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A B S T R A C T   

Traffic sign recognition is an important part of intelligent transportation system. It uses computer 
vision and traffic sign recognition technology to detect and recognize traffic signs on the road 
automatically. In this paper, we propose a lightweight model for traffic sign recognition based on 
convolutional neural networks called ConvNeSe. Firstly, the feature extraction module of the 
model is constructed using the Depthwise Separable Convolution and Inverted Residuals struc-
tures. The model extracts multi-scale features with strong representation ability by optimizing the 
structure of convolutional neural networks and fusing of features. Then, the model introduces 
Squeeze and Excitation Block (SE Block) to improve the attention to important features, which 
can capture key information of traffic sign images. Finally, the accuracy of the model in the 
German Traffic Sign Recognition Benchmark Database (GTSRB) is 99.85%. At the same time, the 
model has good robustness according to the results of ablation experiments.   

1. Introduction 

With the development of intelligent transportation systems, traffic sign recognition technology has been concerned widely [1]. The 
traditional method of traffic sign recognition mainly depends on the feature extractor by hand. However, there are some problems in 
the practical application of these methods. For example, they are sensitive to environmental factors such as light, noise and so on [2]. 
Besides, different kinds of traffic signs need different feature extractors [3,4]. Deep neural networks (DNN) have achieved great success 
in the field of image recognition with the development of deep learning technology. The structure of DNN simulates the neural 
structure of the human brain when processing information. The main advantage is that it can learn features from a large amount of data 
automatically and perform good in complex classification tasks. Therefore, the feature extracted from the image using the DNN model 
is much better than the traditional algorithm. It helps to improve the robustness and stability of the model [5]. 

Convolutional neural networks (CNN) have the advantages of local perception and parameter sharing [6,7]. It is an ideal choice to 
solve the problem of traffic sign recognition. CNN reduce model complexity through parameter sharing and local perceptibility, which 
can capture the spatial structure in images effectively. CNN has certain robustness and generalization ability through large-scale data 
training. It can maintain stable performance in the face of interference such as light or noise in the image. CNN consists of several 
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convolutional layers, pool layers and fully connected layers. It can extract features from simple to complex due to its special convo-
lution architecture [8], which makes it a great success in the field of object detection and image recognition [9,10]. 

We propose a lightweight model for traffic sign recognition based on CNNs called ConvNeSe. ConvNeSe adopts SE Block, ConvNeSe 
Block and Sample Block to improve recognition accuracy while maintaining fewer parameters. It can be used not only as image 
recognition models, but also as backbone to other object detection models. For example, we can build a object detection model to 
detect object in the image by using ConvNeSe network as the backbone. This method can improve the performance of the detection 
model, while keeping less parameters and computation effectively. 

The main contributions of this paper can be summarized as follows：  

• A lightweight traffic sign recognition model ConvNeSe is designed by using Depth Separable Convolution and reducing the number 
of convolution layers.  

• A multi-scale feature extraction module ConvNeSe Block is designed by using Inverted Residuals structure and multiple types of 
convolutional modules. The model avoids the problems of gradient disappearance and information loss in deep structures, and thus 
improves the ability of multi-scale feature extraction and fusion.  

• SE Block is applied to ConvNeSe Block to achieve adaptive adjustment of feature channel weights. The model enhances the 
attention to important features by strengthening the influence on important features. 

Compared with the existing state-of-the-art model, the ConvNeSe network has better robustness, higher recognition accuracy lower 
Floating Point Operations (FLOPs) and fewer parameters. 

The paper is organized as follows. Section 2 reviews the literature. Section 3 describes the proposed approach. Section 4 shows the 
experimental results. Section 5 summarizes the conclusions. 

