
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14945  | https://doi.org/10.1038/s41598-022-18993-0

www.nature.com/scientificreports

A hybrid binary dwarf mongoose 
optimization algorithm 
with simulated annealing 
for feature selection on high 
dimensional multi‑class datasets
Olatunji A. Akinola, Absalom E. Ezugwu*, Olaide N. Oyelade & Jeffrey O. Agushaka

The dwarf mongoose optimization (DMO) algorithm developed in 2022 was applied to solve 
continuous mechanical engineering design problems with a considerable balance of the exploration 
and exploitation phases as a metaheuristic approach. Still, the DMO is restricted in its exploitation 
phase, somewhat hindering the algorithm’s optimal performance. In this paper, we proposed a new 
hybrid method called the BDMSAO, which combines the binary variants of the DMO (or BDMO) and 
simulated annealing (SA) algorithm. In the modelling and implementation of the hybrid BDMSAO 
algorithm, the BDMO is employed and used as the global search method and the simulated annealing 
(SA) as the local search component to enhance the limited exploitative mechanism of the BDMO. The 
new hybrid algorithm was evaluated using eighteen (18) UCI machine learning datasets of low and 
medium dimensions. The BDMSAO was also tested using three high‑dimensional medical datasets to 
assess its robustness. The results showed the efficacy of the BDMSAO in solving challenging feature 
selection problems on varying datasets dimensions and its outperformance over ten other methods 
in the study. Specifically, the BDMSAO achieved an overall result of 61.11% in producing the highest 
classification accuracy possible and getting 100% accuracy on 9 of 18 datasets. It also yielded the 
maximum accuracy obtainable on the three high‑dimensional datasets utilized while achieving 
competitive performance regarding the number of features selected.

Technological advancement in various fields of endeavor has resulted in a large amount of data being generated 
in the information industry. The massive data available today can only be meaningful if there are correspond-
ing tools that can transform these data into information without stress. Data mining and machine learning are 
potent tools in this regard because there has been a tremendous growth in the use of these tools to transform 
massive data into meaningful information. However, this large amount of data comes with redundancies, noise, 
and many features which may hinder knowledge discovery activities like a classifier’s performance.

Knowledge discovery (KD) activities consist of repeatedly performing data cleaning, dimensional reduction, 
data integration and transformation, and many other activities. These activities form part of the pre-processing 
tasks, without which the performance of data mining and machine learning algorithms would be significantly 
affected. Data is so important nowadays that it is regarded as the ’new currency.’ Careful handling of the ’new 
currency’ is required, making data mining and machine learning a fast-growing field. The dimension of the 
vast data available is of great concern for data miners because it impacts their ability to transform the data into 
meaningful information. Many data mining and machine learning tools require considerable time to carry out 
their tasks. Therefore, noisy data with redundant features would increase these algorithms’ time complexity. For 
this problem to be resolved, the pre-processing step of feature selection becomes crucial, which can impact the 
performance of learning algorithms. The feature selection then plays a notable role in many research  areas1,2.

Feature selection has become a prominent approach employed to remove irrelevant and unnecessary features, 
reducing the attributes that do not aid the purpose of classification but add more burden on computational 
cost and requirement for space. This process is often categorized into wrapper and filter approaches. The first 
employs one or more learning algorithms to extract a relevant subset of features. At the same time, the latter is 
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independent of a learning algorithm and uses information gain, mutual information, Laplacian score, and many 
more to select useful  features3,4. Generally, the wrapper methods yield better results in terms of classification 
 accuracy5 than the filter methods, which produce results faster than the wrapper approach. However, the wrapper 
methods are computationally expensive. This wrapper feature selection method is an optimization  problem6,7. In 
tackling this optimization problem of feature selection, metaheuristic algorithms have played a prominent role 
in recent years. Among these methods are work  done6–11 which produced better solutions in comparison with 
the exact techniques like recursive feature elimination, mutual information, Laplacian score.

The feature selection problem aims to locate the most appropriate or best subset of features, thereby choosing the 
minimum features possible and maximizing the classification accuracy. This has become a daunting task due to its 
contradicting, multi-objective nature. In recent years, metaheuristic algorithms have been utilized to solve this issue. 
As a result of the increasing time required to find the best feature subsets, especially in a high-dimension dataset, fea-
ture selection is considered an NP-hard  problem12. Considering a dataset with an N feature, a sum of 2^N − 1 features 
combination is needed to investigate the location of the optima  feature13,14. Therefore, a high-performing metaheuristic 
algorithm is required to reduce the processing time posed by this kind of problem. The random forest will likely solve 
this problem,however, the trees tend not to go deep and have a high  bias15.

Metaheuristic algorithms are deemed more appropriate for solving such problems due to their ability to 
cater to the worst-case  scenario16. Many of these metaheuristic algorithms are found in literature, some of 
which include Particle Swarm Optimization (PSO)17, Genetic Algorithm (GA)18, Whale Optimization Algorithm 
(WOA)19, DragonFly Algorithm (DA)20, Cuckoo Search Optimization Algorithm (CSO)21, Harmony Search 
algorithm (HS)22, Grey Wolf Optimizer (GWO)23, Krill Herd Algorithm (KHA)24, Prairie Dog Optimization 
Algorithm (PDO)25, and more. Each of these optimizers has been used to solve different problems with varying 
successes. Generally, metaheuristic algorithms’ search process relies on the equilibrium between the diversifica-
tion and intensification phases. Diversification is also an exploration where candidate solutions that are not neigh-
boring are evaluated. Meanwhile, intensification is also regarded as exploitation where neighboring solutions 
are intensively searched for the best solutions. The importance of these two phases cannot be overemphasized 
as a factor in finding the best solution(s).

Several researchers have employed metaheuristic algorithms to solve many feature selection  problems6,7,26. 
Due to the great demand for these algorithms, researchers have invested a lot of time and effort in developing 
superior algorithms capable of generating high-quality solutions for the candidate problem. Since metaheuristics 
approaches can only give near-optimal results, developing new methods or improving existing algorithms to 
obtain better results or optimal solutions has become an ongoing endeavor. Furthermore, the No Free Lunch 
(NFL) theorem assumes that no single algorithm can produce optimal results for all optimization  problems27. We 
can therefore conclude that there is no universal or one-size-fits-all algorithm for every optimization problem that 
can produce the best results. The reference to this theory has motivated research in this area. More researchers 
are developing efficient and novel metaheuristic algorithms to solve the FS problems.

Though many metaheuristic algorithms have been used to solve the feature selection problems in the litera-
ture, most have inherent drawbacks or  shortcomings28. Typically, these algorithms’ performance largely depends 
on the innate traits of the datasets used to train those models. Usually, hybrid algorithms are often considered a 
better preference because the shortfall of one method is enhanced by the strength of the  other29. Therefore, the 
success of the hybrid implementation of FS-based metaheuristic algorithms has motivated the current study, 
where a hybrid algorithm is proposed by hybridizing the binary variant of the standard DMO algorithm with the 
simulated annealing (SA). In this study, the binary DMO (or BDMO) was enhanced by improving its capacity 
to adequately exploit the intensification phase of the underlying problem landscape to produce better solutions. 
Therefore, the focus is on implementing a new hybrid solution that uses simulated annealing (SA)30 to augment 
the identified limitation of the binary dwarf mongoose optimizer. The hybrid is subsequently employed to solve 
the problems of high-dimensional feature selection datasets. The new hybrid algorithm is called the binary dwarf 
mongoose simulated annealing optimization (BDMSAO) algorithm.

