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Abstract: The influence of the substitution pattern in ferrocenyl α-thienyl thioketone used as a proli-
gand in complexation reactions with Fe3(CO)12 was investigated. As a result, two new sulfur–iron
complexes, considered [FeFe]-hydrogenase mimics, were obtained and characterized by spectroscopic
techniques (1H, 13C{1H} NMR, IR, MS), as well as by elemental analysis and X-ray single crystal
diffraction methods. The electrochemical properties of both complexes were studied and compared
using cyclic voltammetry in the absence and in presence of acetic acid as a proton source. The per-
formed measurements demonstrated that both complexes can catalyze the reduction of protons to
molecular hydrogen H2. Moreover, the obtained results showed that the presence of the ferrocene
moiety at the backbone of the linker of both complexes improved the stability of the reduced species.

Keywords: sulfur–iron clusters; hydrogenase active centers mimics; heteroaryl thioketones;
ferrocenyl thioketones; iron carbonyls; dearomatization; reaction mechanisms; cyclic voltammetry;
X-ray diffraction analysis

1. Introduction

Multidisciplinary search for sustainable energy sources is considered a crucial task
to the scientific community due to the environmental impact of non-renewable resources,
such as fossil fuels, and limited access to gas and oil fields [1]. Therefore, hydrogen pro-
duction without fossil fuels, so-called “Green hydrogen”, can play the role of a clean
alternative as a promising fuel that substantially can reduce atmospheric pollution [2].
In this context, nature provides special metalloenzymes called hydrogenases that regulate
the generation and depletion of hydrogen [3–5]. In particular, the [FeFe]-hydrogenases are
the most competent hydrogen producer in nature with high turnover frequencies up to
104 s−1 [6,7]. The active site of the latter, commonly referred to as the H-cluster, consists of
a canonical [Fe4S4]-cluster coupled to an organometallic diiron complex, the [Fe2S2] subsite,
which is coordinated with an azadithiolato bridging unit, by three carbon monoxide and
two cyanide ligands (Figure 1) [8–11]. Based on that, the preparation of [FeFe]-hydrogenase
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mimics, which are used for electrocatalytic as well as photocatalytic production of hydro-
gen, has received increased attention in bioorganometallic chemistry [12–23]. Alterations
of the bridge that connects the bimetallic atoms in those architectural mimics are consid-
ered a key factor in tuning its reduction potential and the reversibility of the catalytic
reactions [12,24,25].
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In recent publications, the reactions of thiobenzophenone (Ph2C=S) with triiron do-
decacarbonyl Fe3(CO)12, leading to diverse iron sulfur clusters, were described, and in
most cases, the [FeFe]-hydrogenase-mimicking complexes have been reported as major
products [26,27]. The reaction performed with 1:1 ratio of thiobenzophenone and Fe3(CO)12
led to the ortho-metalated product A (Figure 1), which subsequently reacted with an
equivalent of thioketone with the formation of complex B (Figure 1) [27]. Only in recent
years were the relatively little known heteroaryl thioketones, bearing the α-thienyl sub-
stituent, widely explored as versatile substrates in the current organic synthesis designed
for the preparation of diverse sulfur-containing compounds, and (3 + 2)- as well as (4 + 2)-
cycloaddition reactions are the focus of interest [28]. For example, they smoothly undergo
(3 + 2)-cycloadditions with nitrilimines and thiocarbonyl S-methanides with regioselective
formation of 1,3,4-thiadiazoles and 1,3-dithiolanes, respectively [29–31]. The reactions of
thioketones with diazomethane deserve special attention; they were shown to occur at low
temperature with evolution of N2, and the in situ-generated thiocarbonyl S-methanides un-
derwent a unique, step-wise dimerization leading to 14-membered sulfur macrocycles [32].
Furthermore, their formation was explained by the appearance of transient species pre-
sented as delocalized 1,7-diradicals. Later, this hypothesis was confirmed by a computa-
tional study [33]. An analogous, stepwise reaction course was postulated for reactions of
α-thienyl substituted thioketones with other diazo compounds, such as trimethylsilyldia-
zomethane TMSCHN2 and 2-diazopropane Me2CN2 [34]. Notably, a stepwise mechanism
was also postulated for the trienamine-mediated hetero-Diels-Alder reactions of some het-
eroaryl thioketones with 2,4-dienals [35]. Analogously, hetero-Diels-Alder reactions of
di(α-thienyl) thioketone with non-activated dienes were shown to occur step-wise via a
diradical intermediate [36].