2. Related works 

In recent years, the deep learning model based on CNN has been used in the research of traffic sign recognition widely. The model 
needs to extract as many features as possible to improve the accuracy of traffic sign detection. The CNN model has powerful feature 
extraction capabilities, allowing problem solving through parallel processing capabilities and self-learning capabilities [11]. The VGG 
network proposed after Alexnet deepens the depth of the network and improves the accuracy [12,13]. GoogLeNet was proposed by the 
Google team [14]. This model combines convolution cores of different sizes and pool layers to build the Inception module, improving 
the performance of the model without increasing the number of parameters. ResNet is a model proposed by Kaiming He et al. [15]. It 
avoids the problems of gradient disappearance and gradient explosion by connecting the original matrix input to the matrix output to 
construct the residual connection directly. MobileNet is a lightweight CNN [16–18]. It adopts Depth Separable Convolution to reduce 
computation and number of parameters while maintaining high classification performance. MobileNet is widely used on mobile de-
vices, and it is suitable for scenarios that require fast response and low power consumption. EfficientNet is an efficient and accurate 
architecture of CNN [19,20]. It achieves a balance between better performance and computing efficiency by optimizing network 
parameters such as depth, width and resolution. Bangquan Xiong proposed a new and efficient network for traffic sign classification 
called ENet. It has few parameters and computation relatively, so that it is suitable for real-time operation on embedded devices [21]. 
The experimental results show that the accuracy of ENet achieves 98.6% on the GTSRB dataset. ENet improves the model recognition 
speed by reducing the parameters, but reduces the model accuracy. We address the balance of depth and precision of the model by 
using Depthwise Separable Convolution and using less Layer Normalization, Drop Path, and Inverted Residuals structures. 

Multi-scale feature fusion is an indispensable part of deep learning. It can combine shallow features and deep features to express 
more complex semantic information, thus improving the performance and robustness of the network. At present, many advanced 
models have adopted techniques of multi-scale feature fusion. A recognition algorithm of multi-layer and multi-scale CNN is proposed 
by Cai Zhao [22]. Firstly, the feature extraction method of single-scale CNN is improved to extract the global and local features of 
traffic sign images and to fuse the features generated from multiple levels into multi-scale features. The recognition accuracy of the 
model is 98.62% on the GTSRB dataset. However, there is a problem of high computational cost in improving feature extraction. Song 
proposed a two-stage binarized multi-scale neural network framework (B-MNN) [23]. Experimental results show that the recognition 
accuracy achieves 91.34% on GTSRB dataset. B-MNN improves the recognition speed of the model by reducing the number of pa-
rameters, thus reducing the accuracy of the model. Lan proposed a feature extraction method for multi-scale asymmetric convolution 
blocks and weighted mixed loss functions [24]. Multi-scale asymmetric convolution blocks are used to extract multi-scale features. At 
the same time, the authors propose a weighted mixed loss function to make the model pay more attention to the characteristics of 
hard-to-classify samples. The recognition accuracy of the model is 98.92% on GTSRB dataset. Using a weighted mixed loss function 
may require manual selection of weights, which may result in poor model performance if the weights are not selected well. Chen 
proposed a Multi-Scale Capsule Network (Multi-Scale CapsNet) [25]. Image features are extracted by multi-channel convolution of 
multi-convolution kernel, which makes the extracted features more diversified. The recognition accuracy of the model is 99.40% on 
the GTSRB dataset. However, Multi-Scale CapsNet needs to adjust the parameters of multiple CapsNet with different scales, which 
increases the complexity of parameter adjustment. Liang proposed a method of traffic sign recognition based on multi-scale features 
and attention mechanism [26]. Multi-scale features are used to fuse different levels of feature information, enrich feature semantic 
information, and enhance feature extraction ability. The recognition accuracy of the model in GTSRB dataset reached 98.96%. 
However, the improved ResNet network has the problem of high computing cost. Zhonghua Wei proposed a method of multi-scale 
feature extraction based on CNN [27]. By introducing multiple branches between convolution layers, image information of 
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different scales is processed. Image information of different scales is processed by using multiple branches between convolution layers. 
Experimental results show that the recognition accuracy achieves 99.36% on GTSRB dataset. In general. The existing multi-scale 
feature fusion algorithms include improved feature extraction, pyramid pool, multi-scale convolutional neural network, etc. These 
algorithms have high accuracy in traffic sign recognition and other fields, but there are also problems such as high calculation cost, 
difficult parameter adjustment and poor effect in dealing with light intensity. We propose ConvNeSe Block to improve the multi-scale 
feature extraction and fusion capability of the model. Different types of convolutional modules and Inverted Residuals structure are 
introduced to optimize the model structure so that the model can extract more abundant features. 

