different animal breeds (white, crossbred, MelLiM) and c) faecal microbiome of different piglets
groups (white control, crossbred with melanoma regression, MeLiM with melanoma regression and MeLiM with melanoma progression) using
Kruskal-Wallis pairwise test (p-value <0.05) was used to compare between different samples
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observed in the healthy skin microbiome of white control
pigs (Fig. 1a, 1b, S2a, S2b). The diversity of melanoma
surface and melanoma tissue in the MeLiM progressive
group was lower than in the MeLiM with spontaneous
regression but the differences were not significant (Fig.
S3a). However, through the animal age, the diversity of
the skin microbiome significantly increased in mela-
noma regression group while no distinct difference was
observed in the skin microbiome of melanoma progres-
sion group between the analysed ages (Fig. S3b).

Similarly, in the faecal microbiota, the highest alpha
diversity was observed in white control animals while the
MeLiM animals with melanoma progression showed the
lowest alpha diversity. (Fig. 1c, S2c). Also, no significant
difference was observed between progressive and regres-
sive melanoma groups, except a significant difference was
noted between the faecal microbiota diversity of cross-
bred with melanoma regression and faecal microbiota
diversity of MeLiM animals with melanoma regression
(Fig. 1c, S2¢). Throughout the age, the bacterial faecal
community was dynamic and highly diverse in the white
control animals and animals with melanoma regression
(especially between ages 8 weeks and 10 weeks) whereas
it was more stable in the animals with melanoma pro-
gression (Fig. S3c).

In addition, beta diversity was used to analyse the dis-
similarities between bacterial communities in skin and
stool samples separately. Principal Coordinate Analy-
sis (PCoA) and Non-metric multidimensional scaling
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(NMDS) plots based on Bray Curtis distance were per-
formed to reveal disparately separated microbial com-
munities (Fig. 2, S4). In the skin microbiome, three
major clusters were distinguished according to the
nature of samples (melanoma tissue, melanoma surface
and healthy skin) (Fig. 2a, S4a). Clusters of the progres-
sive melanoma group and the control healthy skin group
were distinctly separated showing the higher significant
differences between those two bacterial communities
(Fig. 2b, S4b). The cluster of regressive melanoma is the
largest one which reflects the bacterial diversity dissimi-
larities between samples of this categorical group, which
were heterogeneous because they belong to two different
animal groups (MeLiM and Crossbred) and due to the
changes in microbial composition throughout the ages.
The bacterial diversity of faecal samples in crossbred with
melanoma regression was more similar to that in white
crossbred animals (control) and MeLiM progressive and
regressive groups were clustered together indicating that
no distinct difference was observed in faecal bacterial
structures between the progressive and regressive mela-
noma (Fig. 2¢, S4c).

Relative abundance analysis and taxonomic composition

The relative abundance composition of cutaneous skin
microbiome at the phylum level showed that the higher
abundance of Firmicutes and Proteobacteria were asso-
ciated with skin devoid of melanoma and white control
pigs, while the relative abundance of Fusobacteria was
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Fig. 2 Non-metric Multidimensional Scaling (NMDS) plots based on the Bray Curtis distance matrix for beta diversity comparison of bacterial
communities a) in skin microbiome among different samples (healthy skin, melanoma surface and melanoma tissue) b) in skin microbiome among
multiple samples in different disease conditions (control, melanoma progression and melanoma regression) and c) in faecal microbiome of different
piglets groups (white control, crossbred with melanoma regression, MeLiM with melanoma regression and MeLiM with melanoma progression).
The confidence level of the ellipse was 95%
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associated with melanoma tissue and melanoma surface
in MeLiM piglets with melanoma progression and spon-
taneous regression (Fig. 3a), (Table S3). The Firmicutes
and Proteobacteria ratios were lower in those last groups.
Actinobacteria and Bacteroidetes abundances were rela-
tively similar in all samples. The relative abundances of
Fusobacteria were decreased dramatically in the regres-
sive melanoma tissue microbiome from 20.9% at the age
of 8 weeks to 5.0% at the age of 12 weeks, while no signifi-
cant changes were observed in the bacterial composition
of progressive melanoma skin microbiome throughout
the ages (Fig. 3b), (Table S3).

The bacterial phylogenetic compositions of the fae-
cal microbiota of piglets at the phylum level were
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dominated by Firmicutes and Bacteroidetes, but these
were slightly less abundant in MeLiM piglets (Fig. 3c),
(Table S4). The higher abundance of Proteobacteria
and Fusobacteria were associated with faecal micro-
biota in MeLiM piglets (Fig. 3c). In faecal microbiota
of MeLiM piglets with melanoma regression, the rela-
tive abundances of Fusobacteria and Proteobacteria
dropped from 3.7%, and 18.7%, respectively, at the age
of 8 weeks, to 1.3%, and 2.6%, respectively at the age of
12 weeks, while the relative abundances of Firmicutes
and Bacteroidetes increased significantly from 28.4%,
and 19.0%, respectively, at the age of 8 weeks, to the
40.4%, and 29.1%, respectively, at the age of 12 weeks.
In MeLiM piglets with melanoma progression, no
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Fig. 3 Relative abundance of the microbial population at the phylum level a) in skin microbiome among different cutaneous samples (healthy
skin, melanoma surface and melanoma tissue) in healthy piglets or piglets with melanoma (control, melanoma progression and melanoma
regression) b) in melanoma surface and melanoma tissue microbiome with melanoma regression and melanoma progression at different ages
(8,10, 12 weeks), €) in faecal microbiome of different piglets groups (white control, crossbred with melanoma regression, MeLiM with melanoma
regression and MeLiM with melanoma progression) and d) in faecal microbiome of piglets with melanoma (crossbred with melanoma regression,
MeLiM with melanoma regression and MeLiM with melanoma progression) at different (8, 10, 12 weeks)
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significant changes were observed in the bacterial com-
position of faecal microbiota throughout the monitored
ages (Fig. 3d), (Table S4).