In the new proposed feature selection method, the SA algorithm is used as a component in the BDMO or 
as a low-level team player in conjunction with the BDMO algorithm to increase the quality of the final feature 
selection results. Precisely, the SA is used to search the neighborhood of the best search agent to ensure that the 
local optima are enhanced. In addition, the SA is also employed after the BDMO is done exploring the solution 
search space to enhance the best-found solution, which afterwards is identified as the global best solution. It is 
noteworthy that several researchers have recently proposed similar hybrid methods, including the work presented 
 in1,31,32. The results obtained by these hybrid methods proved their efficiency and outperformance over other 
related state-of-the-art techniques. Thus, in addition, this certainly also motivated our proposed hybrid version 
of the DMO. The major contribution of this study can be summarized as follows:

• A hybrid FS method called BDMSAO is introduced using BDMO and high-performing simulated annealing 
(SA).

• The proposed BDMSAO method is evaluated using 18 standard UCI datasets using the K-nearest Neighbors 
(KNN) classifier to prove its effectiveness.

• Also, the BDMSAO is applied to solve three high-dimensional datasets from the Arizona State University FS 
repository to prove its robustness further

• The performance of the proposed FS method is compared with many state-of-the-art metaheuristic-based 
FS methods.

The remaining part of this paper is structured as follows: “Related work” section reviews related work. “Pre-
liminaries” presents the two methods, BDMO and SA, that were hybridized in this study. Similarly, “The proposed 
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hybrid method” presents the proposed method considering its solution presentation, fitness function, and com-
putational complexity. In “Experimental results and discussion”, the experimental results of this study are dis-
cussed, and the statistical analysis test results are presented. “Testing on high-dimensional datasets” discusses 
the use of the proposed method on high-dimensional datasets to show its robustness. Finally, “Conclusion and 
future work” concludes this work by giving its limitation and future direction.

Related work
Recently, metaheuristic algorithms have gained ground in solving optimization problems, and these methods are 
regularly undergoing enormous improvements from researchers. Metaheuristic algorithms have become pivotal 
in finding optimal solutions through algorithms’ learning using the process of iteration.  In33, metaheuristic 
algorithms were divided into population-based and single solution-based.  Also34, categorized these algorithms 
into non-nature inspired and nature-inspired metaheuristics. Many researchers have developed several hybrid 
forms of metaheuristic algorithms to solve feature selection problems. The hybridized methods have proven their 
superior performance in solving practical and real-world  problems29. In the first hybrid method (metaheuristic), 
the Genetic Algorithm (GA) was combined with a local search algorithm to solve the optimization problem of 
feature  selection35. From the inspirational viewpoint, metaheuristic algorithms can be generally grouped into 
swarm-based, physics-based, evolutionary-based, and human-based.

Swarm‑based algorithms. Algorithms in this group are inspired by the social interaction or behaviour of birds, 
animals, insects, fish, schools, herds and so on. The main underlying idea of these algorithms is that everyone has a 
particular behaviour but coming together as a group or team and harnessing their joint effort enables them to solve 
very complex optimization problems. Several algorithms have been developed in this category in the last two decades, 
and researchers have also developed variants of some popular ones. Others have or/are still hybridizing them to solve 
various optimization problems. One of the prominent ones is the  PSO17 which has gained so much attention due to 
its rich mathematical basis for solving problems. Other algorithms in this group are Cuckoo Search (CS)21, Grey Wolf 
Optimizer (GWO)  by23, Krill Herd Algorithm (KH)24, Whale Optimization Algorithm (WOA)36, Dwarf Mongoose 
Optimization (DMO)37 algorithm, Gazelle Optimization Algorithm (GOA)38 etc.

As one of the most notable algorithms in the swarm-based category, the PSO has also been greatly hybridized 
to solve the feature selection problem.  In39, a local search algorithm was employed to assist the PSO in searching 
for the optimal solution and selecting the minimum reducts in relation to their correlation information. Talbi 
et al.40 proposed a wrapper-based hybrid GA-SA method called GPSO using SVM as the classifier, and the work 
 of41 presented a multi-objective and hybrid mutation operator, which were both applied to the classification of 
microarray data. The study  in42 presented a novel hybridization of the GA with PSO in optimizing feature sets 
on the datasets of Digital Mammogram. The studies  in43,44 presented two different wrapper-based feature selec-
tion methods that hybridized the GA with Ant Colony Optimiser (ACO). Another  study45 combined the GA 
and Cuckoo search algorithms as a wrapper-based method to tackle the feature selection problem. Other hybrid 
methods include Harmony Search Algorithm and Stochastic Local Search (Nakkaa & Boughaci, 2016), Artificial 
Bee Colony (ABC) and Differential Evolution (DE)  algorithms46.

Evolutionary‑based algorithms. Algorithms that fall under this category are inspired by nature or 
through biological process of evolution and begin their process by randomly generating their population solu-
tions. The foremost algorithm in this category is the Genetic Algorithm (GA)18 which generated its fittest indi-
vidual using mutation and crossover in every generation. The GA has attracted a lot of attention with the creation 
of different variants, and improvements have been employed to solve many real-world problems. Other popular 
algorithms developed in this group include genetic  programming47, tabu  search48, evolution strategy, differential 
evolution, flower pollination  algorithm49, memetic  algorithm50, Biogeography-Based  Optimization51, and more.

Apart from the presentation of these evolutional metaheuristic algorithms, the GA being the prominent 
algorithm in the evolutionary category has attracted significant attention where it was hybridized with other 
methods to solve different optimization  problems52–55 where those studies revealed the potency (in terms) of 
producing better output in comparison with either other local or global search models. It has also been widely 
hybridized in the domain of feature selection. The GA was also combined with the SA as a filter  approach56 
to enhance the GA’s local search capability to solve the feature selection problem. This method was evaluated 
using eight datasets from the UCI machine learning repository. It performed better in selecting the minimum 
number of a subset of features than other popular methods. Also  in57, the authors proposed a memetic feature 
selection algorithm where the study utilized the fuzzy logic in controlling the major parameters on two local 
search techniques, which was later combined with the GA. In application to the wrapper-based method, the 
crossover operator of the GA was combined into the metropolis acceptance criterium of the  SA58. Furthermore, 
it was hybridized  in59 in classifying power disturbance in the problem of Power Quality (PQ) which also optimize 
SVM parameters. Moreso  in60, it was combined with Tabu Search, which employed the Fuzzy ARTMAP Neural 
Network to evaluate the wrapper feature selection method.

Physics‑based algorithms. These algorithms draw their inspiration from the laws of physics in the world. 
Physics-based methods are inspired by physics principles, chemistry, music, complex dynamic systems, phys-
ics and metallurgy to  mathematics1. Some prominent algorithms in this group include Gravitational Search 
 Algorithms61, Atom Search  Optimizer62, Ray  Optimization63, Galaxy-Base Search  Algorithm64, Equilibrium 
Optimizer (EO)65, Sine Cosine Algorithm (CSA)20 and so on.