The attention mechanism makes the model pay more attention to important features and suppress redundant features, thus 
improving the accuracy, stability and generalization ability of the model. Wang uses the attention mechanism to improve the neural 
network based on the existing VGG16 network architecture [28]. The accuracy of the model is 99.34% on the GTSRB dataset. Daihui Li 
proposed a lightweight and efficient Cyclic Spatial Attention Module (CSAM) for convolutional neural networks [29]. CSAM generates 

Fig. 1. ConvNeSe structure.  
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attention maps based on the output features. Attention diagram to adjust the weight of different positions in the feature map. CSAM 
applied to the ResNet network achieved 97.73% recognition accuracy on the GTSRB dataset. The introduction of cycle structure will 
increase the computation and storage capacity. At the same time, CSAM also needs a lot of parameter tuning. Ke Zhou proposed a 
method of traffic sign recognition based on regional attention network [30]. The most important areas are selected through regional 
attention networks adaptively. The accuracy of the model is 97.21% in the GTSRB dataset. This method requires the degree of attention 
to be calculated for each area, increasing the amount of computation. Yash Garg proposed an innovative feature learning framework: 
scale-invariant attention networks (SAN) [31]. SAN uses the information and attention mechanism of multi-scale space to capture local 
and global features in images effectively. Unlike existing attention networks, SAN focuses attention on parts that change across Spaces 
and scales significantly. SAN was applied to the ResNet network and achieved 99.76% recognition accuracy on the GTSRB dataset. This 
method needs to fuse and balance the feature maps of different scales, which increases the of parameter adjustment difficulty. Chung 
proposed a network of convolutional pooling neural based on attention [32]. The attention mechanism is applied in feature mapping to 
obtain key features, and convolution pooling is used to improve recognition accuracy in harsh environments. The accuracy of the 
model is 97.10% on the GTSRB dataset. However, using this method for recognition in harsh environments requires large memory 
relatively. Chung proposed an attentional deconvolution module (ADM) based network (ADM-Net) [33]. The network uses ADM, 
convolutional pools and full convolutional networks to improve classification under such harsh conditions. ADM-Net validates 
ADM-Net with different noise cases at GTSRB. The accuracy rate was 92.329% in the absence of information and lighting. ADM-Net 
requires extensive parameter adjustments to achieve optimal performance. In summary, attention mechanism is used in traffic sign 
recognition tasks widely and has become one of the key technologies to improve the accuracy and interpretability of the model. 
However, different attention mechanisms have different problems and challenges in specific implementation and application. For 
example, there is a high computational cost to calculate attention weights and a large amount of parameter tuning to achieve optimal 

Table 1 
Data volume of training set, verification set, and test set in DTSRB.  

Traffic sign label Totality Training set Validation set Test set 

Speed limit 20 km/h 210 147 63 60 
Speed limit 30 km/h 2220 1554 666 720 
Speed limit 50 km/h 2250 1575 675 750 
Speed limit 60 km/h 1410 987 423 450 
Speed limit 70 km/h 1980 1386 594 660 
Speed limit 80 km/h 1860 1302 558 630 
Speed limit 100 km/h 1440 1008 432 450 
Speed limit 120 km/h 1410 987 423 450 

End of speed limit 80 km/h 420 294 126 150 
No passing 1470 1029 441 480 

Right-of-way at the next intersection 1320 924 396 420 
No passing for vehicles over 3.5 metric tons 2010 1407 603 660 