At the genus level, the microbiome of skin devoid of
melanoma in white piglets was dominated by Clostrid-
ium sensu stricto 1, Corynebacterium 1, and Lactoba-
cillus while the microbiome of melanoma tissue in the
MeLiM piglets was dominated by Fusobacterium, Staph-
ylococcus, Trueperella and Streptococcus (Table S3). The
faecal microbiota of crossbred piglets was dominated by
Clostridium sensu stricto 1, Lactobacillus, Prevotella 9,
Ruminococcus and Faeclibacterium. The relative abun-
dance of Bacteroides was significantly higher in the faecal
microbiota of MeLiM piglets with melanoma progression

(Table S4).
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The linear discriminant analysis (LDA) effect size
(LEfSe) results (Fig. 4, S5) at genus level in skin micro-
biome showed that Fusobacterium, Staphylococcus,
Trueperella, Streptococcus, Peptostreptococcus and Pep-
toniphilus were the more notable genera associated with
melanoma microbiome and Clostridium sensu stricto
1, Corynebacterium 1, Lactobacillus, Turicibacter, Ter-
risporobacter and Enterococcus were bacterial genera
most associated with healthy skin microbiome (Fig.
S5a, S5b). Skin microbiome of piglets with progressive
melanoma was related with Fusobacterium, Trueperella,
Bacteroides, and Porphyromonas compared to the skin
microbiome of piglets with regressive melanoma, where
Enterococcus, Acinetobacterium, Bifidobacterium, Lacto-
bacillus and Prevotella 9 were discriminately abundant
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(Fig. 4a, b). In the faecal microbiome, LDA revealed a dis-
criminant abundance of Bacteroides and Fusobacterium
in MeLiM piglet with melanoma progression and Escher-
ichia-Shigella in MeLiM piglets with melanoma regres-
sion (Fig. S5c). Bacteroides, Escherichia-Shigella and
Fusobacterium were the most discriminant biomarkers in
the faecal microbiome of MeLiM piglets while Prevotella
9, Lactobacillus and Faecalibacterium were the most dis-
criminately abundant genera in the faecal microbiota of
crossbred piglets (Fig. S5d).

These differences in relative abundances of certain
genera reflect the dissimilarities in the skin and faecal
microbiome between multiple experimental categories
(melanoma tissue vs healthy skin, melanoma regression
vs melanoma progression and MeLiM piglets vs cross-
bred piglets).

Functional pathways analysis

To predict the potential function profiles of the skin and
gut microbiota in piglets with melanoma progression or
melanoma regression, the relative abundances of KEGG
pathways were explored based on PICRUSt analysis. A
total of 248 and 130 unique KEGG Orthology (KO) path-
ways at level 3 were predicted in the skin microbiome
and faecal microbiome respectively (Table S5, S6).

At the second level of KEGG pathways, forty differently
abundant pathways indicated a significant difference in
the functions of the melanoma tissue microbiome com-
pared with the healthy skin microbiome (Fig. S6a, S7a).
Nineteen pathways were enriched in melanoma tissue
microbiome, including Membrane transport, Transla-
tion, Glycan biosynthesis and metabolism, Nucleotide
metabolism, Metabolism of cofactors and vitamins,
Other ion-coupled transporters, Replication, Recombina-
tion and repairs of proteins, Infectious diseases, Protein
folding and associated processing, Signalling molecules
and interaction, Membrane and intracellular structural
molecules, Amino acid metabolism, Translation pro-
teins, Cell growth and death, Cell motility and secretion,
Electron transfer carries, Digestive system and immune
system diseases. There were eight most significant path-
ways associated with healthy skin microbiome including
Amino acid metabolism, Xenobiotics biodegradation
and metabolism, Carbohydrate metabolism, Sporulation,
Lipid metabolism, Transcription, Metabolism of other
amino acids, Energy metabolism in addition to path-
ways in cancers. Twenty-four KEGG pathways showed
a significant difference in the potential function of mel-
anoma tissue microbiome between melanoma regres-
sion and melanoma progression, fourteen of them were
significantly enriched in progressive melanoma tissue
microbiome, such as Replication and repair, Transla-
tion, Nucleotide metabolism, Metabolism of cofactors
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and vitamins, Metabolism of terpenoids and polyketides,
Folding, sorting and degradation, Protein folding and
association processing, Enzymes families. The relative
abundance of Cell motility, Signal transduction, Sporu-
lation, Biosynthesis and biodegradation of secondary
metabolites pathways were significantly abundant in the
regressive melanoma tissue microbiome (Fig. S6b, S7b).

In the faecal microbiome, twenty-eight KEGG path-
ways at level 2 revealed significant differences in poten-
tial functions between MeLiM and crossbred piglets (Fig.
Séc, S7c). Membrane transport, Carbohydrate metabo-
lism and Xenobiotics biodegradation and metabolism
were the principal significant abundant functions asso-
ciated with MeLiM faecal microbiota. Replication and
repair, Translation, Cell motility, Amino acid metabolism,
Nucleotide metabolism and Energy metabolism were
the most significant pathways associated with the fae-
cal microbiota of crossbred piglets. In the faecal micro-
biota of MeLiM piglets, five KEGG pathways at level 3
detected a significant difference in predicted functional
profiles between regressive melanoma and progressive
melanoma. Fatty acids biosynthesis and Lipid biosynthe-
sis metabolism were significantly associated with pro-
gressive melanoma, while Selenocompound metabolism,
Cell division (unclassified function) and General function
prediction (unclassified) were the significant abundant
pathways related to regressive melanoma (Fig. S6d, S7d).
The results have shown that in addition to community
differences, there may be differences in the function-
alities of the microbiome between MeLiM piglets and
healthy controls.

Discussion

Several studies have reported the association of com-
mensal microbiota of human or animal models with
cancers, mostly focused on colorectal cancer [48-51], in
addition to gastric [52, 53], liver [54], pancreatic [55, 56],
lung [57-59], breast [60, 61] and bladder [62, 63] can-
cers. Generally, many reports suggested that microbiota
induces carcinogenesis and other ones supported that
microbiota play protective roles against cancer [64—67].
Recent reviews focused on the importance of the micro-
biome in skin cancer research and explored the crosstalk
between the immune system and the skin microbiota
in health and diseases (including cancer) [6, 11, 12, 68].
The profound reliance of the skin immune system on
its resident microbiota for both host defence and tis-
sue repair led to the integration of the skin microbiota
and its metabolites as an intrinsic regulator of immune
responses in the tissue microenvironments [13, 69-71].
The interactions between skin immune cells and micro-
biota are not only within the local microenvironment
but also the skin immune system was stimulated by
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metabolites of microbes from other body sites (e.g. gas-
trointestinal tract) [9]. The gut microbiota is involved in
cancer and is associated with anticancer therapy efficacy.
Recently, several studies illustrated that the gut micro-
biota and the treatment with faecal microbiota trans-
plantation (FMT) promoted the responses to anti-PD-1
immunotherapy and restored the tumour microenviron-
ment in patients with advanced melanoma [28-30, 32,
34, 35,72, 73].