In66, a hybrid metaheuristic feature selection method was proposed using a Golden Ratio Optimization 
(GRO) and Equilibrium Optimization (EO) algorithms called the Golden Ratio based Equilibrium Optimization 
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(GREO) algorithm, which was applied in speech emotion recognition. Also, the study conducted  in67 presented a 
hybrid feature selection method that is based on the ReliefF filter technique and EO known as RBEO-LS, which 
have two phases: the first employed the ReliefR algorithm at the pre-processing stage for feature weights assign-
ment, and the second utilized binary EO (BEO) as a wrapper search technique.

Human‑based algorithms. Algorithms in this category are inspired by activities performed by humans or 
human behaviours. Human beings are involved in various activities that affect their performance, and research-
ers use these behaviours to develop algorithms. The most prevalent algorithms here are Teaching Learning-Based 
Optimization (TLBO)  by68 and League Championship algorithms (LCA)69. Others include Exchange Market 
Algorithm (EMA) by (Ghorbani & Babaei, 70), Social-Based Algorithm (SBA)  by71, Seeker Optimization Algo-
rithm (SOA)  by72, etc. It is observed from the literature that not many algorithms are human inspired. TLBO, 
a well-known method in this category, was hybridized  in73 with extreme learning machines (ELM), referred to 
as TLBO-ELM in solving data classification problems which feature selection falls under. It was tested on some 
UCI benchmark datasets.

With the strength of metaheuristic algorithms comes to some issues, among which is premature convergence 
that results in locating limited optimal solutions. Frequently, researchers combine these algorithms with other 
methods like local search techniques. Generally, the local search algorithm tries to conduct an intensive search 
of each region of the solution, which can outperform existing metaheuristic solutions. Among the existing local 
search methods are Simulated Annealing (SA)30, tabu  search48, and Hill climbing (HC). The HC have variations 
like the βHC, Adaptive βHC and Late Acceptance HC (LAHC). Several works exist in the literature that employed 
the combination of local search strategy with metaheuristic algorithms. Some of them  includes1,74–78.

Preliminaries. Dwarf Mongoose Optimization Algorithm. DMO37 is a population-based stochastic me-
taheuristic algorithm inspired by the foraging and social behaviour of dwarf mongoose, also called Helogale. 
Each dwarf mongoose search for food individually since food search is not a collective exercise, but foraging is 
done collectively. Due to the seminomadic attribute of these animals, the building of a sleeping mound is close 
to an abundant source of food. The algorithm mathematically models the lifestyle of this animal to solve opti-
mization problems.

All population-based optimization algorithms commence with random initialization. After that, because 
of the intensification and diversification rules, every solution gathers around the global best optima. Similarly, 
the DMO starts its solution by initializing the mongoose’s candidate population. This population is generated 
stochastically between a particular problem’s lower and upper bounds.

where X represents the set of the candidates’ present population that are generated randomly using Eq. (2), xi,j 
indicates the position of the jth dimension of the ith population, n indicates the population size, and d is the 
dimension of the problem.

where unifrnd is a random number that is distributed uniformly, VarMinandVarMax are lower bound and 
upper bound, respectively VarSize is the dimension of the problem. The best solution at each iteration is the best 
solution obtained so far.

Like every metaheuristic algorithm, there are two phases in the DMO: exploitation (individual mongoose 
carries out a thorough search in each search space), also called intensification and exploration (a random search 
for a new abundant food source or new sleeping mound) or diversification. Three major social structures of the 
DMO carry out the activities of the two phases mentioned: the alpha group, scout group, and babysitters.

The alpha female (α) is the family unit controller and is selected using Eq. (3).

n− bs matches the number of mongooses in the alpha group. The number of babysitters is denoted by bs, and  
peep represents the sound of female alpha to the path of the other unit members.

The sleeping mound is determined by abundant food which is expressed in Eq. (4).

where phi is a random uniformly distributed number [− 1,1], after each iteration, there is an evaluation of the 
sleeping mound; Eq. (5) represents this.

when a sleeping mound is found, an average value is derived using Eq. (6)
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Once the babysitter exchange criterium is attained, the next phase is the scouting, which evaluates the next 
sleeping mound determined by another food source.

Since mongoose is known not to return to a prior sleeping mound, the scout group goes searching for the 
next sleeping mound to ensure exploration. The mongoose is known to forage and scout simultaneously in DMO 
with the justification that the farther the unit forage, the likelihood of finding the next sleeping mound. This is 
simulated using Eq. (7).

where rand is a random number between [0, 1], CF =
(

1− iter
Maxiter

)

(

2 iter
Maxiter

)

 shows the parameter that directs 

the collective-volatile movement of the mongoose’s group that linearly decreases during iterations. �M =
n
∑

i=1

Xi×smi
Xi

 

connotes the vector that motivates the movement of mongoose to a new sleeping mound.
The babysitter’s group remains with the juveniles when the scouting and foraging group searches for a sleeping 

mound and food source. The number of the members of this group is removed from the total number of candidate 
population as they do not go to forage or scout until the babysitter exchange parameter is met in Eq. (7). In the follow-
ing section, the proposed binary variant of DMO is presented with the hybrid method of simulated annealing (SA).

The proposed hybrid method
In this section, the representation of the solution, the fitness function utilized and the proposed method’s compu-
tation complexity are elaborated. The feature selection problem, an optimization problem represented in binary 
form, and its solution confined to 0 s and 1 s were taken care of by the BDMO. The agents update their position 
in each iteration using the BDMO optimization rules and afterwards pass the solution to the SA to locate the 
better neighborhood solution to improve and refine the results. As a multi-objective optimization problem where 
two opposing objectives of high classification accuracy and minimal features selected as possible need to be met. 
The achievement of these two objectives determines how best a solution is. In the proposed method, the BDMO 
utilizes the tournament selection mechanism to advance the algorithm’s diversification capability, which affords 
a high chance of selecting weak solutions while searching for promising ones.

The DMO is a recent metaheuristic algorithm which proves its efficacy in solving mechanical optimization 
problems. The algorithm employs a Tau operator, which signifies that if a new food source is not found mindless, 
the fitness value of the present solution and the one being operated upon the intensification should be performed 
(Eq. 7). This operator was replaced with the SA as a local search technique that takes an initial state of a solu-
tion, processes it, and replaces the improved solution in place of the original one. This technique represents the 
hybridization of the BDMO and SA as a local search method.

Solution representation. The feature selection problem being an optimization problem has its output ∈ [0, 1] . 
The zero indicates that the feature is redundant or irrelevant and is thereby rejected, while one signifies that the feature 
is useful and therefore selected. The possibility that the results might be out of range cannot be ruled out. Therefore, the 
binarization function is applied to every agent to ensure they remain within the specified range. This is performed using 
Eq. (8). To select a feature, the position index must be 0.5 and above, which rounds the value to 1, and for any feature to 
be rejected, its position index must be less than 0.5, which is rounded down to 0.

where BestSoldi  is the best solution i in dimension d . Thereby, a mongoose’s position shows that a feature set is 
selected as the value of position increases for the  dimensions79.

Fitness function. Selecting a useful feature that assists the classifier in recognizing a class of a sample in a 
dataset is challenging. During the selection process of relevant features, there is a need to remove the redundant 
ones for the sake of classification automatically and to maximize the accuracy of the classification problem when 
the feature selected is to be  used80. In this work, the BDMSAO is utilized to locate the best feature subset and 
employ the KNN classifier to calculate the classification accuracy. The classification accuracy of this model Ac is 
gotten by a classifier, bs represent the feature subset dimension, and the total number of attributes contained in 
the dataset is signified by Dt . Therefore, the classification error is 1− Ac and the subset of selected features from 
the dataset is denoted by dsDt

 . Hence, the fitness function is defined as:

where µ ∈ [0,1] is the weight assigned to the error classification.