Priority road 2100 1470 630 690 
Yield 2160 1512 648 720 
Stop 780 546 234 270 

No vehicles 630 441 189 210 
Vehicles over 3.5 metric tons prohibited 420 294 126 150 

No entry 1110 777 333 360 
General caution 1200 840 360 390 

Dangerous curve to the left 210 147 63 60 
Dangerous curve to the right 360 252 108 90 

Double curve 330 231 99 90 
Bumpy road 390 273 117 120 
Slippery road 510 357 153 150 

Road narrows on the right 270 189 81 90 
Road work 1500 1050 450 480 

Traffic signals 600 420 180 180 
Pedestrians 240 168 72 60 

Children crossing 540 378 162 150 
Bicycles crossing 270 189 81 90 

Beware of ice/snow 450 315 135 150 
Wild animals crossing 780 546 234 270 

End of all speed and passing limits 240 168 72 60 
Turn right ahead 689 485 204 210 
Turn left ahead 420 294 126 120 

Ahead only 1200 840 360 390 
Go straight or right 390 273 117 120 
Go straight or left 210 147 63 60 

Keep right 2070 1449 621 690 
Keep left 300 210 90 90 

Roundabout mandatory 360 252 108 90 
End of no passing 240 168 72 60 

End of no passing by vehicles over 3.5 metric tons 240 168 72 90  
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performance. We apply SE Block to ConvNeSe Block to achieve adaptive adjustment of feature channel weights. The model improves 
the attention to important features by strengthening the influence on important features. 

3. Proposed methods 

Deep learning has driven the development of computer vision in image classification tasks. Previous image classification models 
only improve the accuracy of the model by increasing the depth of the network. However, increasing the depth of the network cannot 
guarantee the improvement of the model accuracy simply, and even leads to the aggravation of the high variance-high bias problem. In 
this paper, we propose an image classification model ConvNeSe for traffic sign recognition as shown in Fig. 1. ConvNeSe is based on 
convolutional neural networks and solves the problem of balancing the depth and precision of the model by using less Layer 
Normalization, Drop Path, and Inverted Residuals structure [34,35]. ConvNeSe enables efficient feature learning and image processing 
through advantages such as translation invariance, local feature extraction, and preservation of spatial structure. At the same time, it is 
able to better than Transformer Network in terms of accuracy, scalability, and robustness. 

Firstly, the traffic sign image is preprocessed. Secondly, the processed data enters the feature extraction module. Downsampling is 
performed by a convolution layer with a convolution kernel size of 4*4. Data normalization is performed by Layer Normalization. The 
ConvNeSe Block is then cross-stacked with the Sample Block. The stacking times of ConvNeSe Blocks are (3,3,9,3) and the number of 
channels output by each ConvNeSe Block is (96, 192, 384, 768). Finally, the recognition results of traffic sign are output through the 
classifier. 

3.1. Data 

3.1.1. Dataset 
The German Traffic Sign Recognition Benchmark dataset [36] is a publicly available dataset for traffic sign detection and recog-

nition. The GTSRB dataset contains 51839 images covering 43 types of traffic signs. Such as speed limits, no parking, danger signs, etc., 
each image is annotated with a corresponding category label. Each traffic sign contains 200 to 2000 images. Image resolution ranges 
from 15 * 15 to 250 * 250. In order to better predict and evaluate the model, 39209 images from the dataset are used to build the 
training set and the verification set, and the ratio of the training set to the verification set is 7:3. 12630 images are used to build the test 
set. The division results of each traffic sign in the data set as shown in Table 1. In this experiment, training, validation and testing are 
performed on the GTSRB dataset, and the proposed model is also applicable to other standard datasets. Examples include Belgium 
Traffic Sign Dataset (BTSD), Changsha University of Science and Technology Remote Sensing Image Dataset (CSUST), Chinese Traffic 
Sign Detection Bench-mark (CCTSDB) and German Traffic Sign Detection Benchmark (GTSDB) [37–40]. 