In this study, the association between melanoma devel-
opment and the changes in the bacterial composition
of the gut and the skin microbiome were explored. The
samples were collected from melanoma tissue, melanoma
surface and healthy skin of porcine models: MeLiM pig-
lets with melanoma progression or melanoma sponta-
neous regression and crossbred piglets with melanoma
spontaneous regression or healthy (white) controls. Pigs
are valuable large animal model due to similar anatomy
and physiology, including metabolism and nutritional
requirements to human. Human and pigs have been pre-
viously shown to share the major bacterial phyla (Fir-
micutes and Bacteroidetes) in both their gut and skin
microbiome. Nonetheless, differences between human
and pig have been found at the bacteria species level,
which are expected to be caused mainly by the envi-
ronmental factors, nutrition and age [74-76]. The pig
breeding under uniform conditions enables to mini-
mize the influence of environment and nutrition on the
microbiome.

There are few studies about the link between skin can-
cer and skin microbiota in skin diseases [77-80]. The
first work which studied the relationships between the
human skin microbiome and melanoma has shown that
the skin microbiome diversity was lower in patients with
melanoma than in patients with melanocytic nevi. How-
ever, the authors did not detect the association between
the cutaneous microbiome and melanoma [81]. Recently,
the significant association of the skin microbiome in
patients with acral melanoma was investigated at differ-
ent stages [82]. In our previous study, we showed a sig-
nificant difference between the healthy skin microbiome
and melanoma tissue microbiome using DGGE method
[83]. Similarly, in the present study, using high through-
put sequencing of the 16Sr RNA gene, the metagen-
omic analysis revealed differences in skin microbiome
of healthy skin, melanoma surface and melanoma tis-
sue. Alpha diversity showed that the diversity in the
healthy skin microbiome was significantly higher than
in the melanoma microbiome. Also, the diversity of skin
microbiome and faecal microbiome was significantly
higher in crossbred white piglets (control animals with-
out tumours) than in MeLiM piglets. The high diversity
and richness of host microbiota are generally related to
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the host health stat [84—86]. Moreover, beta diversity
based on Bray Curtis distance showed dissimilarities
between microbial communities from multiple sites. The
differences between regressive melanoma microbiome
and progressive melanoma microbiome were not sig-
nificant. However, a dynamic shift in the gut and cutane-
ous microbiome was explored in piglets with melanoma
regression following the age, while the microbiota diver-
sity was stable in MeLiM piglets with melanoma progres-
sion. That indicates that both the cutaneous microbiome
and intestinal microbiome have a strong correlation with
the melanoma process by age.

The dominant bacterial phyla in porcine skin micro-
biota were Firmicutes, Actinobacteria, Proteobacteria
and Bacteroidetes in addition to Fusobacteria, which was
abundant in the melanoma tissue microbiome of MeLiM
piglets. The porcine faecal microbiota was mainly domi-
nated by Firmicutes and Bacteroidetes, besides Fusobac-
teria, Proteobacteria and Actinobacteria, which were
abundant in the faecal microbiota in MeLiM piglets. At
the genus level, Lactobacillus, Clostridium, Corynebac-
teriuml, Terrisporobacter and Enterococcus were associ-
ated with healthy skin of crossbred piglets whereas the
relative abundance of Fusobacterium, Staphylococcus,
Trueperella, Streptococcus and Bacteroides were discrim-
inately higher in the melanoma microbiome. Consistent
with our previous findings [86], Fusobacterium necro-
phorum subsp. necrophorum (18,3%) was the most abun-
dant species in melanoma tissue microbiome of MeLiM
piglets besides Staphylococcus hyicus (8,3%), Trueperella
pyogenes (7,1%) Streptococcus (uncultured bacterium)
(4,3%) and Staphylococcus chromogenes (2,7%), while
they were considerably low or absents in the healthy skin
microbiome. The relative abundance of Lachnospiraceae
(9,7%), Bacteroides (4,2%), Escherichia-Shigella (2,4%)
and Fusobacterium (1,6%) (Fusobacterium necrophorum
subsp. necrophorum and Fusobacterium gastrosuis) were
significantly discriminant bacterial genera in the faecal
microbiota of MeLiM piglets, while Prevotella 9 (8,3%),
Prevotellaceae  NK3B31 group (4,4%), Lactobacillus
(5,8%) and Feacalibacterium (1,9%) were the most discri-
minant bacterial genera in the faecal microbiota of cross-
bred piglets.

Fusobacterium was associated with pathogenesis in
both human and livestock infections [87, 88]. Two sub-
species of E necrophorum are recognized. The subsp.
necrophorum is more frequently present animal infec-
tions, while subsp. funduliforme was isolated from clini-
cal human infections and their virulence is determined
by secreting leukotoxin. In humans, F necrophorum is
responsible for Lemierre syndrome, which begins as bac-
terial pharyngitis and rapidly progresses to septic throm-
bophlebitis of the jugular vein [87-90]. Fusobacterium
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nucleatum was enriched in colorectal carcinoma. It was
considered as a risk factor for the progression and sever-
ity of pancreatic and colorectal cancers [91, 92]. The
active invader species FE nucleatum and E periodonti-
cum can independently invade host cells. Fusobacterium
nucleatum colonized breast cancer tissue and colorectal
cancer tissue, promoted tumour growth and caused can-
cer progression by inducing immunosuppression using
extracellular adhesion and invasion molecule Fusobacte-
rium adhesion (FadA) [93-98]. Gur et al. have demon-
strated that the direct interaction of the Fap2 protein of
E nucleatum with the immune cells inhibitory receptor
TIGIT (T cell immunoglobulin and ITIM domain) pro-
tected melanoma tumours bounded with E nucleatum
from NK cell cytotoxicity and T-cell activity [98]. Kalora
et al. have identified 11 HLA-bound peptides derived
from E nucleatum, Staphylococcus aureus and Staphylo-
coccus capitis inside melanoma tumour cells that elicited
the immune response [99, 100].