The BDMSAO algorithm. The binary version of DMO is proposed in this study to solve the problem of 
feature selection for many benchmark datasets. The aim is to investigate the performance of the new hybrid algo-

(6)ϕ =

∑n
i=1 smi

n

(7)Xi+1 =

{

Xi − CF ∗ phi ∗ rand ∗ [Xi − �M] if ϕi+1 > ϕi
Xi + CF ∗ phi ∗ rand ∗ [Xi − �M] else

(8)BestSold =

{

BestSoldi > 0.5 feature is selected

BestSoldi ≤ 0.5 unselected feature

(9)↓ Fitness = µ · (1− Ac)+ (1− µ) ·
ds

Dt
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rithm in solving the challenging problem of selecting minimal features from high-density datasets. The resulting 
BDMO algorithm is supported by the SA method to boost its operations in the local search tasks. The evaluation 
of the fitness function in the proposed BDMO method utilizes Eqs. (10–12).

where the xfi represents the number of items in a normalized value of xi , and xsi is applied to compute the actual 
fitness value of xi which is assigned to fi.

(10)xfi = size
(

flat(xi)
)

(11)xsi = (1− 0.99) ∗
sum(xi)

xfi

(12)fi = 0.99 ∗ (1− classifier
(

X
[

: xf
]

,Y
[

: xf
])

+ xsi

Algorithm 1 Pseudocode of the BDMSAO

Input: pop_size, dim, trainX, testX, trainy, testy, MaxIter
begin
Initialize BDMO population from feature set fs
C, sm=[]
nAlphaGroup=size(AlphaGroup)
nScout=nAlphaGroup
bs= trainX[nAlphaGroup:]
nbs=size(bs)
pop = initialise(pop_size, dimension, trainX, testX, trainy, testy)
Acc, CostFunc=fit(pop, trainX, testX, trainy, testy)
bestagent_acc, best_fit = fit(pop[0], trainX, testX, trainy, testy)
BestSol=pop[0]    
Set babysitter exchange parameter L
Evaluate the fitness of each fs, AlphaGroup
Define the best solution, BestSol from fs
while maximum iteration (MaxIter ) is not reached

for i:0 to pop_size
pop[i], CostFunc[i] = SA(pop[i], CostFunc[i], trainX, testX, trainy, testy)

endfor

for i:0 to nScout
k=rand(1, nAlphaGroup)
phi=(1/2) * rand(-1,+1,dim)
npop=pop[i] + phi * (pop[i] - pop[k])
npop=bound(npop) 

npopAcc, npopCostFunc= fit(npop, trainX, testX, trainy, testy) 
sm.add((npopCostFunc - CostFunc[i])/max(npopCostFunc, CostFunc[i]))
if npopCostFunc <= CostFunc[i]:

pop[i]=npop
else

increament content of C[i] by 1
endfor

for i: 0 to nbs
compute ntau
if C[i] > current babyseaters exchange rate:

M=(pop[i] * sm)/pop[i]
if ntau < rand(0, 1)

npop=pop[i] - CF * phi * rand * (pop[i] - M)
else

npop=pop[i] + CF * phi * rand * (pop[i] - M)

update ntau as the babyseaters exchange rate
npop=bound(npop)
C[i]=0

endfor

for i: 0 to nAlphaGroup
if CostFunc[i] <=  best_fit:

BestSol=pop[i]
endfor

end while
testAcc = accuracy(BestSol, trainX, testX, trainy, testy)
featCnt = extractFeaturesCount(BestSol)
Output testAcc, featCnt, BestSol
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Algorithm 1 is a detailed listing of the pseudocode for the proposed hybrid algorithm BDMSAO. The search 
mechanism of the alpha groups in the DMO is now replaced by the SA for an improved local search operation. 
The algorithm accepts datasets prepared as trainX, testX, trainy, testy, and in addition the population size, the 
number of iterations, and the dimension of population. Using these inputs, the population is initialized and 
computation for the fitness value for each individual in the population is derived. During the iteration, three 
search processes are evaluated including the SA-based search, scout group-based search and the baby seater-
based search. These three-level searches apply nature-specific operations which demonstrates the balance for 
the exploration and exploitation phases of the proposed BDMSAO algorithm. Specifically, the SA is adapted to 
improve the local search of BDMO for improved performance. Once the three stages of the search process are 
completed, the global best solution is identified so that classification accuracy for the solution is computed using 
the datasets. The algorithm returns the computed number of features selected, the accuracy of the classification 
leading to the selected number of features, and the best solution.

Complexity of computation. The computation complexity of every metaheuristic algorithm depends 
on the time each candidate takes to update its positions, the maximum iteration value, other operations 
such as sorting or comparison, and variable update time. The computational complexity of the BDMSAO is 
O
(

Maxiter ∗ Popsize ∗ Dims ∗ Tfitness

)

,where Maxiter is the maximum iteration number, Popsize is the population 
size, Dims denotes the search space dimension, Tfitness represent the classifier’s time required to calculate the 
fitness of a given solution. The SA is employed to locate the best solutions if they can be found in the neighbor-
hood of the present solution. In terms of O − notation , the SA does not significantly affect the computation cost.

The optimization steps of the developed hybrid BDMSAO algorithm for solving feature selection problems 
is presented in Fig. 1. In the given figure, the hybrid BDMSAO’s first step is defining all the parameters (which 
includes both BDMO and SA algorithms parameters, respectively). Then the next step is to generate the popula-
tion representing a set of solutions for the feature selection problem. Subsequently, the fitness function of the 
individual candidate solution is determined based on evaluating and selecting the best features, after which the 
current best solution is identified and retained. The next step for the BDMSAO algorithm is to update the current 
population by using either the BDMO or SA algorithms, again depending on the quality of the fitness function. 
The process is such that if the probability of fitness function for the current solution is greater than 0.5, then 

Figure 1.  Flowchart illustrating the algorithmic structure of the BDMSAO algorithm.
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the BDMO is selected for update. Otherwise, the SA algorithm is used to update the current population. Note 
that the probability above is computed as a factor of the position index (P_index) being >= 0.5 . Thereafter, the 
fitness function for each solution is computed using Eq. (9), and the best solution is determined after updating 
the population. The next step is for the BDMSAO to check if the stopping criteria have been met and if yes, then 
the algorithm returns the overall candidate’s best solution. Otherwise, the algorithm will iteratively repeat the 
previous steps from checking whether P_index is >= 0.5 until finally the stop condition is reached.

Experimental results and discussion
Dataset (low, medium and high‑dimensional). To evaluate the performance of the BDMSAO, eight-
een University of California Irvine (UCI) low, medium, & high-dimensional datasets and two high-dimensional 
datasets from the Arizona State University feature selection repository. The details of the datasets used, includ-
ing their feature number (N), instances, classes, and categories, are presented in Table 1. The high-dimensional 
datasets contain numerous features of at least two thousand (2000), and few of the datasets are multi-class in 
nature, ranging from 3 to 9 classes. These high-dimensional datasets usually represent real-world scenarios and 
are therefore more challenging. This allows us to ascertain the robustness of the proposed feature selection 
method. Although, there are studies in the literature where some feature selection methods were utilized to solve 
high-dimensional datasets problems, one of which is the work presented  in81. However, the maximum number 
of features in those datasets was only limited to N = 4703 compared to the more high-dimensional feature sizes 
utilized in the current study. Not many metaheuristic algorithms perform reasonably on high-dimensional and 
multi-class datasets.