Motivated by our results obtained with thiobenzophenone with Fe3(CO)12 as well
as cycloaddition reactions of heteroaryl thioketones, we decided to investigate the use
of ferrocenyl α-thienyl thioketone (1) (Figure 1) as a novel proligand for the synthesis
of [FeFe]-hydrogenase H-cluster mimics. The expected sulfur–iron complexes should
be characterized using a variety of spectroscopic techniques (NMR, MS, IR), elemental
analysis, as well as by X-ray analysis. Moreover, the electrochemical properties of the
obtained complexes were studied by cyclic voltammetry in combination with quantum
chemical simulations.
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2. Materials and Methods
2.1. General Methods

All reactions were performed under a neutral gas atmosphere (N2) using standard
Schlenk and vacuum-line techniques. The 1H (400 MHz) and 13C{1H} (100 MHz) spectra
were recorded with a Bruker Avance 400 MHz spectrometer (Terre Haute, IN, USA). Chem-
ical shifts (ppm) refer to internal Me4Si (1H, 13C). The MS spectra were recorded using a
Finnigan MAT SSQ 710 (Auburn, CA, USA) instrument. Elemental analyses were carried
out using a Leco CHNS-932 (Madrid, Spain) analyzer. TLC tests were performed using
Merck TLC aluminum sheets coated with silica (Silica gel 60 F254, Kenilworth, NJ, USA).
Solvents and chemicals were purchased from commercial suppliers (Fisher Scientific, Acros
Organics, Janssen-Pharmaceuticalaan, Belgium and Sigma-Aldrich, St. Louis, MO, USA)
and they were used without further purification; solvents were dried and distilled prior to
usage based on standard methods. Ferrocenyl α-thienyl thioketone (1) was synthesized
following the known literature method [37]. Electrochemical measurements, computational
work, and X-ray structure data for complexes 1 and 2 can be found in the Supplementary
Materials (p. 3).

2.2. Synthesis of Complexes 2 and 3

A 100-mL oven-dried round-bottom Schlenk flask was charged with Fe3(CO)12 (133 mg,
0.265 mmol) and thioketone 1 (248 mg, 0.795 mmol), and then 30 mL dry THF was added.
The obtained solution was heated under a reflux condenser for 4 h under an inert gas
(nitrogen) atmosphere. After this time, the brown solution was filtered to remove a black
solid material, the solvent was evaporated, and the residue was purified by column chro-
matography on silica using hexane/CH2Cl2 (2:1) as an eluent. Complex 2 was collected as
a less polar fraction, while complex 3 was isolated as a more polar one.

Complex 2. (27% yield, red-orange powder); Anal. Calcd for C21H12Fe3O6S2: C, 42.61;
H, 2.04, S, 10.83. Found: C, 42.41; H, 2.24; S, 10.55. FT-IR (solid state, ATR, cm−1): νC≡O
2069, 2026, 1969. 1H NMR (400 MHz, CD2Cl2, ppm): δ = 7.52 (d, 1H, 2JH,H = 5.0 Hz), 7.49 (d,
1H, 2JH,H = 5.0 Hz), 5.43 (s, 1H), 4.19 (s, 5H), 4.10 (s, 2H), 3.96 (s, 1H), 3.03 (s, 1H). 13C{1H}
NMR (100 MHz, CD2Cl2, ppm): δ = 210.2, 210.1, 161.6, 142.4, 131.6, 120.6, 91.6, 69.9, 69.2,
67.9, 66.6, 58.0. DEI-MS (m/z): 591 [M]+, 563 [M−CO]+, 535 [M−2CO]+, 507 [M−3CO]+,
479 [M−4CO]+, 451 [M−5CO]+ and 423 [M−6CO]+.