Staphylococcus hyicus is the major causative agent
of piglets’ exudative epidermitis [101]. Staphylococcus
chromogenes has been identified as a frequent cause of
bovine mastitis and intramammary infections [102, 103].
Interestingly, colonization of mice with Staphylococ-
cus epidermidis, a skin commensal bacteria producing
6-N-hydroxyaminopurine (6-HAP), has reduced the inci-
dence of ultraviolet-induced tumours [10]. Trueperella
pyogenes causes diverse diseases in animals like mastitis,
liver abscesses and pneumonia and it is rarely a cause of
infection in humans [104—106].

Lactobacillus and Corynebacterium species have been
shown to produce immunostimulatory metabolites lead-
ing to anti-cancer effects. Lactobacillus johnsonii was
conducted to an immune-stimulatory effect by produc-
ing inosine which is a modulator of response to immune
checkpoint blockade therapy and strongly enhanced
the antitumor capacities of T cells in different tumour
models including colorectal cancer, bladder cancer, and
melanoma, by inducing Thl differentiation through the
inosine-A2AR-cAMP-PKA pathway [107]. A recent study
showed that extracellular vesicles derived from Lactoba-
cillus rhamnosus GG showed direct anti-tumour effects
on hepatic cancer cell growth [108]. Also, the oral admin-
istration of lipoteichoic acid from Lactobacillus rhamno-
sus decreased the number of UV-induced skin tumours
in SKH-1 hairless mice [109] and the administration
of Lactobacillus acidophilus may reduce the incidence
of colorectal cancer in rat models [110]. The antitumor
effect of Corynebacterium parvum has been demon-
strated since a very early time [111-113], and it was used
as an immunostimulant and antitumor agent. Indeed,
the intratumoral injection of Corynebacterium granulo-
sum and Corynebacterium parvum in hamster melanoma
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showed regression of the tumour and reduction in the
number of lung metastases [114, 115]. Lipton et al. indi-
cated a decreased relapse rate and prolonged survival in
patients in stage II, but not in stage I, of malignant mela-
noma treated with C. parvum when compared with BCG
treated patients [116]. Nonetheless, no significant results
were observed during the administration of Corynebac-
terium parvum followed by chemotherapy in patients
with metastatic malignant melanoma compared with
the group receiving chemotherapy alone [117]. Though,
Corynebacterium sp was clinically associated with the
progression of acral melanoma [82]. In our results, LDA
detected two biomarkers genera from Corynebacte-
riaceae family: Corynebacteriuml, which was discrimi-
nately abundant in healthy skin microbiome (Fig. S5a,
S5b), (Table S3) and Corynebacterium, which was associ-
ated with melanoma progression (Fig. 4b), (Table S3).

Among the other bacteria affecting the immune
response in cancer, E. coli produces colibactin, which
may induce adenocarcinomas in human colorectal cancer
patients [118]. Bacteroides fragilis led to promote colon
tumorigenesis by overstimulating immune responses
via T helper 17 (Th17) cells in mouse colorectal cancer
model [119]. Clostridium species may suppress tumour
growth in the liver and melanoma by restoring antitu-
mour immunity [120, 121]. Gut microbiome enriched
with Faecalibacterium was correlated with increased
Immune Checkpoint Inhibitors response and improved
immunotherapy response in mouse models and humans
with metastatic melanoma [30, 122]. In a study of meta-
static melanoma treated with anti-PD1 immune check-
point blockade, the patients have reacted differently,
responded and non-responded. The diversity of the fae-
cal microbiome of the responders’ patients was higher
with increased abundance of the Ruminococcaceae and
Faecalibacterium, while an increased abundance of Bac-
teriodales and a much lower bacterial diversity were
observed in the non-responders’ microbiomes. In animal
models, FMT of human gut microbiome enriched in Fae-
calibacterium to germ-free mice with melanoma showed
reduced tumour growth and increased immune response
in the tumour microenvironment [30]. The decrease of
the relative abundances of opportunistic pathogens in
skin microbiota and faecal microbiota of piglets with
melanoma regression revealed the maturation of host
microbiota following the age when the bacterial compo-
sition shifted from dysbiosis to the “healthy” balanced
microbiota.

Functional prediction pathways results suggested
the potential role of host microbiota in melanoma
development. Numerous pieces of evidence have been
demonstrated that metabolic disorders involved in car-
cinogenesis and can be a target to treat cancer [123, 124].
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Sporulation and Bacterial motility proteins pathways
were significantly higher in melanoma-free skin of pig-
lets (Fig. S8). It was shown that Flagellin, the structural
protein subunit of the bacterial flagellum, played a role as
an adjuvant, immunomodulator, anti-tumour agent (in
melanoma, colon, breast, lungs and prostate cancers) and
radioprotective agent [125-127]. Salmonella Typhimu-
rium flagellin stimulates NK cells to produce interferon-y
(IEN-y) [128]. The flagellin genes (fliC) were detected
in Clostridium chauvoei, Clostridium haemolyticum,
Clostridium novyi types A and B, and Clostridium sep-
ticum [129]. Bacterial flagellin enhanced the antitumor
response of the activated CD8+ T cells via TLR5 activa-
tion. Consequently, the perforin and granzyme proteins
were secreted by activated CD8+ T cells and efficiently
killed tumour cells [128]. Additionally, a significant
reduction in tumour mass was observed after injection of
flagellin into human colorectal tumours xenografted into
nude mice [130]. Importantly, the vaccination of mice
with syngeneic B16-OVA melanoma—derived plasma
membrane vesicles engrafted with flagellin-related pep-
tides 9Flg or 42Flg induced a dramatic inhibition of
tumour growth and metastasis and resulted in complete
tumour regression in lungs [131]. Clostridium novyi-
NT (non-toxic) is a highly mobile spore-forming organ-
ism. Promising antitumour responses in both canine
and human clinical studies were described after intratu-
moral injection of Clostridium novyi-NT spores [132].
Moreover, clostridial spores were considered as an ideal
delivery vehicle for anti-cancer agents due to their selec-
tive germination in the hypoxic regions of solid tumour,
their wide and fast dispersion throughout the tumour
and their stability to oxygen and harsh conditions which
allowed the immune system to recognize and destroy
cancer cells efficiently [133].