Experimental setup. The proposed BDMSAO was implemented using python. Most often, parameters 
play a key role in determining the outcome of multi-agent algorithms, particularly the agents’ number and 
iteration’s total number, which heavily influence the algorithm’s performance. Therefore, the experiment was 
performed considering different population sizes to determine the suitable size of the population and number of 
iterations. To test the efficiency of this hybrid approach, we compared the proposed BDMSOA with the BDMO. 
The classification accuracy and number of features selected are shown in Tables 3 and 5 using various population 
sizes from 10 to 50. The convergence graphs for both methods are also depicted in Fig. 2 to show the solution’s 
optimal position over the total iteration number of 50. For a fair comparison, each dataset was run 10 times, 
and the average values of the runs were taken. The computer configuration for this implementation is Core i7, 
3.60 GHz CPU with 16 GB RAM. The finding of this experiment reveals that the population size of 10 produced 
better results which will serve as the basis for comparison in this study. Table 2 presents the parameter setting 
for the developed hybrid FS methods.

Result and discussion. This subsection discusses the results generated by BDMSAO and BDMO, which 
were evaluated using eighteen datasets from the UCI repository, with details in Table 1. Since the proposed 
method is a wrapper-based approach, the utilized classifier is K-Near Neighbor (KNN) since it is a well-known 
and most widely used classifier in wrapper-based feature  selection82  and it was used with K = 5 in the experi-
ment. The generated results show the outperformance of the BDMSAO over the binary DMO. The outcome of 

Table 1.  Datasets and their properties.

Number Datasets # features # instances # Classes Categories

1 Breastcancer 9 699 2 Biological

2 BreastEW 30 569 2 Biological

3 CongressEW 16 435 2 Political

4 Exactly 13 1000 2 Biological

5 Exactly2 13 1000 2 Biological

6 HeartEW 13 270 2 Biological

7 IonosphereEW 18 351 4 Electromagnetic

8 KrvskpEW 36 3196 2 Game

9 Lymphography 18 148 4 Biological

10 M-of-n 13 1000 2 Biological

11 PengiunEW 325 73 2 Biological

12 SonarEW 60 205 2 Biological

13 SpectEW 22 267 2 Biological

14 Tic-tac-toe 9 958 2 Game

15 Vote 16 300 2 Political

16 WaveformEW 40 5000 3 Physical

17 WineEW 13 178 3 Chemical

18 Zoo 16 101 6 Artificial
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Figure 2.  Convergence behavior of all algorithms on the ionosphere, congressEW, Exactly, Exactly2, and Vote 
datasets.

Table 2.  Experimental parameter setting.

Parameter Value

K-fold cross-validation number 10

Agent number 10–0

Number of runs 10

Maximum iterations 50

Dimension of problems Number of available features in the dataset N

Peep (vocalization) of female alpha mongoose in BDMO Controlled

Babysitters in BDMO Controlled

initial temperature 2 *|N|

Cooling schedule (T) 0.93
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the experiment in Tables 3–4 indicates the efficacy of the proposed hybrid method over the BDMO in locating 
better solutions. We can conclude that the BDMSAO performed better on UCI datasets than the BDMO.

A critical inspection of the results in Table 3 indicates that BDMSAO generates better results than BDMO 
on all datasets. The classification accuracy produced is greater than 90% on 16 of 18 datasets (88.88%) except 
on Exactly2 & Tic-tac-toe and yielded 100% on 9 of 18 datasets (50%). In the number of features selected, the 
BDMSAO selected fewer features on 6 datasets (BreastEW, CongressEW, HeartEW, SpectEW, Wine & Zoo), the 
same number of features on 2 datasets (Exactly & M-of-n), and BDMO selected fewer datasets on 11 datasets.

The convergence behavior of both methods is shown in Fig. 2. It is observed that each algorithm converges 
steadily in all datasets. However, the BDMSAO achieved a better convergence to show its superiority over the 
BDMO.

Table 3.  The classification accuracy of BDMO and BDMSAO on different population sizes.

Agent_size 10 20 30 40 50

Dataset BDMO BDMSAO BDMO BDMSAO BDMO BDMSAO BDMO BDMSAO BDMO BDMSAO

Breastcancer 93.57 100 69.29 99.29 92.86 100 65.71 99.29 90.71 99.29

BreastEW 89.47 98.25 92.11 96.49 91.23 98.25 92.11 98.25 86.84 98.25

CongressEW 94.25 98.85 91.95 100 87.36 98.85 85.06 100 97.70 100

Exactly 65.50 100 63 100 66 100 66 100 67.5 100

Exactly2 70 79 74 79.50 73 79.50 73 80 67 80.50

HeartEW 79.63 90.74 73.33 92.59 64.81 92.59 62.96 96.30 68.52 90.74

IonosphereEW 88.57 97.14 82.86 97.14 84.29 95.71 82.86 95.71 82.86 98.57

KrvskpEW 66.67 98.75 77.15 98.44 100 98.75 60.72 98.75 72.30 98.59

Lymphography 73.33 100 76.67 96.67 70 93.33 63.33 100 76.67 96.67

M-of-n 68 100 67 100 63 100 67 100 67.5 100

PengiunEW 73.33 100 80 100 80 100 73.33 100 80 93.33

SonarEW 71.19 100 73.81 97.62 71.42 100 64.29 97.62 76.19 97.62

SpectEW 76.19 97.62 64.29 97.62 66.67 100 61.90 95.24 80.95 97.62

Tic-tac-toe 65.10 84.38 65.10 82.81 61.98 83.85 62.50 84.90 64.06 86.46

Vote 88.33 100 86.67 100 93.33 100 88.33 100 80 100

WaveformEW 66.30 85.20 62.80 85 67.10 84.60 60 85.50 69.20 86

Wine 88.89 100 83.33 100 86.11 100 94.44 100 86.11 100

Zoo 90 100 90 100 90 100 85 100 85 100

Table 4.  Number of features selected by BDMO and BDMSAO.