Complex 3. (30% yield, green powder); Anal. Calcd for C36H24Fe4O6S3: C, 49.58;
H, 2.77, S, 11.03. Found: C, 49.43; H, 2.51; S, 10.98. FT-IR (solid state, ATR, cm−1): νC≡O
2068, 2035, 1994. 1H NMR (400 MHz, CDCl3, ppm): δ = 7.47–7.14 (m, 3H), 6.88 (dd, 1H,
3JH,H = 15.0/12.0 Hz), 6.68 (d, 1H, 3JH,H = 12.0 Hz), 6.49 (d, 1H, 3JH,H = 15.0 Hz), 4.46, 4.40,
4.34, 4.24, 4.19 (s, 18H). 13C{1H} NMR (100 MHz, CDCl3, ppm): δ = 208.8, 149.7, 145.0,
139.9, 137.4, 131.9, 128.9, 128.0, 127.3, 127.1, 126.5, 87.2, 81.7, 70.9, 70.4, 70.3, 69.5, 67.9, 67.5.
DEI-MS (m/z): 872 [M]+, 844 [M−CO]+, 816 [M−2CO]+, 788 [M−3CO]+, 760 [M−4CO]+,
732 [M−5CO]+ and 704 [M−6CO]+.

3. Results and Discussion
3.1. Synthesis and Characterization of the Binuclear Complexes

Synthesis of ferrocenyl α-thienyl thioketone (1), used in this study, was carried out
following a previously reported procedure [37]. Heating of Fe3(CO)12 with three mol-
equivalents of 1 in boiling THF for 4 h led to a mixture of comparable amounts of the
ortho-metalated complex 2 and unexpectedly formed complex 3 in which a unique dearom-
atization of the thiophene ring was observed (Scheme 1).
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Scheme 1. Formation of a mixture of complexes 2 and 3 starting with ferrocenyl α-thienyl thioketone
(1) and Fe3(CO)12.

The ortho-metallated complex 2 could be formed via a mechanism proposed earlier by
Alper and co-workers [38]. However, the mechanism of the multi-step reaction leading to
complex 3 is more complicated compared to that of 2 and comprises dearomatization of a
five-membered heterocycle. We assume that this conversion is initiated by a ring-opening
in 1 followed by an attack of the thiocarbonyl group from another equivalent of 1 forming
a new S-C bond, which leads to in situ formation of thiocarbonyl ylide I (1,3-dipole) as
a reactive intermediate [39] (Scheme 2). The latter subsequently undergoes electrocyclic
ring closure with exclusive formation of thiirane (II). This reaction sequence terminates
with elimination of sulfur and offers a plausible explanation of the mechanisms of this
unexpected reaction leading to dearomatization of the thiophene ring and formation of
complex 3 as the final product (Scheme 2).
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Scheme 2. Plausible mechanism of multi-step reaction leading to complex 3 via thiocarbonyl ylide (I)
and thiirane (II) postulated as a key intermediate.

The structures of 2 and 3 were established by spectroscopic methods (1H NMR, 13C{1H}
NMR, IR, MS) and elemental analysis and were unambiguously confirmed by X-ray single
crystal diffraction analysis. For example, in the IR spectra of both complexes, three char-
acteristic metal/carbonyl stretching bands located at 2069, 2026, 1969 for 2, and at 2068,
2035, 1994 cm−1 for 3 were observed. These results are consistent with the IR data re-
ported for similar iron complexes [26,27,38–40]. The 1H NMR spectrum of 2 displays a
singlet resonance at 5.43 ppm for the methine proton. Moreover, the nine protons of the
ferrocene moiety appear as four singlets in the area between 3.03 and 4.19 ppm, while
those of the thiophene ring were found as two doublets (AB spin system) at δ 7.52 and
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7.49 ppm (2JH,H = 5.0 Hz). In the case of complex 3, five singlet signals were detected
in the range of δ 4.19–4.46 ppm, which can be assigned to the 18 protons of two fer-
rocene moieties. The three protons of the diene moiety were detected as two doublets
at 6.68 (3JH,H = 12.0 Hz) and 6.49 ppm (3JH,H = 15.0 Hz) and as a doublet of the doublet
at 6.88 ppm (3JH,H = 12.0/15.0 Hz). In the 13C{1H} NMR spectra, the terminal carbonyl
C-atoms of the iron cores of complexes 2 and 3 resonated as a singlet at δ 210.2 and 210.1
and at δ 208.8 ppm, respectively. The signals of the other carbon atoms, which confirmed
the postulated structures of complexes 2 and 3, were also detected in the expected range.