Transporters, ABC transporters, Ribosome, Other ion-
coupled transporters_Unclassified, Pyrimidine metabo-
lism, Purine metabolism, Replication, Recombination and
repair proteins, Aminoacyl-tRNA biosynthesis, Lipopol-
ysaccharide biosynthesis proteins, Lipopolysaccharide
biosynthesis, Bacterial secretion system and Ribosome
biogenesis were highly predicted pathways affected
by microbiota in MeLiM melanoma tissue (Fig. S8).
Recently, ribosome synthesis was designated as a new
target in cancer therapy. Moreover, recent research indi-
cated the potential role of ribosomes compositions in
tumorigenesis. The increase in ribosome biogenesis was
noted in cancer cells which led to an elevation in protein
synthesis and unrestrained growth [134]. The production
of lipopolysaccharide (LPS) was potentially promoted by
Fusobacterium which were abundant in melanoma tissue.
LPS from Fusobacterium led to skin inflammation and
Shwartzman reaction in rabbits [135]. LPS may promote
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inflammation via TLR4-mediated NF-kB activation and
the production of different inflammatory factors, such
as TNF-«, IL-6, and IL-1B [136, 137]. Many studies
indicated the capacity of LPS to be involved in the pro-
gression of various cancers: breast cancer via a ‘MyD88-
BLT2'-linked signalling cascade [138], prostate cancer
by activating the NF-kB pathway [139], gastric cancer
through the LPS-NF-kB-PD-L1 axis [140], and oesopha-
geal cancer [141]. A recent study demonstrated the co-
stimulation with Trueperella pyogenes pyolysin and LPSs
induced autophagy and ATF6-dependent mechanism in
endometrium stromal cells [142].

Amino acid metabolism is linked with tumour progres-
sion due to their indispensable role in cancer growth,
cancer immunity and the tumour microenvironment
[143, 144] and therapeutic means for targeting amino
acid metabolism were suggested [145]. A potential anti-
tumor effect of a combination of ascorbic acid, lysine,
proline, arginine and green tea extract was investigated
on human colon cancer cells HCT 116 in vivo (xenograft
into male nude mice). Histological studies showed that
the mixture supplementation strongly suppressed the
growth of tumours by inhibiting Matrix metalloprotein-
ases expression and invasion without toxic effects [146].
Tumour associated myeloid cells have the ability to sup-
press the protective anti-tumour immune response by
targeting arginine metabolism and reducing arginine lev-
els by producing arginases [147, 148]. In line with these
findings result from our previous metabolomic study,
where a highly significantly decreased level of arginine
in plasma of MeLiM pigs with progression was the most
striking difference compared to pigs with spontaneous
regression [149]. Up-regulation of proline in melanoma
cells compared to melanocytes was observed by de Inge-
niis et al. [150]. An inhibition of the gene ALDHI18A1I
encoding pyrroline-5-carboxylate synthase regulat-
ing proline biosynthesis in melanoma cells significantly
decreased cultured melanoma cell viability and tumour
growth [151, 152].

The predicted functional pathways affected by micro-
biota were significantly different between regressive
melanoma microbiome and progressive melanoma
microbiome. It is known that tumour cells accumulate
several mutations and changes in metabolic pathways
that might lead to cancer proliferation and metastasis.
Ribosomes, DNA repair and recombination proteins,
Pyrimidine metabolisms, Purine metabolisms were sig-
nificantly higher in melanoma progression while Bacte-
rial motility proteins. Flagellar assembly, Sporulation and
Bacterial chemotaxis were significantly higher in mela-
noma spontaneous regression (Fig. S9). Consistent with
our findings, many studies have assessed the interplay
of pyrimidine metabolism in tumorigenesis [153, 154].
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Comprehensively, the pyrimidine metabolic rate-limiting
enzymes were highly expressed in lung, breast, colon,
liver, stomach, and bladder cancer and played a key role
in tumour cell proliferation [155]. Pyrimidine analogues
acting as antimetabolites are used in cancer treatment
for decades [156, 157]. Purines are basic components of
nucleotides in cell proliferation, thus impaired purine
metabolism is associated with the progression of cancer
[158]. Notably, a high amount of purine metabolites has
been noticed in tumour cells [159]. It was illustrated that
Escherichia coli was able to target lung cancer cells using
chemotaxis towards the biochemical factors secreted by
carcinoma cells [160]. In faecal microbiota of MeLiM
piglets, fatty acids biosynthesis and lipid biosynthesis
metabolism were significantly associated with melanoma
progression (Fig. S6d). Cancer cells as proliferative active
cells require also lipids and fatty acids for cell growth,
division, proliferation and survival. Deregulated lipid
metabolism is an important metabolic phenotype of can-
cer cells [161]. Different mechanisms of fatty acids syn-
thesis promoting tumour progression and metastasis
were explored [162, 163]. Upregulations of several phos-
phatidylcholines were previously observed in MeLiM
plasma of pigs with melanoma progression, compared
to spontaneous regression [148]. A phospholipid deriva-
tive Lysophosphatidic acid (LPA) induces chemotaxis of
melanoma cells and LPA degradation by melanoma cells
forms a gradient in the tumour microenvironment that
drove their spreading [164].

Ribosomes, DNA repair and recombination proteins
and Pyrimidine metabolisms pathways, which were asso-
ciated with melanoma progression in melanoma tissue
microbiome, were significantly lower in the faecal micro-
biota of MeLiM piglets compared to crossbred piglets
(Fig. S10) and they were significantly lower in the faecal
microbiota of MeLiM piglets with melanoma regres-
sion at the age of 8 weeks compared to MeLiM piglets
with melanoma regression at the age of 10 and 12 weeks
(Fig. S11, S12). However, membrane transport pathways
(Transporters, phosphotransferase system (PTS), ABC
transporters, and others ion-coupled transporters unclas-
sified) were significantly enriched in melanoma tissue
microbiome, in the faecal microbiota of MeLiM piglets
compared to crossbred piglets and they were significantly
higher in the faecal microbiota of MeLiM piglets with
melanoma regression at the age of 8 weeks (Fig. S8, S9,
S10, S11, S12). Throughout the age, membrane transport
pathways significantly decreased in the melanoma regres-
sion group while no significant difference was detected in
the melanoma progression group in this pathway.