Agent_No dataset

10 20 30 40 50

BDMO BDMSAO BDMO BDMSAO BDMO BDMSAO BDMO BDMSAO BDMO BDMSAO

Breastcancer 2 4 1 3 2 4 4 3 1 4

BreastEW 14 7 4 5 14 12 2 12 4 10

CongressEW 6 3 2.03 4 5.85 4 2.52 4 6.71 4

Exactly 6 6 4 6 3.66 6 6 6 6 6

Exactly2 3 6 2 8 5 7 5 8 2 9

HeartEW 4.74 4 4.92 5 5.92 2 6 3 6.30 4

IonosphereEW 14 19 6 11 5 11 1 9 9 9

KrvskpEW 17 19 4.16 18 0 24 4.83 18 13.45 20

Lymphography 6 10 5.34 6 4.65 3 2.8 10 3.54 5

M-of-n 6 6 2 6 1 6 2 6 5 6

PengiunEW 69 132 152 162 177 135 13 77 72 108

SonarEW 16 26 7 20 5 26 8 24 16 32

SpectEW 29 22 7 29 2 21 13 22 4 25

Tic-tac-toe 1 4 2 5 3 4 2 6 1 6

Vote 1 3 2 2 7 3 5 3 2 3

WaveformEW 2 24 5 22 1 22 5 24 1 22

Wine 5.18 4 3 3 1 4 4 2 6 2

Zoo 6.21 5 8 5 8 4 6 4 7.91 4
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Furthermore, the fitness function’s optimization pattern on the defined problem space was investigated, and 
the results obtained were graphed for comparative presentation. The graphing is grouped based on the dataset 
used for experimentation so that each graph presents a comparative outline of curves for some selected algo-
rithms considered in this study. Values used for the graphing were the fitness value over all iterations in each 
case of the datasets on all optimization algorithms. Again, these plots illustrate the convergence pattern for each 
algorithm as experimented on different datasets. The BDMO, BDMSAO, GNDO-SA, ASGW, HSGW, AIEOU, 
WOA, RSGW, RTHS, and PSO algorithms were considered in the convergence plots.

Figure 2 shows the convergence plots for ionosphere, congressEW, Exactly, Exactly2, and Vote datasets. For 
the ionosphere dataset, curves of GNDO-SA, ASGW, HSGW, AIEOU, WOA, RSGW, RTHS, and PSO run below 
those of BDMO and BDMSAO. A similar pattern is repeated for congressEW, Exactly, and Exactly2 datasets. 
Interestingly, for the Vote dataset, the PSO algorithms perform better than all algorithms with the BDMO 
algorithm. A competitive performance seen with both BDMO and BDMSAO overlap in the congressEW and 
Exactly2 datasets but shows the slight distance in the case of the ionosphere, Exactly, and Vote datasets. The 
highest fitness value of 1.0 obtained for all 50 iterations is reported by PSO in the Vote dataset. The relative high-
est values obtained for 0.9 and above were those seen in BDMO and BDMSAO on the ionosphere, congressEW, 
and Vote datasets. The performance of BDMO and BDMSAO algorithms demonstrates a superior performance 
when compared with all the similar methods in all the five datasets compared in the figure. This shows that the 
algorithms are suitable for finding the minimum number of features required for classifying class distributions 
in the datasets.

Figure 3.  Convergence behavior of all algorithms on colon, HeartEW, BreastEW, BreastCancer, and 
Lymphography datasets.
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In Fig. 3, the convergence curve for the ASGW algorithm for all datasets of the colon, HeartEW, BreastEW, 
BreastCancer, and Lymphography are seen to spike with a measure of instability from the first iteration to the 
last. Those for GNDO-SA, HSGW, RTHS, RSGW, WOA, and AEIOU are poorly fitted, considering the conver-
gence curves for these algorithms lying far below those of PSO, BDMO, and BDMO-SA. Note that in all datasets 
listed in the figure, PSO, BDMO, and BDMO-SA are seen to competitively converge above all other methods 
confirming the superiority of the three methods when compared with others. However, in all the five datasets 
reported in the figure, BDMO and BDMO-SA performed better than PSO, which only converges based on its 
function evaluation values above the other two when HeartEW and BreastCancer datasets were experimented 
with. In all cases where BDMO and BDMO-SA performed well above others, we see the fitness values obtained 
lined through values above 0.8. This significant classification value confirms that the number of features selected 
for the two algorithms in those datasets represents a high-quality selection.

The BDMO and BDMO-SA are reported to have performed well in three of the five datasets used for the 
plots in Fig. 4. Although the PSO algorithm showed a competitive performance with the two algorithms, we note 
that these are only limited to the SpaceEW and M-of-n datasets. Meanwhile, other algorithms have their curves 
running below those for PSO, BDMO and BDMO-SA in all the five datasets. We discovered that the nature of 
the five datasets observed in the figure is computationally demanding, given the unstable performance of the 
ASGW and RSGW.

Figure 5 shows the convergence curves for all algorithms on PenglungEW, Tic-tac-toe, Wine, and KrVsK-
pEW datasets. Interestingly, the impact of hybridizing BDMO with the SA algorithm proved outstanding as the 
algorithm competes with PSO well in three cases. The computational difficulty experienced with KrVsKpEW 
for all algorithms still puts the BDMO-SA algorithm ahead of others to demonstrate that the proposed hybrid 

Figure 4.  Convergence behavior of all algorithms on waveformEW, sonar, SpaceEW, M-of-n, and Zoo datasets.
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algorithm is suitable for selecting the optimal number of features required for solving the classification problem. 
These outstanding performances are not limited to the KrVsKpEW dataset alone but span across all datasets 
considered in this study.

Considering the outstanding and competitive performance of the BDMSAO and BDMO algorithms, as 
reported in previous paragraphs, the plots for accuracy are concentrated only on the two algorithms for conveni-
ent comparative analysis. In Figs. 6, 7, 8 and 9. A plot for accuracy against iteration for all datasets is presented 
for BDMSAO and BDMO. In Fig. 6, the accuracy obtained for BDMSAO for all the five datasets indicates that 
it performs better than the base algorithm, which is the BDMO. Where we see the curve for BDMSAO rising, 
that of BDMO was dropping to rise in experimentation with some datasets. Meanwhile, all accuracies for the 
datasets considered rose above 0.9, with those of Exactly and Vote running on 1.0 accuracies for all iterations. 
Figure 7 shows the curve for accuracies obtained for HeartEW, BreastEW, BreastCancer, and Lymphography 
datasets over all iterations. Similar to the previous discussion, we see the hybrid method of BDMSAO doing well 
in all datasets when compared with BDMO.

The plot for the accuracy values obtained for the datasets on waveformEW, sonar, SpaceEW, M-of-n, and 
Zoo are shown in Fig. 8. There is a significant difference in the performance of BDMSAO when compared with 
its corresponding base algorithm. In most cases, the values for accuracy obtained were rising to 1.0, whereas 
those of BDMO were lying below 0.8. Again, this result demonstrates that the accuracy of the features selection 
result discussed in previous sections is consistent and represents an outstanding performance of the new hybrid 
method. Figure 9 shows a comparison of the curve for PenglungEW, Tic-tac-toe, Wine, and KrVsKpEW datasets. 
The BDMO performance in these datasets rose above what has been observed in other datasets, though it still 
lags behind that of the hybrid method, the BDMSAO proposed and implemented in this study.

Comparison. The discussion earlier clarifies that the BDMSAO outperforms the BDMO. In this subsection, 
the performance of the proposed hybrid method is compared with nine other state-of-the-art methods, out of 
which seven are hybrid methods. The algorithms that were compared with other methods like adaptive switching 
grey-whale optimizer (ASGW), social ski driver algorithm and late acceptance hill-climbing (SSDs + LAHC)83, 
serial grey-whale optimizer (HSGW), embedded chaotic whale survival algorithm (ECWSA-4)84, binary GA, 
random switching grey-whale optimizer (RSGW), electrical harmony-based metaheuristic (EHHM), BPSO, and 
binary simulated normal distribution optimizer (BSNDO)1.