3.2. Molecular Structures of Complexes 2 and 3

Single crystals of complexes 2 and 3 adequate for X-ray diffraction measurement
were grown at low temperature (−20 ◦C) via diffusion of pentane into a dichloromethane
solution of each complex. Figures 2 and 3 illustrate the molecular shapes of complexes 2
and 3, respectively. The thiophene ring in 3 is disordered over two positions. It is evident
from Figure 2 that the ferrocenyl α-thienyl thioketone ligand is connected to the two iron
atoms via the sulfur atom, with an average Fe-S bond length of 2.2610 Å. Moreover, it is also
σ bounded to one iron atom through the β-carbon of the thiophene ring and is π-bounded
to the other iron atom through one C-C π-bond. The Fe–Fe (2.5036(6) Å) bond length of
complex 2 is in good agreement with those for similar ortho-metalated analogues [26,27].
The two symmetric cyclopentadienyl rings exhibit an eclipsed configuration. On the other
hand, the solid-state structure of 3 reveals the usual butterfly conformation typical for
the synthetic H-cluster mimics, indicating a distorted octahedron geometry for each iron
atom [41–44]. The Fe–Fe bond length (2.4793(8) Å) of 3 is slightly shorter than those
described for analogues models [12–17,41–44]. The interatomic S···S distance (2.9080(1) Å)
in complex 3 is slightly shorter than the theoretical value calculated for similar binuclear
dithiolato complexes [45] and in good agreement with the present simulations (2.9191 Å).
In comparison to complex 2, the ferrocene moieties of complex 3 show also an eclipsed
conformation. The torsion angle defined by the apical CO ligand across the Fe–Fe vector in
complex 3 is almost zero, indicating that the Fe(CO)3 units eclipsed each other. The average
Fe–S bond length (2.2668 Å) is within the same range as those observed for its analogues.
The average Fe–CO bond length in 3 is 1.8033 Å, which agrees with data reported for
similar [FeFe]-hydrogenase mimics [46–48].
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3.3. Electrochemical Investigation

In order to gain more insight into the redox properties of 2 and 3, cyclic voltammetry
(CV) experiments were performed in 0.1 M CH2Cl2-[n-Bu4N][BF4] solutions. The obtained
CVs of 2 and 3 at a scan rate of 0.2 V/s are exhibited in Figure 4.
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As apparent from Figure 4, the CV of 2 reveals two consecutive, reversible, one-
electron steps at E1/2 = −1.47 V and E1/2 = −1.78 V, respectively, while in the case of 3,
there is only one reversible reduction peak found at E1/2 = −1.49 V. A plot of the current
function (Ipc/C·ν1/2) (Ipc = cathodic peak current, C = concentration and ν = scan rate)
vs. the scan rates of the reduction event of 3 reveals the expected invariance for a process
involving the transfer of two electrons (Figure S1) [49–53]. Additionally, the value of
Ipc/C·ν1/2 for the reduction peak of 3 is almost twice the magnitude of that for the first
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reduction event of 2. According to this, the reduction event of complex 3 is due to the
transfer of two electrons in a single step via an ECE mechanism (E = electrochemical
process, C = chemical process). Furthermore, when the scan rate is increased to 10 V/s,
these reduction events appear chemically reversible (Figure S2). In addition, their currents
vs. the square root of the scan rates are all linearly correlated, which indicates that these
reduction processes are diffusion-controlled (Figure S3) [54]. It is worth pointing out that
the backbone of the dithiolate linker of complex 3 enhances the chemical stability of the
reduced species, which prevents the formation of any dimerization process such as the case
in the [Fe2(CO)6{µ-pdt}] (pdt = 1,3-propane dithiolate) complex [41]. However, this might
be explained due to the flexibility of the ferrocene moiety as well as the delocalization
of the negative charge onto the backbone of the dithiolato linker similar to the behavior
of the reported [Fe2(CO)6{µ-bdt}] (bdt = 1,2-benzenedithiole) complex [55–57]. To further
understand the reduction processes in complex 2 and 3, we show the complexes’ frontier
orbitals in Figure 5, namely, the highest occupied molecular orbital (HOMO), the lowest
unoccupied orbital (LUMO), and the LUMO+1 as obtained at the density functional level of
theory (DFT). For complex 2, the HOMO is of d-orbital character at the ferrocene unit, while
the LUMO is localized at the [Fe–Fe] center (σ* character) with a gap of 1.42 eV. In contrast,
the HOMO and LUMO of complex 3 with a gap of 1.04 eV are of π/π* character on the
conjugated ligand. Contrary to complex 2, the orbital of σ* character at the [Fe–Fe] center
is now the LUMO+1 (see grey dashed line, Figure 5). Hence, we expect the reduction of
complex 2 via the LUMO to lead to substantial electron density at the active [Fe–Fe] center–
formally yielding a [FeI-Fe0] species—while for complex 3, the reduction via the LUMO
will transfer electron density on the ligand site (π* character). This opens up complex
2 as an interesting candidate to mimic the reduction process seen at the [Fe–Fe] center
in hydrogenases.
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On initiating the electrochemical scan in the positive direction at a scan rate of 0.2 V/s,
complex 2 exhibits the appearance of a quasi-reversible oxidation peak at E1/2 = 0.09 V.
In the case of complex 3, it shows two sequential quasi-reversible one electron steps
at E1/2 = 0.03 and 0.13 V. These oxidation events could be assigned to the one-electron
oxidation process of Fe(II)→ Fe(III) of the ferrocene moiety.