Alterations of membrane transport pathway were asso-
ciated with several human diseases including cancer
[141, 165, 166] and caused severe functional influences:
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increase intestinal permeability, alteration of the bal-
ance of substances between both sides of gut mucosa
and destruction of the intestinal mucosal barrier. In addi-
tion, there is new evidence of the impact of the intesti-
nal microbiome on skin physiology and microbiome [25,
167]. In case of disrupted intestinal barriers, intestinal
bacteria and their metabolites have been reported to dif-
fuse in the bloodstream, reach the skin, and disturb skin
homeostasis [25, 27]. Based on those observations, our
results lead up to deduce that in MeLiM piglets the intes-
tinal permeability was higher and allowed the migration
of the intestinal bacteria and its metabolites throughout
the blood to gain access to the melanoma microenvi-
ronment and enhance tumour growth and proliferation.
However, following the age, the intestinal permeability
of piglets with melanoma regression was decreased and
consequently, the transit of intestinal bacteria and its
metabolites from the gut to the skin was restricted which
was conducted to melanoma regression.

Depth studies suggested that gut F nucleatum origi-
nated from the oral cavity [168, 169]. Several reports
have demonstrated that Fusobacteria can migrate from
the oral cavity to other districts of the body via blood
circulation or lymphatic circulation systems to cause
serious infections in various organs of humans includ-
ing the head, neck, respiratory tract, brain, colon, liver
and lymph nodes to cause metastatic abscess formation
[170-175]. Also, recent studies suggested the transloca-
tion of Fusobacteria from colorectal cancer cells to meta-
static sites attached with the primary tumour cells via
Fap2, as part of metastatic tissue colonization [170, 175].
These observations indicate the importance of tumour
microbiota as essential components of the tumour
microenvironment.

Conclusion

According to our knowledge, this is the first study explor-
ing the association between gut and skin microbiome
changes and melanoma progression. The implementation
of MeLiM piglets as an animal model in melanoma pro-
gression might be a promising approach. Significant dif-
ferences were observed in bacterial composition, relative
abundances, richness and diversity indexes, and poten-
tial functional pathways in skin and gut microbiome of
MeLiM piglets with melanoma progression compared to
healthy piglets (controls). Fusobacterium and Bacteroides
were the common potential biomarkers identified in both
gut and skin microbiome in MeLiM piglets with mela-
noma progression.

The comprehensive analysis of the gut-skin axis is
essential to understand the bidirectional cross-talk
between the gut and skin tumour microbiome and is
regarded as an exciting field of research, with promising
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therapeutic, dermatologic and cosmetic applications.
Moreover, the evaluation of the functions of distinct
bacteria (biomarker) and their metabolites in host
physiology and cancer progression can provide novel
insights into the underlying mechanisms and pathways
to enhance the efficacy of both anticancer therapy and
cancer prevention. Furthermore, a meta-analysis might
be potentially expanded to include fungi and viruses in
order to fully exploit the interaction network and poten-
tial functional between the gut and skin microbiome and
melanoma development.

Methods

Animal experimentation

All animals used in the study are owned by the Insti-
tute of Animal Physiology and Genetics, Czech Acad-
emy of Sciences. The study was conducted under the
Authorization for the use of experimental animals (No.
71922/2016-MZE-17214) and Authorization for breed-
ing of experimental animals and delivery of experimental
animals (No. 9322/2015 MZE-17214) issued by the Min-
istry of Agriculture of the Czech Republic and approved
by the Resort Professional Commission of the Czech
Academy of Sciences for Approval of Projects of Experi-
ments on Animals (Projects of Experiments No. 82—2017
and No. 96-2015).

The MeLiM piglets (n=20) and MeLiM x white control
pig crossbreds (n=14) were included in the study. The
piglets were housed together with sows, fed by the diet
appropriate to their age with unlimited access to water
and sow milk. According to the phenotype, the piglets
were divided into 4 groups: (i) MeLiM piglets with black
skin and melanomas undergoing progression (n=10); (ii)
MeLiM piglets with black skin and melanomas under-
going spontaneous regression (n=10); (iii) crossbreds
with black skin and melanomas undergoing spontaneous
regression (n=4); and, (iv) crossbreds with white skin
(controls without tumours; n =10).

The melanoma development (the position, size and
shape of tumours, as well as animal body weight) was
macroscopically monitored at the 6, 8, 10 and 12 weeks
of piglet age to assess the progressive or regressive dis-
ease development. At the 8, 10, and 12 weeks of age, the
scrapings from the melanoma surface and surrounding
healthy skin surface (4 cm? area, approximately 5 cm
from melanoma) were collected using a sterile scalpel
blade to a sterile tube. Before the skin surface scraping,
the bristles were removed by a different sterile scalpel
blade. In these time intervals, the piglet faeces were col-
lected from the rectum into sterile tubes. The scrapings
and stool samples were immediately frozen to -80 °C. In
addition, at 8 and 12 weeks of piglet age, the melanomas
were collected from animals under Isoflurane and nitric

Page 12 of 19

oxide general anaesthesia. After collection, the tumour
edges and surface were aseptically removed and the
melanoma inner tissue was immediately frozen to liquid
nitrogen and stored at -80 °C until analysis.

DNA extraction

The DNA was extracted from stool samples using
QIAamp PowerFecal DNA Kit (QIAGEN, Hilden, Ger-
many) and from tissue samples using DNeasy Power-
Biofilm Kit (QIAGEN, Hilden, Germany) as per the
manufacturer’s protocols. The disintegration step was
performed with a FastPrep-24 Classic instrument (MP
Biologicals) device for 1 min at a maximum speed of
6.5 m/s. The elution was done with 60 uL of elution
buffer. The eluted DNA was stored at —20 °C until fur-
ther use.