3.1.2. Data preprocessing 
The narrow data coverage in GTSRB makes the model can not deal with the image of illumination change, scale difference, rotation, 

local occlusion and so on effectively. The application of data enhancement techniques can increase the diversity of images, thus 
improving the performance and robustness of the model. The model can recognize traffic signs in various complex environments. At 
the same time, some preprocessing operations can filter out redundant information and save storage and computing resources. 

In this experiment, the pre-processing operations on the training set data include RandomResizedCrop, RandomHorizontalFilp, 
ToTensor and Normalize as shown in Fig. 2. RandomResizedCrop crops the image to different sizes and aspect ratios randomly, and 
then scales the cropped image to the specified size 224*224. This method can help the model adapt to images of different sizes and 
scales, thus improving the generalization ability and performance of the model. RandomHorizontalFilp flips the image horizontally 
which can increase the diversity of images in the data set. The probability of RandomHorizontalFilp preprocessing for each photo is 
50%. ToTensor converts the image into Tensor format. Normalize standardizes Tensor data before training which can improve the 
accuracy of model training effectively and reduce the deviation of training process in deep learning models. The mean and standard 
deviation of the red, green and blue channels on the ImageNet dataset are calculated to obtain the Normalized parameters which is 
[0.485, 0.456, 0.406] and [0.229, 0.224, 0.225]. 

Fig. 2. Training process preprocessing operations.  
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In this experiment, the pre-processing operations on the validation set data include Resize, CenterCrop, ToTensor, and Normalize as 
shown in Fig. 3. Resize scales the to the specified size 256*256, which can ensures the consistency of the input data and avoids model 
validation errors due to images of different sizes. CenterCrop crops the image from the center pixel to the specified size 224*224, which 
can reduce the interference of image edge information to the accuracy of the model. 

3.2. ConvNeSe block 

ConvNeSe Block is a network structure capable of extracting multi-scale features as shown in Fig. 4. Different types of convolutional 
modules and Inverted Residuals structure are introduced to optimize the model structure. The network can be extended to a deeper 
number of layers, and more abundant features can be extracted, so that the model can avoid the problem of gradient disappearance and 
information loss in the deep network. Meanwhile, Depthwise Separable Convolution and SE Block are used to improve the compu-
tational efficiency and multi-scale feature fusion capability of the models. 

Depthwise Separable Convolution (DSC) is a key module in many efficient neural network architectures. It includes Depthwise 
Convolution and Pointwise Convolution as shown in Fig. 5 [41]. It uses Depthwise Convolution instead of common convolution [42, 
43]. The computational cost of a common convolution as shown in Equation (1). 

cost= h ∗ w ∗ Cin ∗ Cout ∗ K ∗ K (1) 

Where h and w stand for the height and width of the feature map respectively, Cin stands for the number of channels of the input 
feature map, Cout stands for the number of channels of the output feature map, K stands for the size of the convolution kernel. The 
calculated cost of DSC as shown in Equation (2). 

Fig. 3. Verification process preprocessing operations.  

Fig. 4. ConvNeSe Block structure.  
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cost= h ∗ w ∗ Cin ∗
(
K2 +Cout

)
(2) 

Compared with traditional convolution, DSC reduces the computation costs by 1/K2 by reducing the number of parameters. Thus, 
the training time of the model is reduced. At the same time, Depthwise Convolution uses 7 * 7 convolution nuclei to increase the size of 
the receptive field. The model has the ability to extract global features and context information. The kernel size of Pointwise 
Convolution is 1*1. It combines the features of different channels in a weighted way. Make the model pay more attention to important 
features. In the residual part of the feature map, the deep feature is extracted by DSC, and then the channel number of the feature 
matrix is adjusted by convolution with kernel size of 1*1. The shallow features of the direct mapping part can be fully integrated with 
the deep features. 