3.4. Electrocatalysis

To estimate the ability of complexes 2 and 3 to catalyze the electrocatalytic hydrogen
production, we measured their cyclic voltammograms in the presence of acetic acid as a
source of protons. The CVs of both complexes recorded after the addition of 1–80 equiv. of
a weak acid (acetic acid, AcOH) are illustrated in Figure 6. Under the same experimental
conditions, AcOH is reduced at a potential of −2.58 V in the absence of complexes 2 and 3
(Figure S4).
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It is clear from Figure 6 that the voltammogram of 2 exhibits catalytic activity through
two processes at −1.77 V (process I) and at −2.18 V (process II) while complex 3 shows
only one catalytic process at −2.22 V. After the addition of one equiv. AcOH to a solution
of complex 2, the current and the potential of the first reduction peak (Epc = −1.50 V) are
hardly affected, and it remains reversible at all acid concentration (Figure S5). Accordingly,
the potential of the second reduction event (Epc = −1.81 V) shows a small anodic shift
(40 mV), and its current increased dramatically with sequential adding of AcOH (Figure 6).
This suggests that at this potential, an electrocatalytic proton reduction to hydrogen is
catalyzed by complex 2. Furthermore, a new reduction peak starts to appear in the presence
of 6 equiv. AcOH near ~−2.18 V, and its current increases in response to the systematic
increase of AcOH. Based on these findings, we might postulate the mechanism of electrocat-
alytic hydrogen evolution by complex 2 (process I) as follows: complex 2 is first reduced at
−1.50 V to generate the monoanionic species {2−}, which then accepts another electron at
−1.77 V to yield the dianionic species {22−}. Afterwards, the latter undergoes protonation
by AcOH to yield the {2H−} species, that subsequently accepts another proton to evolve
H2 and regenerates complex 2 to close the catalytic cycle. The mechanism of process II
may begin with the reduction of {2H−} to generate the {2H2−} species. Further protonation
leads to H2 evolution and restores {2−} species to end the catalytic cycle. However, the elec-
trocatalytic reduction mechanism of acetic acid by complex 2 is comparable to that in the
case of its analogue [Fe2(CO)6{к,µ-S,η2-(C13H8OS)}], and its catalytic events are shifted
to less negative potentials (10 mV for process I and 20 mV for process II) [57]. On the
other hand, the addition of one equiv. of AcOH to a solution of 3 results in an anodic shift
(20 mV) of its single step two-electron reduction event as well as the disappearance of
its reoxidation peak (Epa = −1.46 V) (Figure S6). This suggests a protonation of the dian-
ionic species {32−} to generate {3H−} as was reported in the case of [Fe2(CO)6{µ-bdt}] [58].
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This species then accepts another electron at −2.22 V (Figure 6) to yield the {3H2−} species,
followed by protonation to yield H2 and releasing {3−} species to complete the catalytic
cycle. This postulated electrocatalytic hydrogen production by complex 3 is consistent with
those of its analogous models [58,59].