Amplification of 16S rDNA and purification

The V4-V5 region of the 16S rRNA gene was amplified
to prepare amplicons from the extracted DNA using the
primer pair: BactB-F (GGATTAGATACCCTGGTAGT)
and BactB-R (CACGACACGAGCTGACG) [176]. mixed
with EliZyme HS FAST MIX Red (Elisabeth Pharmacon,
Brno, Czech Republic). The PCR conditions were: dena-
turation for 5 min at 95 °C, followed by 25 cycles of 30 s
at 95 °C, 30 s at 57 °C and 30 s at 72 °C, ending by final
elongation for 5 min at 72 °C. The quality of PCR ampli-
cons was checked by 1.5% agarose gel electrophoresis
(30 min at 100 V), then the amplicons were purified using
QIAquick PCR Purification Kit (QIAGEN, Hilden, Ger-
many) according to the manufacturer’s protocol and the
concentration of the purified amplicons was determined
by Nanodrop OneC Microvolume UV-Vis Spectropho-
tometer (Thermo Scientific, Wilmington, USA).

Semi-conductor based Next Generation Sequencing

For diversity analyses, libraries were prepared from puri-
fied amplicons of V4-V5 region of the 16Sr RNA gene
(300 bp) by NEBNext®Fast DNA Library Prep Set kit
(New England Biolabs, Ipswich, MA, USA). The adaptor-
ligated libraries were purified using AMPure XP beads
sizing (Beckman Coulter, Brea, CA, USA). The quality of
purified libraries was controlled by High Sensitivity DNA
electrophoresis with Agilent 2100 Bioanalyzer instru-
ment (Agilent Technologies, Santa Clara, CA, USA)
using the Agilent High Sensitivity DNA Reagents and
chips (Agilent Technologies, Santa Clara, CA, USA). The
purified libraries were quantified using the KAPA Library
Quantification Kit for Ion Torrent Platforms (Roche,
Pleasanton, CA, USA) in QuantStudio” 3 Real-Time
PCR System (Thermo Fisher Scientific, Waltham, MA,
USA). The pool of equimolar concentration of barcoded
libraries was used to prepare a sequencing template with
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Ion Sphere Particles (ISPs) using Ion PGM " Hi-Q"" View
OT2 400 Kit (Thermo Fisher Scientific, Waltham, MA,
USA) in Ion OneTouchTM 2 instrument. The enrich-
ment of the template positive ISPs was performed on
the Ion OneTouchTM ES instrument. The enriched tem-
plate positive ISPs were loaded in Ion 316TM Chip v2
BC (Thermo Fisher Scientific, Waltham, MA, USA). The
sequencing was then performed on an Ion Torrent PGM
sequencer (Thermo Fisher Scientific, Waltham, MA,
USA) using Ion PGM™ Hi-Q" View Sequencing solu-
tions kit (Thermo Fisher Scientific, Waltham, MA, USA)
following the manufacturer’s instructions.

Microbiome analysis and statistical analysis

Bacterial 16S rRNA gene sequences were obtained in
FASTQ format and analyzed by QIIME 2 version 2020.2
pipeline [177]. Quality filtering and chimaera excluding
were performed using the DADA2 plugin in QIIME2
[178] (via q2-dada2) to extract sequence variants
(ASVs). Mafft was used to align the sequences [179]
(via g2-alignment) and fasttree was used to construct
a phylogenetic tree [180] (via q2-phylogeny). Then,
clustering and taxonomy classification was generated
using the giime feature-classifier with VSEARCH based
on SILVA database (version 132) with 99% threshold
[181]. The rarefaction was conducted to normalize the
data based on reads depth in all samples. Alpha diver-
sity indexes were determined using q2-diversity plugin
based on the Kruskal-Wallis test and visualized using
the giime2R (https://github.com/jbisanz/qiime2R) and
ggplot2 packages in R-Studio (version 3.6.3) [182-184].
Principal Coordinate Analysis (PCoA) based on Bray
Curtis distance diversity metrics (beta diversity) were
generated by qiime2 core-metrics phylogenetic pipe-
line after rarefaction. The 2-dimensional PCoA plots
were generated by qiime2R and ggplot2. Non-metric
multidimensional scaling (NMDS) plot was performed
using phyloseq and ggplot2 and the dissimilarity was
based on Bray Curtis distance [184, 185]. The confi-
dence ellipse represents 95% of the confidence level.
The linear discriminant analysis (LDA) with effect size
(LefSe) algorithm [186] in Galaxy module http://hutte
nhower.sph.harvard.edu/galaxy/ was used to detect fea-
tures with significant differential abundance between
different biological categories of samples based on the
factorial Kruskal-Wallis test and the pairwise Wilcoxon
test to identify taxa with significant differential relative
abundances at genus level with alpha values of 0.05 and
a threshold value of 3.0 on the logarithmic LDA scores
for discriminative features (p<0.05 and LDA score/
effect-size threshold =3). Phylogenetic investigation of
communities by reconstruction of unobserved states
algorithm (PICRUSt v 2.3.0-b) [187] was applied to
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compare the potential function capacities of the cuta-
neous microbiome and faecal microbiome among dif-
ferent categories of samples. The functional genes were
categorized into KEGG pathways at different subclasses
levels 1, 2 and 3 and the resulting abundance table was
imported in STAMP v2.1.3 program (Statistical Analy-
sis of Metagenomic Profiles) for statistical analysis [188]
by using Non-corrected Welch’s t-test type two-sided,
with the confidence interval (CI) method of Welch’s
inverted adjustment of 0.95 (p < 0.05). The relationships
among functional capacities were analysed by principal
component analysis (PCA).
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Additional file 3. Comparison of the bacterialalpha diversity a) in the
cutaneous microbiome of piglets with melanomaregression and piglets
with melanoma progression in different cutaneous samples(healthy skin,
melanoma surface and melanoma tissue), b) in the cutaneousmicrobi-
ome of piglets with melanoma progression and melanoma regression
atdifferent ages (8, 10, 12 weeks) and c) in faecal microbiome of piglets
atdifferent stat (control, melanoma progression and melanoma regression)
throughout the age (8, 10, 12 weeks). Bacterial diversity and richness wer-
eestimated by different alpha diversity indexes: Observed species, Chao,
Ace,Shannon, Simpson, Inverse Simpson and Fisher index. Kruskal-Wallis
pairwisetest (p-value < 0.05) was used to compare between different
samples.