Each region of the image shows different importance for traffic sign recognition task. But CNN assumes that the features of all 
regions are equally important. SE Block is an attentional mechanism used to enhance the model’s focus on important features as shown 
in Fig. 6 [44]. It adjusts the importance of feature channels by dynamic weights. Global Averaging Pooling operation is used for 
reducing the channel dimension of input feature maps to a scalar through. Then, two fully connected layers is used for learning the 
relationship between the channels and obtain a weight vector representing the importance of each channel of the feature map. The 
channel weight is multiplied with the original input feature map to weight the importance of the channel. 

Specifically, suppose the input feature map is X ∈ Rh∗w∗Cin. Where h, w, and Cin stand for the height, width, and number of channels 

Fig. 5. Depthwise Separable Convolution structure.  

Fig. 6. SE Block structure.  

W. Wei et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e26182

8

of the feature map. The calculation formula of the SE module as shown in Equation (3). 

α = AvgPool(X)
z = Swish(W1α + b1)

f = δ(W2z + b2)

y = f ∗ X

(3)  

Where AvgPool stands for global averaging pooling operation, Swish stands for modified linear unit, δ stands for sigmoid function, W1, 
W2, b1 and b2 stand for weights and bias parameters,α stands for vectors after averaging the features of each channel, and z stands for 
the intermediate result after passing through the first fully connected layer. f stands for the channel weight vector through the second 
fully connected layer, y stands for the weighted output features, and * stands for element multiplication. 

ConvNeSe Block solves the problems of gradient disappearance and performance degradation during model training effectively, 
and improves the training efficiency of the model. At the same time, the multi-scale feature extraction capability of the model is 
improved by using Inverted Residuals structure to fuse the feature maps of different scales and SE Block to learn the weights of different 
feature maps. 

3.3. Sample block 

In this paper, we propose a Sample Block consisting of a Layer Normalization layer and a convolution layer with kernel size of 2*2 
as shown in Fig. 7. The stability of training can be improved by normalizing the feature matrix. Some information is lost during 
downsampling at the pooling layer. Therefore, we use convolutional layers for spatial downsampling to reduce information loss and 
improve feature representation. 

4. Experiment and analysis 

In order to demonstrate the superiority of our proposed method in traffic sign recognition task. Experiments and analyses are 
performed on the public dataset GTSRB. The configuration of the experimental platform as shown in Table 2. 

4.1. Training settings 

A total of 70 epochs are trained on the GTSRB dataset. The batch size is 16 during training. 
We used the Cross Entropy Loss Function (CELF) to evaluate the model [45]. CELF measures the difference between the model’s 

predicted results and the real results effectively, It is used to evaluate the classification ability of the model, optimize the parameters of 
the model, and improve the accuracy of the model. The formula for calculating the CELF as shown in Equation (4). 

loss= −
1
N

∑N

n=1

∑K

i=1
(Y ln(y)+ (1 − Y)ln(1 − y)) (4)  

where N stands of the number of samples, K stands of the number of categories, Y stands of the true label of the sample, and y stands of 
the prediction probability value of the sample. 

Fig. 7. Sample Block structure.  

Table 2 
Experimental platform configuration.  

CPU Intel Core i7-7700 K @ 4.20 GHz 

GPU NVIDIA GeForce GTX 3090 
Memory 16 GB 

Operating System Ubuntu 18.04 
Deep learning framework PyTorch 2.0  
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AdamW optimizer is used to optimizing the model parameters with a weight decay rate of 5e-2. The AdamW optimizer adds a 
mechanism for Weight Decay to the Adam optimizer [46]. It separates weight decay from gradient calculation and applies it to 
parameter updating, which can improve the stability and convergence performance of deep learning models effectively. The AdamW 
implementation as shown in Equation (5). 

mt = β1mt− 1 + (1 − β1)gt

vt = β2vt− 1 + (1 − β2)gt
2

m∧ t =
mt

1 − β1
tv
∧

t =
vt

1 − β2
twt = wt− 1 −

α
̅̅̅̅̅̅̅̅̅̅̅̅

v∧t + ε
√ ∗

(

m∧ t + λwwt− 1

) (5)  

Where mt stands for the First Moment Estimation, vt stands for the Second Moment Estimation, gt stands for the gradient at the current 
iteration moment, m̂t and v̂t stand for corrections to first and second moments，β1 and β2 stand for the decay factors of the first and 
second moments respectively, α stands for the learning rate; ϵ is a very small constant to prevent the denominator from being 0, λw 
stand for the weight decay coefficient. 