4. Conclusions

The study showed that the complexation of ferrocenyl α-thienyl thioketone with
Fe3(CO)12 leads to a mixture of comparable amounts of two complexes that can be con-
sidered new mimics of the hydrogenase H-cluster. Whereas cluster 2 resembles similar
structures of complexes obtained in analogous reactions of aromatic thioketones, complex
3 presents a completely new arrangement of sulfur and iron atoms, resulting from the ring
opening, i.e., dearomatization of the thiophene ring, and this an unprecedented result is
not published in the literature to date. In this unexpected process, a transient thiocarbonyl
ylide is postulated as a key intermediate.

The analysis of cyclic voltammograms of both complexes indicates that 2 reacts via
two successive one-electron processes (EE mechanism) and in the case of 3, transfer of
two electrons in a single step via the ECE mechanism was observed. The proton reduction
processes in AcOH solution, catalyzed by 2 and 3, were also studied by cyclic voltammetry
and compared in terms of their efficiency. The presented results open a new perspective
for further studies in this area focused on the potential of photo-induced electron transfer
between the ligand and the [Fe–Fe] centered orbitals. In addition, the substitution of one
CO ligand in complexes 2 and 3 by stronger, electron-donating ligands should enable
a tuning of their redox properties. Potentially present Fe/S-clusters can be considered
promising photosensitizers for catalytic hydrogen evolution reaction. In general, the study
demonstrated the usefulness of ferrocenyl and hetaryl thioketones in current organic syn-
thesis and especially their usefulness as starting materials for reactions with iron carbonyls
aimed at the preparation of diverse sulfur–iron clusters that mimic [FeFe]-hydrogenase
active centers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15082867/s1, Crystallographic data (excluding structure factors)
have been deposited in the Cambridge Crystallographic Data Centre as supplementary publication
CCDC-2110902 for 2 and CCDC-2110903 for 3. Copies of the data can be obtained free of charge on
application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [E-mail: deposit@ccdc.cam.ac.uk].
Figure S1: Scan rate dependence of the current function of the reduction events of complexes 2 (black)
and 3 (red); Figure S2: Cyclic voltammetry of 1.0 mM of complexes 2 and 3 in CH2Cl2-[n-Bu4N][BF4]
(0.1 M) solution at various scan rates. The arrows indicate the scan direction. The potentials E are
given in V and referenced to the Fc+/Fc couple; Figure S3: Plots of Ip versus ν1/2 for the first (•) and
second (•) reduction peaks of 2 as well as reduction peak of 3 (•); Figure S4: Cyclic voltammogram of
various concentration of AcOH in CH2Cl2-[n-Bu4N][BF4] (0.1 M) solution at 0.2 V/s scan rate in the
absence of catalyst (complexes 2 and 3). The arrow indicates the scan direction. The potentials E are
given in V and referenced to the Fc+/Fc couple; Figure S5: Cyclic voltammetry (0.2 V/s) of 1.0 mM of
complex 2 in CH2Cl2- [n-Bu4N][BF4] (0.1 M) in the presence of one equiv. AcOH. Potential E is given
in volts V and referenced to Fc+/Fc couple. The arrow indicates the scan direction; Figure S6: Cyclic
voltammetry (0.2 V/s) of 1.0 mM of complex 3 in CH2Cl2- [n-Bu4N][BF4] (0.1 M) in the presence
of one equiv. AcOH. Potential E is given in volts V and referenced to Fc+/Fc couple. The arrow
indicates the scan direction; Figure S7: 1H NMR spectrum of compound 2 in dichloromethane-d2

(400 MHz); Figure S8: 13C{1H} NMR spectrum of compound 2 in dichloromethane-d2 (400 MHz);
Figure S9: 1H NMR spectrum of compound 3 in dichloromethane-d2 (400 MHz); Figure S10: 13C{1H}
NMR spectrum of compound 3 in dichloromethane-d2 (400 MHz); Figure S11: Packing diagrams of
complexes 2 (top) and 3 (bottom). References [60–71] are cited in the supplementary materials.
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