Additional file 4. Beta diversity of bacterialcommunities using Principal
Coordinate Analysis (PCoA) ordinations based on theBray Curtis distance
matrix. The dissimilarities between bacterial communitieswere repre-
sented by regrouping in distinct clusters: a) in skin microbiomeamong
different samples (healthy skin, melanoma surface and melanoma tissue,
b)in skin microbiome among multiple samples in different disease
conditions(control, melanoma progression and melanoma regression)
and c) in faecalmicrobiome of different piglets groups (white control,
crossbred with melanomaregression, MeLiM with melanoma regression
and MeLiM with melanomaprogression). The confidence level of the
ellipse was 95%.
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Additional file 5. Linear discriminantanalysis (LDA) effect size (LEfSe) at
genera level (i) in skin microbiomebetween: a) healthy skin and mela-
noma surface and b) healthy skin and melanomatissue, and (ii) in faecal
microbiome ¢) between different conditions (healthycontrol, melanoma
progression and melanoma regression) and d) between MeLiMpiglets and
crossbred animals. Differential abundance between categories wasevalu-
ated based on the factorial Kruskal-Wallis (KW) test and the pairwiseWil-
coxon test (p < 0.05 and LDA score/effect-size threshold = 3).

Additional file 6.
Additional file 7.
Additional file 8.

Additional file 9. Functional pathway analysis ofthe cutaneous micro-
biome and faecal microbiome based on the KEGG database.Extended
error bar plot identifying the significant differences in meanproportion
(%) of predicted functional categories a) at second-level KEGGpathway
between the healthy skin microbiome and melanoma tissue microbiome,
b)at second-level KEGG pathway between melanoma progression and
melanomaregression in melanoma tissue microbiome, ¢) at second-level
KEGG pathwaybetween the faecal microbiome of MeLiM piglets and
faecal microbiome ofcrossbred piglets and d) at third-level KEGG pathway
between the faecalmicrobiome of MeLiM piglets with melanoma progres-
sion and MeLiM piglets withmelanoma regression using the STAMP soft-
ware. The corrected p-values that wereshown on the right, were obtained
from a Welch'’s t-test with the confidenceinterval (Cl) method of Welch's
inverted adjustment of 0.95 (p< 0.05).

Additional file 10.
Additional file 11.
Additional file 12.

Additional file 13. Principal ComponentAnalysis (PCA) of the predicted
functional pathways at KEGG level 2 a) betweenthe healthy skin microbiome
and melanoma tissue microbiome, b) between melanomaprogression and
melanoma regression in melanoma tissue microbiome, ) betweenthe faecal
microbiome of MeLiM piglets and faecal microbiome of crossbredpiglets
and d) between the faecal microbiome of MeLiM piglets with melanomapro-
gression and MeLiM piglets with melanoma regression using the STAMP
softwarebased on Non-corrected Welch'st-test type two-sided, with the
confidenceinterval (Cl)methodofWelch's invertedadjustment of 0.95(p< 0.05).

Additional file 14.
Additional file 15.
Additional file 16.

Additional file 17. Functional pathway analysis of cutaneous microbi-
omebased on the KEGG database. Extended error bar plot identifying the
significantdifferences in mean proportion (%) of predicted functional cat-
egories at level3 of KEGG pathway between the healthy skin microbiome
and melanoma tissue microbiome.

Additional file 18. Functional pathway analysisof cutaneous microbiome
based on the KEGG database. Extended error bar plotidentifying the
significant differences in mean proportion (%) of predictedfunctional cat-
egories at level 3 of KEGG pathway between melanoma progressionand
melanoma regression in melanoma tissue microbiome.

Additional file 19. Functional pathway analysisof faecal microbiome
based on the KEGG database. Extended error bar plotidentifying the signifi-
cant differences in mean proportion (%) of predictedfunctional categories
at level 3 of KEGG pathway between MeliM piglets andcrossbred piglets.

Additional file 20. Functional pathway analysisof faecal microbiome
based on the KEGG database. Extended error bar plotidentifying the sig-
nificant differences in mean proportion (%) of predictedfunctional catego-
ries at second-level KEGG pathway between MeliM piglets withmelanoma
regression at the age of 8 weeks and MeliM piglets with melanomaregres-
sion at the age of 10 weeks.

Additional file 21. Functional pathway analysisof faecal microbiome
based on the KEGG database. Extended error bar plotidentifying the
significant differences in mean proportion (%) of predictedfunctional

categories at second-level KEGG pathway between MeliM piglets
withmelanoma regression at the age of 8 weeks and MeliM piglets with
melanomaregression at the age of 12 weeks.

Additional file 22. Pairwise comparison ofalpha diversity of cutaneous
bacterial communities of animal models (white,crossbred, MeLiM piglets)
in different skin samples (healthy skin, melanoma surfaceand melanoma
tissue), at different stat (control, melanoma regression andmelanoma
regression) at different ages (8, 10, 12 weeks) measured by Chao,Evenness,
Shannon and Simpson index of diversity using Kruskal-Wallis pairwisetest
(p-value < 0.05).

Additional file 23. Pairwise comparison ofalpha diversity of faecal
microbiota of animal models (white, crossbred, MeLiMpiglets) at different
stat (control, melanoma regression and melanomaregression) at different
ages (8, 10, 12 weeks) measured by Chao, Evenness,Shannon and Simpson
index of diversity using Kruskal-Wallis pairwise test(p-value < 0.05).

Additional file 24. The relative abundances ofthe bacterial community in
skin microbiota of several cutaneous samples fromdifferent animal models
at different ages at phylum and genus levels.

Additional file 25. The relative abundances ofthe bacterial community
in the faecal microbiota of different animal models atdifferent ages at
phylum and genus levels.

Additional file 26. Predicted functional KEGGpathways at levels 1, 2 and
3 in the skin microbiome of several cutaneoussamples (healthy skin, mela-
noma surface and melanoma tissue) from differentanimal models (white,
crossbred, MeLiM piglets) at different disease states(control, melanoma
regression and melanoma regression).

Additional file 27. Predicted functional KEGGpathways at levels 1,2 and
3in the faecal microbiota of different animalmodels (white, crossbred,
MelLiM piglets) at different disease stat (control,melanoma regression and
melanoma regression)
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