We use the learning rate to control the convergence speed of the model. The initial learning rate is 5e-4. The decay strategy of 
learning rate consists Warmup and Cosine annealing [47,48]. In the Warmup part, the learning rate is increased to the initial learning 
rate gradually. The goal is to avoid problems with the model such as overfitting or gradient explosion at the beginning of training of the 
model. In the Cosine annealing part, the learning rate will decrease in the form of the cosine function gradually to avoid problems such 
as oscillation or overfitting during the training of the model. Combining the above two parts, a smooth decay strategy of learning rate 
can be realized. The use of high learning rate can accelerate the convergence of the model and make the model approach the optimal 
solution quickly. As the model approaches the optimal solution, the high learning rate may cause the parameters to oscillate around the 
optimal solution, so the learning rate needs to be reduced gradually. 

Fig. 8. Training set and validation set loss curves.  

Fig. 9. Learning rate decay curve.  
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Fig. 10. Accuracy curves of training set and validation set.  

Table 3 
Precision, Recall and F1-score of each category in the GTSRB dataset.  

Traffic sign label Precision Recall F1-score 

Speed limit 20 km/h 1.0 1.0 1.0 
Speed limit 30 km/h 0.989 1.0 0.994 
Speed limit 50 km/h 0.995 0.999 0.997 
Speed limit 60 km/h 0.995 0.982 0.988 
Speed limit 70 km/h 0.997 0.995 0.996 
Speed limit 80 km/h 0.994 0.989 0.994 
Speed limit 100 km/h 1.0 1.0 1.0 
Speed limit 120 km/h 1.0 0.98 0.990 

End of speed limit 80 km/h 1.0 0.990 0.995 
No passing 0.998 1.0 0.999 

Right-of-way at the next intersection 1.0 1.0 1.0 
No passing for vehicles over 3.5 metric tons 1.0 1.0 1.0 

Priority road 0.999 0.999 0.999 
Yield 0.985 0.997 0.991 
Stop 1.0 1.0 1.0 

No vehicles 1.0 0.986 0.993 
Vehicles over 3.5 metric tons prohibited 0.994 1.0 0.997 

No entry 1.0 1.0 1.0 
General caution 0.995 0.987 0.991 

Dangerous curve to the left 0.996 1.0 0.998 
Dangerous curve to the right 0.989 0.998 0.994 

Double curve 0.989 1.0 0.994 
Bumpy road 1.0 0.993 0.996 
Slippery road 0.988 1.0 0.994 

Road narrows on the right 1.0 1.0 1.0 
Road work 0.99 0.99 0.99 

Traffic signals 0.994 1.0 0.997 
Pedestrians 1.0 1.0 1.0 

Children crossing 0.994 1.0 0.997 
Bicycles crossing 1.0 1.0 1.0 

Beware of ice/snow 0.980 1.0 0.99 
Wild animals crossing 0.993 1.0 0.996 

End of all speed and passing limits 1.0 1.0 1.0 
Turn right ahead 0.984 1.0 0.992 
Turn left ahead 0.994 0.986 0.990 

Ahead only 1.0 0.997 0.998 
Go straight or right 0.999 0.999 0.999 
Go straight or left 0.987 0.997 0.992 

Keep right 0.997 0.980 0.989 
Keep left 0.990 0.990 0.990 

Roundabout mandatory 0.989 0.989 0.989 
End of no passing 1.0 1.0 1.0 

End of no passing by vehicles over 3.5 metric tons 1.0 1.0 1.0  
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4.2. Main result 

The change trend of training set loss decreases rapidly and becomes stable, and the training set loss converges to 0.33. The veri-
fication set loss shows a decreasing trend and fluctuates in the 5th and 20th rounds of training, and converges to 0.001 as shown in 
Fig. 8. The learning rate shows a downward trend and converges to 0.00001 as shown in Fig. 9. As the learning rate decreases to a 
stable state gradually, the accuracy of training and verification of the model converges gradually. 