Given the results obtained in Table 5, we can conclude that the BDMSAO and BSNDO yield better results 
than other methods on 11 out of 18 datasets, which is 61.11%. Meanwhile, the BDMSAO produced a 100% 
accuracy on 9 out of 18 datasets (50%), while its competitor, the BSNDO, produced 100% accuracy on 8 out of 
18 datasets (44.4%). On the Breastcancer dataset, the BDMSAO, BSNDO, and EHHM achieved 100% accuracy. 
The proposed BDMSAO produced the second-best result and BSNDO and SSDs + LAHC on the BreastEW 
dataset after ASGW and EHHM. On the CongressEW dataset, BDMSAO and EHHM came third after BSNDO 

Figure 5.  Convergence behavior of all algorithms on PenglungEW, Tic-tac-toe, Wine, and KrVsKpEW datasets.
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& SSDs + LAHC and ASGW. Most of the methods in this study, including the BDMSAO, yield 100% accuracy 
on the Exactly dataset. On the Exactly2 dataset, the BDMSAO achieved the third best result after BSNDO and 
EHHM, which narrowly beat the BDMSAO by a 0.1% margin. The BDMSAO & BSNDO produced the third 
best result on HeartEW after HSGW & SSDs + LAHC. On IonosphereEW, BDMSAO also generated the third 
best result after EHHM & ASGW, which narrowly beat our method by 0.06%. The BDMSAO yielded the best 
result of 98.75% on the KrvskpEW dataset. On Lymphography and Sonar datasets, the BDMSAO yielded 100% 
and 97.62% accuracy on SpecEW to lead other methods. On M-of-n, PenguinEW, Wine, and Zoo datasets, the 
BDMSAO achieved 100% accuracy with other methods. Finally, the BDMSAO achieved the third best result on 
WaveformEW and produced the fifth best in Tic-tac-toe.

Table 6 shows the performance of the BDMSAO and other feature selection methods used in this study 
regarding the number of features selected. This proposed approach selected the least number of features on the 
Tic-tac-toe dataset. It also selected the least features on the CongressEW dataset along with BPSO and the Vote 
dataset with BPSO & BSNDO. It performed second in selecting the least features on Breastcancer, BreastEW, 
Exactly, HeartEW, and M-of-n datasets, while it performed third on Exactly2 datasets. It attained the fourth 
best results on Lymphography, WaveformEW, Wine, & Zoo, and achieved fifth on IonosphereEW, KrvskpEW, 
PenguinEW, and SonarEW datasets.

Figure 6.  Accuracy plot of the BDMSAO and BDMO on the ionosphere, congressEW, Exactly, Exactly2, and 
Vote datasets.
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Figure 7.  Accuracy plot of the BDMSAO and BDMO on HeartEW, BreastEW, BreastCancer, and 
Lymphography datasets.

Statistical test. In Table 7, the Friedman mean ranking test results are shown in bold values as the best-
ranked algorithm. In most cases, the BPSO ranked highest, as seen in the table, and our proposed method 
ranked second in all cases where the BPSO ranked first. However, the BDMSAO ranked better than the BPSO 
on Exactly and Exactly2 datasets and then tied with the BPSO on two datasets i.e. PenguinEW and Sonar. It also 
outranks other methods (that are hybrid methods as our proposed method) in the ranking. This statistically 
shows the performance significance of the BDMSAO over other algorithms.

The statistical significance of the BDMSAO and other algorithms are the same on average on all measures 
on most of the datasets used, producing significant values less than 0.05. The 0.05 is the representation of the 
significant level of 5%, which is used in the acceptance of the null value. As our proposed method generated more 
values that are less than 0.05 than all other algorithms in all datasets except for the BPSO. Therefore, this validates 
the fact that the samples were produced from a continuous distribution having the same medians as opposed 
to the null hypothesis that does not. This gives convincing proof that the results obtained by the BDMSAO are 
statistically significant compared to other similar methods. Table 8 presents the Wilcoxon mean rank test.

Testing on high‑dimensional datasets
The results discussed above revealed the performance of the BDMSAO over other well-known algorithms used 
in this study. To evaluate the robustness of this proposed algorithm, we tested its application to three high-
dimensional datasets known to be extremely challenging. The dataset’s description is provided in Table 9. The 
efficacy of the BDMSAO is also proven in comparison with eight (8) well-known state-of-the-art feature selection 
methods mentioned in Table 10. The number of features selected by BDMSAO compared with some popular FS 
selection methods is shown in Figs. 10, 11, and 12. All algorithms, including the BDMSAO, yielded the highest 
classification accuracy on both high-dimensional datasets. The BDMSAO selected the least number of features 
on the colon and leukemia datasets, respectively, compared to those achieved by the AIEOU, SFO and BSNDO, 
thus confirming the proposed method’s ability to select the least features as indicated previously. However, the 
BDMSAO selected the third best number of features after RTHS and AIEOU on the Prostate_GE dataset.

Conclusion and future work
This paper proposed a new hybridized feature selection problem-solving method called the BDMSAO. The 
hybridization concept emanates from the methodological enhancement of the standard BDMO and SA algo-
rithms. The developed BDMSAO utilized the SA as a local search method to enhance the exploitation of the 
BDMO and aid a suitable balance between the exploitation and exploration of the hybrid method. Interest-
ingly, the BDMSAO accomplished a substantial enhancement in solving feature selection problems regarding 
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classification accuracy achieved against the BDMO and other well-known state-of-the-art algorithms used for 
comparison in this study.

The performances of the proposed approaches were assessed and compared against nine other feature selec-
tion methods, including the ASGW, BSNDO, HSGW, BPSO, BGA, RSGW, SSDs + LAHC, ECWSA-4, and EHHM, 
respectively. The evaluation criteria reported for each approach include the classification accuracy, average feature 
selection size number, and the respective algorithms’ convergence characteristics. Similarly, the BDMSAO was 
compared against the BDMO algorithm to ascertain the validity of the initial enhancement claim over the BDMO.

This developed feature selection approach was mainly evaluated and validated on some UCI datasets con-
firmed to be challenging. The new method was also tested using three high-dimensional datasets to prove its 
robustness in finding reasonable solutions to real-world problems that are often considered complex and difficult 
to solve using conventional methods. The results obtained by the BDMSAO indicate that the proposed method is 
applicable in various publicly available datasets. A limitation of this study may be in the computation complexity 
due to the addition of a local search technique.

In the future, it would be interesting to consider hybridizing the BDMO with other state-of-the-art 
metaheuristics such as the GA, PSO, CSO, GWO, PDO and KHA algorithms. Also, it will be worth consider-
ing employing the hybrid BDMSAO algorithm in other real-world problem areas like image processing, facial 

Figure 8.  Accuracy plot of the BDMSAO and BDMO on waveformEW, sonar, SpaceEW, M-of-n, and Zoo 
datasets.
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recognition, and text classification, where researchers utilize a huge dimensional vector of features without 
knowing the reputation of every dataset features.

Figure 9.  Accuracy plot of the BDMSAO and BDMO on PenglungEW, Tic-tac-toe, Wine, and KrVsKpEW 
datasets.

Table 5.  Classification accuracy of BDMSAO in comparison with other well-known feature selection methods 
tested using the UCI dataset, and the highlighted results indicate the highest classification accuracy.

No Datasets BDMSAO ASGW BSNDO HSGW BPSO BGA RSGW SSDs + LAHC ECWSA-4 EHHM

1 Breastcancer 100 98.5 100 98.6 96.29 97.43 97.1 98.93 95.21 100

2 BreastEW 98.25 100 98.25 98.1 97.19 97.54 98.2 98.25 97.38 100

3 CongressEW 98.85 99.4 100 97.5 96.33 96.79 96.1 100 96.23 98.85

4 Exactly 100 99.9 100 100 100 100 99.7 100 78.09 100

5 Exactly2 79 77.7 80.5 81.5 76.8 77 77.9 79 78.9 79.1

6 HeartEW 90.74 83.1 90.74 92.3 83.7 87.41 84.8 91.67 85.63 90.7

7 IonosphereEW 97.14 97.2 95.74 94.4 94.89 94.89 97.8 96.43 86.79 98.6

8 KrvskpEW 98.75 97.1 98.44 97.3 98.31 98.5 97.2 97.81 93.53 97.81

9 Lymphography 100 88.4 96.67 93.4 89.19 83.78 89.3 96.67 87.02 96.9

10 M-of-n 100 100 100 100 100 100 100 100 92.47 100

11 PengiunEW 100 100 100 94.2 91.89 91.89 100 100 87.63 100

12 SonarEW 100 94.8 95.24 96.4 94.23 99.04 97.9 97.62 76.84 92.85

13 SpectEW 97.62 87 96.22 86.2 88.81 89.55 81.5 95.15 79.84 90.74

14 Tic-tac-toe 84.38 86.5 87.5 82.8 79.96 79.96 85.9 87.24 78.75 85

15 Vote 100 98.4 100 98.3 96 97.33 99.6 100 95.08 98.4

16 WaveformEW 85.20 74.6 87 74.8 75.6 78.36 75.7 84.4 80.18 86.8

17 Wine 100 100 100 100 97.75 98.88 100 100 98.02 100

18 Zoo 100 100 100 100 96.08 90.2 100 100 98.95 100
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Table 6.  The number of features selected by BDMSAO compared with other well-known feature selection 
methods tested using the UCI dataset. The highlighted results indicate the least number of feature subsets 
selected.

No Datasets BDMSAO ASGW BSNDO HSGW BPSO RSGW SSDs + LAHC ECWSA-4) EHHM

1 Breastcancer 4 4.867 4 5 4 5.933 2.5 4 7

2 BreastEW 7 15.833 4 16.667 9 17.5 9 13 15

3 CongressEW 3 8.833 7 8.867 3 9.7 5.5 7 5

4 Exactly 6 6.867 6 6.7 6 7.1 6 7 7

5 Exactly2 6 7.933 8 9.033 1 9.2 8 5 9

6 HeartEW 4 6.367 4 8.767 3 6.133 5 8 9

7 IonosphereEW 19 17.3 16 18.167 7 20.5 12 7 10

8 KrvskpEW 19 24.5 22 24.8 12 24.8 20 15 16

9 Lymphography 10 11.2 5 10.567 5 10.567 6.5 6 10

10 M-of-n 6 6.867 6 6.8 6 7.1 6 7 5

11 PengiunEW 132 170.3 187 135.33 130 181.2 140 74 93

12 SonarEW 26 35.5 27 34.3 22 36.433 23.5 22 23

13 SpectEW 22 10.167 6 10.233 6 13.3 9 11 7

14 Tic-tac-toe 4 7 8 7 6 7 9 6 8

15 Vote 3 8.967 3 7.567 3 8.8 4.5 5 6

16 WaveformEW 24 25.833 33 26.933 15 27.533 22.5 20 15

17 Wine 4 5.933 3 4.533 5 5.867 3 1 7

18 Zoo 5 7.6 5 5.533 5 5.3 4.5 1 7

Table 7.  Friedman mean ranking test.

No Datasets BDMSAO ASGW BSNDO HSGW BPSO RSGW

1 Breastcancer 5.00 1.00 2.30 3.50 5.90 3.20

2 BreastEW 5.40 1.00 2.50 3.30 5.50 3.30

3 CongressEW 5.40 1.00 2.20 3.10 5.60 3.70

4 Exactly 5.40 1.00 2.00 3.85 5.30 3.45

5 Exactly2 4.50 1.00 2.10 6.00 4.40 3.00

6 HeartEW 5.30 1.00 2.20 3.20 5.70 3.60

7 IonosphereEW 5.20 1.00 2.40 3.60 5.70 3.10

8 KrvskpEW 5.00 1.00 2.30 3.40 5.90 3.40

9 Lymphography 5.10 1.00 2.10 3.80 5.70 3.30

10 M-of-n 5.00 1.00 2.00 3.30 6.00 3.70

11 PengiunEW 5.50 1.00 3.05 3.00 5.50 2.95

12 SonarEW 5.40 1.00 2.35 3.35 5.40 3.50

13 SpectEW 5.20 1.00 2.30 3.40 5.80 3.30

14 Tic-tac-toe 5.10 1.00 2.30 3.70 5.60 3.30

15 Vote 5.10 1.00 2.80 3.10 5.90 3.10

16 WaveformEW 5.10 1.00 2.00 3.40 5.90 3.60

17 Wine 5.00 1.00 3.00 3.00 5.70 3.30

18 Zoo 5.10 1.00 2.15 3.65 5.90 3.20
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Table 8.  Wilcoxon mean rank test.

No Datasets ASGW-BDMSAO BSNDO- BDMSAO HSGW- BDMSAO BPSO- BDMSAO RSGW- BDMSAO

1 Breastcancer 0.005 0.005 0.005 0.074 0.005

2 BreastEW 0.005 0.005 0.005 0.058 0.005

3 CongressEW 0.005 0.005 0.005 0.508 0.005

4 Exactly 0.005 0.005 0.005 0.169 0.005

5 Exactly2 0.005 0.005 0.005 0.202 0.005

6 HeartEW 0.005 0.005 0.005 0.047 0.005

7 IonosphereEW 0.005 0.005 0.005 0.386 0.005

8 KrvskpEW 0.005 0.007 0.005 0.007 0.005

9 Lymphography 0.005 0.005 0.005 0.074 0.005

10 M-of-n 0.005 0.005 0.005 0.005 0.005

11 PengiunEW 0.005 0.005 0.005 0.645 0.005

12 SonarEW 0.005 0.005 0.005 0.508 0.005

13 SpectEW 0.005 0.005 0.005 0.386 0.005

14 Tic-tac-toe 0.005 0.009 0.005 0.049 0.005

15 Vote 0.005 0.005 0.005 0.074 0.005

16 WaveformEW 0.005 0.005 0.005 0.009 0.005

17 Wine 0.005 0.007 0.005 0.285 0.007

18 Zoo 0.005 0.005 0.005 0.007 0.005

Table 9.  High-dimensional datasets and their properties.

Number Datasets # features # instances # Classes Categories

1 Colon 2000 62 2 Biological

2 Leukemia 7070 72 2 Biological

3 Prostate_GE 5966 102 2 Biological

Table 10.  Classification accuracy produced by BDMSAO and other FS methods on high-dimensional datasets.

Datasets BDMSAO AIEOU ASGW BSNDO BWOA HSGW RSGW RTHS SFO

Colon 100 100 100 100 100 100 100 100 100

Leukemia 100 100 100 100 100 100 100 100 100

Prostate_GE 100 100 100 100 100 100 100 100 NA
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Figure 10.  The number of features selected by BDMSAO and other FS methods on the Colon dataset.
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