In the accuracy curve, the accuracy of the training set increases gradually and converges to 99.85%. The accuracy of verification set 
also showed a trend of gradual improvement and converges to 99.99% as shown in Fig. 10. The results show that the model is reliable 
in traffic sign recognition. It can be applied to many fields such as intelligent transportation system, which can improve the efficiency 
and convenience of intelligent traffic management [49]. The recognition rates of Precision, Recall and F1-score of each category in the 
GTSRB test set are above 98% as shown in Table 3. It shows that the recognition performance of the model is balanced for all cate-
gories. In addition, the model can recognize traffic signs with complex background well as shown in Table 4. 

The ConvNeSe model is compared and analyzed with other advanced convolutional neural network models as shown in Table 5. 
ConvNeSe has fewer parameters and higher accuracy than VGGNet and ResNet. ENet has fewer parameters and FLOPs than the 
ConvNeSe model, which has advantages in computing resources and storage space, but its accuracy is lower than that of the ConvNeSe 
model. MCDCNN and PFANet are higher than ConvNeSe in model parameters and inference time, but lower than ConvNeSe in ac-
curacy. In summary, ConvNeSe model performs well in accuracy and speed of inference. So it can be applied to scenarios that require 
high accuracy. 

4.3. Ablation experiment 

SE Block improves model accuracy by capturing contextual information and long-term dependencies. In order to verify the validity 

Table 4 
Successful identification of complex background.  

Traffic sign image Traffic sign label Confidence 

Dangerous curve to the left 99.9% 

No passing 100% 

Road work 100% 

Keep right 99.9% 

Speed limit 80km/h 99.89% 

No passing for vehicles over 3.5 metric tons 100%  

Table 5 
Comparison between our CNN and other states of the art CNN classifier on GTSRB.  

Model param（M） FLOPs（G） Top-1 Acc. (%) 

VGGNet [50] 138.36 15.47 91.74% 
ResNet [50] 44.55 7.87 95.57% 
ENet [21] 0.9 0.21 98.60% 

MCDCNN [51] 38.5 7.14 99.50% 
PFANet [30] 27.7 4.99 97.21% 

ConvNeSe(ours) 26.87 4.46 99.85%  
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of SE Block, we conduct a series of ablation experiments on GTSRB as shown in Table 6. ConvNeSe-T and ConvNeSe-S are two different 
model structures, which T stands for the tiny model and S stands for the small model. Although the accuracy of the ConvNeSe-T is lower 
than the ConvNeSe-S slightly, the number of model parameters and FLOPs is much smaller than the ConvNeSe-S. In addition, the 
number of parameters and FLOPs of models without SE Block are slightly lower than those with SE Block, but the accuracy dropped a 
little. In particular, accuracy of ConvNeSe-T reduces from 99.85% to 99.45%. In summary, adding SE Block to ConvNeSe T and 
ConvNeSe S models can improve model performance. In particular, the improvement is especially evident in ConvNeSe-T. 

5. Conclusion 

In this paper, we propose a lightweight model for traffic sign recognition. It is used in traffic sign recognition successfully. We use 
Depthwise Separable Convolution, Inverted Residuals structure and SE Block to build a powerful feature extraction module called 
ConvNeSe Block. Depthwise Separable Convolution and Inverted Residuals structure are used to extract and fuse features at different 
levels. SE Block is used to pay close attention to important features. Our model not only advances in its simple implementation, but also 
shows superior ability to classification performance when compared to many recent competitors. The next step of our work focuses on 
improving the generalization ability of our model. The model also has good classification performance for traffic signs with low 
resolution. In addition, the study applies ConvNeSe as a backbone for traffic sign detection in complex backgrounds. 
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